
InfoQ interviews Jans Aasman
on how MongoGraph helps NoSQL
Developers
MongoGraph from AllegroGraph team brings semantic web features
to MongoDB developers. They implemented a MongoDB interface to
AllegroGraph database to give Javascript programmers both
joins and the semantic web capabilities. Using this approach
JSON objects are automatically translated into triples and
both the MongoDB query language and SPARQL work against these
objects. Another goal of MongoGraph is to make the freetext
engine of their graph database easy to search as Solr/Lucene.

AllegoGraph CEO Jans Aasman gave a presentation and talked
about working on the level of objects instead of individual
triples. InfoQ spoke with Jans about this new approach and how
it helps the NoSQL developers.

Infoq: What are the advantages of representing JSON objects as
RDF triples in a graph database?

Jans: Well, the most direct answer is that you can use JSON to
model complex schemas and then perform complicated joins over
your data without writing map-reduce queries. One can approach
the JSON objects stored in MongoGraph both as JSON objects
(using the MongoDB query language) or as more fine grained RDF
triples that allow for complex models and complex joins (using
the SPARQL query language). Also you can use all the other
advanced features of an RDF Database (aka – TripleStore). One
can apply the query language SPARQL or apply rules using
mechanisms like SWRL, RIF, or Prolog.

You can also now link the data structures in your application
that you represent as JSON seamlessly with RDF triples in
the Linked Open Data Cloud.

https://allegrograph.com/articles/infoq-interviews-jans-aasman-on-how-mongograph-helps-nosql-developers/
https://allegrograph.com/articles/infoq-interviews-jans-aasman-on-how-mongograph-helps-nosql-developers/
https://allegrograph.com/articles/infoq-interviews-jans-aasman-on-how-mongograph-helps-nosql-developers/
https://allegrograph.com/
https://youtu.be/m_ni6QmSPxA
http://en.wikipedia.org/wiki/SWRL
http://en.wikipedia.org/wiki/Rule_Interchange_Format
http://en.wikipedia.org/wiki/Prolog

InfoQ: How do you access the data stored in a MongoGraph type
of database?

Jans: A MongoGraph query like the example below will return
all books for ‘Jans’ ‘Aasman’ as JSON objects.

db.authors.find({firstName: 'Jans', lastName: 'Aasman'})

But, assuming that we have a collection of authors, books,
publishers and stores, one could also write a join heavy
SPARQL query like:

select * where {
?x fr:firstName Jans; fr:lastName Aasman ; fr:authorOf ?book .
?book hasPublisher ?publisher .
?store fr:outletFor ?publisher; fr:located 'San Francisco' .
}

InfoQ: What are the limitations of using a solution like this?

Jans: Currently we implement 90% of the MongoDB API. However,
we do not emulate the clustering mechanisms of MongoDB. For
this capability we rely on the clustering mechanisms built in
to AllegroGraph.

InfoQ: What are the emerging trends in combining the NoSQL
data stores?

Jans: From the perspective of a Semantic Web – Graph database
vendor what we see is that nearly all graph databases now
perform their text indexing with Lucene based indexing (Solr
or Elastic Search) and I wouldn’t be surprised that most
vendors soon will allow JSON objects as first class objects
for graph databases. It was surprisingly straightforward to
mix the JSON and triple/graph paradigm. We are also
experimenting with key-value stores to see how that mixes with
the triple/graph paradigm.

InfoQ: What best practices and architecture patterns should
the developers and architects consider when using a solution
like this one in their software applications?

Jans: If your application requires simple straight joins and
your schema hardly changes then any RDBM will do.

If your application is mostly document based, where a document
can be looked at as a pre-joined nested tree (think a Facebook
page, think a nested JSON object) and where you don’t want to
be limited by an RDB schema then key-value stores and document
stores like MongoDB are a good alternative.

If you want what is described in the previous paragraph but
you have to perform complex joins or apply graph algorithms
then the MongoGraph approach might be a viable solution.

