
AllegroGraph – KMWorld
Readers Choice Finalist
KMWorld 2019 Readers’ Choice Awards: Best Knowledge Graph

AllegroGraph – Finalist

The ability for knowledge graphs to amass information and
relationships and connect those facts allows companies to find
context in data, which is important for extracting value as
well as complying with new data regulations.

The concept of the enterprise knowledge graph (EKG) is fairly
new and made possible by machine learning and big data
technologies, including automated text analysis and graph
engines, explained analyst Amy Stapleton in an Opus Research
article. “An IA [intelligent assistant] that taps into an EKG
can infer the context and intent of questions, generate direct
answers, make recommendations, and automatically expand its
understanding as the knowledge graph adds new content,” she
noted.

KMWorld Readers Choice

Three Necessities For
Maximizing Your Digital Twins
Approach
The digital twin premise is arguably the most viable means of
implementing equipment asset management throughout the
industrial internet. It’s an exceptionally lucrative element

https://allegrograph.com/allegrograph-kmworld-readers-choice-finalist/
https://allegrograph.com/allegrograph-kmworld-readers-choice-finalist/
https://www.kmworld.com/Articles/Editorial/Features/The-2019-KMWorld-Readers-Choice-Awards-Winners-134856.aspx?pageNum=1
https://allegrograph.com/three-necessities-for-maximizing-your-digital-twins-approach/
https://allegrograph.com/three-necessities-for-maximizing-your-digital-twins-approach/
https://allegrograph.com/three-necessities-for-maximizing-your-digital-twins-approach/

of the internet of things (IoT), with an applicability that
easily lends itself to numerous businesses. Its real-time
streaming data, simulation capabilities and relationship
awareness may well prove to be the “killer app” that makes the
IoT mainstream.

Digital Twins Types

There are presently three types of digital twins: those for
individual assets, operations and predictions. In this
article, we will focus on individual assets. Examples of these
assets include drilling machines in the oil and gas industry
or assembly line equipment. Each type of digital twin creates
a three-dimensional simulation of the real-world features it
models based on relationships of IoT data. The simulated
models capture and contextualize this low-latent data about
each asset for vital visibility into its performance. This
real-time data provides a blueprint for diminishing downtime,
scheduling maintenance and monitoring other factors that
impact overall asset productivity and ROI. At scale, each
factor translates into significant savings, increased
performance and greater chances for optimization.

The crux of the digital twin’s expansive capabilities is
almost entirely predicated on solving one of the more time-
honored data management difficulties: data modeling. But the
schema issues complicating downstream data modeling processes
such as transformation, integration and predictive analytics
can be swiftly redressed by knowledge graphs that simplify
this vital prerequisite. The standards-based data models of
semantic knowledge graphs deliver unparalleled flexibility,
interoperability and low latency for which IoT deployments are
renowned. (Full disclosure: My company specializes in semantic
knowledge graphs.)

Read the Full Article at Forbes.

https://www.gartner.com/en/newsroom/press-releases/2019-02-20-gartner-survey-reveals-digital-twins-are-entering-mai
https://www.gartner.com/en/newsroom/press-releases/2019-02-20-gartner-survey-reveals-digital-twins-are-entering-mai
https://www.gartner.com/it-glossary/digital-twin
https://www.forbes.com/sites/forbestechcouncil/2019/11/04/three-necessities-for-maximizing-your-digital-twins-approach/#77c06a046fef

Multi-Master Replication
Clusters in Kubernetes and
Docker Swarm
For more examples visit –
https://github.com/franzinc/agraph-examples

Introduction

In this document we primarily discuss running a Multi-Master
Replication cluster (MMR) inside Kubernetes. We will also show
a Docker Swarm implementation.

This directory and subdirectories contain code you can use to
run an MMR cluster. The second half of this document is
entitled Setting up and running MMR under Kubernetes and that
is where you’ll see the steps needed to run the MMR cluster in
Kubernetes.

MMR replication clusters are different from distributed
AllegroGraph clusters in these important ways:

Each member of the cluster needs to be able to make a1.
TCP connection to each other member of the cluster. The
connection is to a port computed at run time. The range
of port numbers to which a connection is made can be
constrained by the agraph.cfg file but typically this
will be a large range to ensure that at least one port
in that range is not in used.
All members of the cluster hold the complete database2.
(although for brief periods of time they can be out of
sync and catching up with one another).

MMR replication clusters don’t quite fit the Kubernetes model

https://allegrograph.com/multi-master-replication-clusters-in-kubernetes-and-docker-swarm/
https://allegrograph.com/multi-master-replication-clusters-in-kubernetes-and-docker-swarm/
https://allegrograph.com/multi-master-replication-clusters-in-kubernetes-and-docker-swarm/
https://github.com/franzinc/agraph-examples
https://franz.com/agraph/support/documentation/current/multi-master.html
https://franz.com/agraph/support/documentation/current/multi-master.html

in these ways

When the cluster is running normally each instance knows1.
the DNS name or IP address of each other instance. In
Kubernetes you don’t want to depend on the IP address of
another cluster’s pod as those pods can go away and a
replacement started at a different IP address. We’ll
describe below our solution to this.
Services are a way to hide the actual location of a pod2.
however they are designed to handle a set of known
ports.. In our case we need to connect from one pod to a
known-at-runtime port of another pod and this isn’t what
services are designed for.
A key feature of Kubernetes is the ability to scale up3.
and down the number of processes in order to handle the
load appropriately. Processes are usually single purpose
and stateless. An MMR process is a full database server
with a complete copy of the repository. Scaling up is
not a quick and simple operation – the database must be
copied from another node. Thus scaling up is a more
deliberate process rather than something automatically
done when the load on the system changes during the day.

The Design

We have a headless service for our controlling instance1.
StatefulSet and that causes there to be a DNS entry for
the name controlling that points to the current IP
address of the node in which the controlling instance
runs. Thus we don’t need to hardwire the IP address of
the controlling instance (as we do in our AWS load
balancer implementation).
The controlling instance uses two PersistentVolumes to2.
store: 1. The repo we’re replicating and 2. The token
that other nodes can use to connect to this node. Should
the controlling instance AllegroGraph server die (or the
pod in which it runs dies) then when the pod is started
again it will have access to the data on those two

https://github.com/franzinc/agraph-examples/blob/master/clustering/terraform-elb/using-terraform.md
https://github.com/franzinc/agraph-examples/blob/master/clustering/terraform-elb/using-terraform.md

persistent volumes.
We call the other instances in the cluster Copy3.
instances. These are full read-write instances of the
repository but we don’t back up their data in a
persistent volume. This is because we want to scale up
and down the number of Copy instances. When we scale
down we don’t want to save the old data since when we
scale down we remove that instance from the cluster thus
the repo in the cluster can never join the cluster
again. We denote the Copy instances by their IP
addresses. The Copy instances can find the address of
the controlling instance via DNS. The controlling
instance will pass the cluster configuration to the Copy
instance and that configuration information will have
the IP addresses of the other Copy instances. This is
how the Copy instances find each other.
We have a load balancer that allows one to access a4.
random Copy instance from an external IP address. This
load balancer doesn’t support sessions so it’s only
useful for doing queries and quick inserts that don’t
need a session.
We have a load balancer that allows access to the5.
Controlling instance via HTTP. While this load balancer
also doesn’t have session support, because there is only
one controlling instance it’s not a problem if you start
an AllegroGraph session because all sessions will live
on the single controlling instance.

We’ve had the most experience with Kubernetes on the Google
Cloud Platform. There is no requirement that the load balancer
support sessions and the GCP version does not at this time,
but that doesn’t mean that session support isn’t present in
the load balancer in other cloud platforms. Also there is a
large community of Kubernetes developers and one may find a
load balancer with session support available from a third
party.

Implementation

We build and deploy in three subdirectories. We’ll describe
the contents of the directories first and then give step by
step instructions on how to use the contents of the
directories.

Directory ag/

In this directory we build a Docker image holding an installed
AllegroGraph. The Dockerfile is

FROM centos:7

#
AllegroGraph root is /app/agraph
#

RUN yum -y install net-tools iputils bind-utils wget hostname

ARG agversion=agraph-6.6.0
ARG agdistfile=${agversion}-linuxamd64.64.tar.gz

This ADD command will automatically extract the contents
of the tar.gz file
ADD ${agdistfile} .

needed for agraph 6.7.0 and can't hurt for others
change to 11 if you only have OpenSSL 1.1 installed
ENV ACL_OPENSSL_VERSION=10

so prompts are readable in an emacs window
ENV PROMPT_COMMAND=

RUN groupadd agraph && useradd -d /home/agraph -g agraph
agraph
RUN mkdir /app

declare ARGs as late as possible to allow previous lines to
be cached
regardless of ARG values

ARG user
ARG password

RUN (cd ${agversion} ; ./install-agraph /app/agraph -- --non-
interactive \
 --runas-user agraph \
 --super-user $user \
 --super-password $password)

remove files we don't need
RUN rm -fr /app/agraph/lib/doc /app/agraph/lib/demos

we will attach persistent storage to this directory
VOLUME ["/app/agraph/data/rootcatalog"]

patch to reduce cache time so we’ll see when the controlling
instance moves.
ag 6.7.0 has config parameter StaleDNSRetainTime which
allows this to be
done in the configuration.
COPY dnspatch.cl /app/agraph/lib/patches/dnspatch.cl

RUN chown -R agraph.agraph /app/agraph

The Dockerfile installs AllegroGraph in /app/agraph and
creates an AllegroGraph super user with the name and password
passed in as arguments. It creates a user agraph so that the
AllegroGraph server will run as the user agraph rather than
as root.

We have to worry about the controlling instance process dying
and being restarted in another pod with a different IP
address. Thus if we’ve cached the DNS mapping
of controlling we need to notice as soon as possible that the
mapping as changed. The dnspatch.cl file changes a parameter
in the AllegroGraph DNS code to reduce the time we trust our
DNS cache to be accurate so that we’ll quickly notice if the
IP address of controlling changes.

We also install a number of networking tools. AllegroGraph

doesn’t need these but if we want to do debugging inside the
container they are useful to have installed.

The image created by this Dockerfile is pushed to the Docker
Hub using an account you’ve specified (see the Makefile in
this directory for details).

Directory agrepl/

Next we take the image created above and add the specific code
to support replication clusters.

The Dockerfile is

ARG DockerAccount=specifyaccount

FROM ${DockerAccount}/ag:latest

#
AllegroGraph root is /app/agraph

RUN mkdir /app/agraph/scripts
COPY . /app/agraph/scripts

since we only map one port from the outside into our cluster
we need any sessions created to continue to use that one
port.
RUN echo "UseMainPortForSessions true" >>
/app/agraph/lib/agraph.cfg

settings/user will be overwritten with a persistent mount so
copy
the data to another location so it can be restored.
RUN cp -rp /app/agraph/data/settings/user
/app/agraph/data/user

ENTRYPOINT ["/app/agraph/scripts/repl.sh"]

When building an image using this Dockerfile you must specify

--build-arg DockerAccount=MyDockerAccount

where MyDockerAccount is a Docker account you’re authorized to
push images to.

The Dockerfile installs the
scripts repl.sh, vars.sh and accounts.sh. These are run when
this container starts.

We modify the agraph.cfg with a line that ensures that even if
we create a session that we’ll continue to access it via port
10035 since the load balancer we’ll use to access AllegroGraph
only forwards 10035 to AllegroGraph.

Also we know that we’ll be installing a persistent volume
at /app/agraph/data/user so we make a copy of that directory
in another location since the current contents will be
invisible when a volume is mounted on top of it. We need the
contents as that is where the credentials for the user we
created when AllegroGraph was installed.

Initially the file settings/user/username will contain the
credentials we specified when we installed AllegroGraph in
first Dockerfile. When we create a cluster instance a new
token is created and this is used in place of the password for
the test account. This token is stored
in settings/user/username which is why we need this to be an
instance-specific and persistent filesystem for the
controlling instance.

When this container starts it runs repl.sh which first
runs accounts.sh and vars.sh.

accounts.sh is a file created by the top level Makefile to
store the account information for the user account we created
when we installed AllegroGraph.

vars.sh is

constants need by scripts
port=10035
reponame=myrepl

compute our ip address, the first one printed by hostname
myip=$(hostname -I | sed -e 's/ .*$//')

In vars.sh we specify the information about the repository
we’ll create and our IP address.

The script repl.sh is this:

#!/bin/bash
#
to start ag and then create or join a cluster
##

cd /app/agraph/scripts

set -x
. ./accounts.sh
. ./vars.sh

agtool=/app/agraph/bin/agtool

echo ip is $myip

move the copy of user with our login to the newly mounted
volume
if this is the first time we've run agraph on this volume
if [! -e /app/agraph/data/rootcatalog/$reponame] ; then

 cp -rp /app/agraph/data/user/*
/app/agraph/data/settings/user
fi

due to volume mounts /app/agraph/data could be owned by root
so we have to take back ownership
chown -R agraph.agraph /app/agraph/data

start agraph
/app/agraph/bin/agraph-control --config
/app/agraph/lib/agraph.cfg start

term_handler() {

 # this signal is delivered when the pod is
 # about to be killed. We remove ourselves
 # from the cluster.
 echo got term signal
 /bin/bash ./remove-instance.sh
 exit
}

sleepforever() {
 # This unusual way of sleeping allows
 # a TERM signal sent when the pod is to
 # die to then cause the shell to invoke
 # the term_handler function above.
 date
 while true
 do
 sleep 99999 & wait ${!}
 done
}

if [-e /app/agraph/data/rootcatalog/$reponame] ; then
 echo repository $reponame already exists in this
persistent volume
 sleepforever
fi

controllinghost=controlling

controllingspec=$authuser:$authpassword@$controllinghost:$port
/$reponame

if [x$Controlling == "xyes"] ;
then
 # It may take a little time for the dns record for
'controlling' to be present
 # and we need that record because the agtool program below
will use it
 until host controlling ; do echo controlling not in DNS
yet; sleep 5 ; done
 ## create first and controlling cluster instance
 $agtool repl create-cluster $controllingspec controlling

else
 # wait for the controlling ag server to be running

 until curl -s
http://$authuser:$authpassword@$controllinghost:$port/version
; do echo wait for controlling ; sleep 5; done

 # wait for server in this container to be running
 until curl -s

http://$authuser:$authpassword@$myip:$port/version ; do echo
wait for local server ; sleep 5; done

 # wait for cluster repo on the controlling instance to be
present
 until $agtool repl status $controllingspec > /dev/null ; do
echo wait for repo ; sleep 5; done
 myiname=i-$myip
 echo $myiname > instance-name.txt

 # construct the remove-instance.sh shell script to remove
this instance
 # from the cluster when the instance is terminated.
 echo $agtool repl remove $controllingspec $myiname >
remove-instance.sh
 chmod 755 remove-instance.sh
 #

 # note that
 # % docker kill container
 # will send a SIGKILL signal by default we can't trap on
SIGKILL.
 # so
 # % docker kill -s TERM container
 # in order to test this handler
 trap term_handler SIGTERM SIGHUP SIGUSR1
 trap -p
 echo this pid is $$

 # join the cluster
 echo joining the cluster
 $agtool repl grow-cluster $controllingspec

$authuser:$authpassword@$myip:$port/$reponame $myiname

fi
sleepforever

This script can be run under three different conditions

Run when the Controlling instance is starting for the1.
first time
Run when the Controlling instance is restarting having2.
run before and died (perhaps the machine on which it was
running crashed or the AllegroGraph process had some
error)
Run when a Copy instance is starting for the first time.3.
Copy instances are not restarted when they die. Instead
a new instance is created to take the place of the dead
instance. Therefore we don’t need to handle the case of
a Copy instance restarting.

In cases 1 and 2 the environment variable Controlling will
have the value “yes”.

In case 2 there will be a directory
at /app/agraph/data/rootcatalog/$reponame.

In all cases we start an AllegroGraph server.

In case 1 we create a new cluster. In case 2 we just sleep and
let the AllegroGraph server recover the replication repository
and reconnect to the other members of the cluster.

In case 3 we wait for the controlling instance’s AllegroGraph
to be running. Then we wait for our AllegroGraph server to be
running. Then we wait for the replication repository we want
to copy to be up and running. At that point we can grow the
cluster by copying the cluster repository.

We also create a script which will remove this instance from
the cluster should this pod be terminated. When the pod is
killed (likely due to us scaling down the number of Copy
instances) a termination signal will be sent first to the

process allowing it to run this remove script before the pod
completely disappears.

Directory kube/

This directory contains the yaml files that create kubernetes
resources which then create pods and start the containers that
create the AllegroGraph replication cluster.

controlling-service.yaml

We begin by defining the services. It may seem logical to
define the applications before defining the service to expose
the application but it’s the service we create that puts the
application’s address in DNS and we want the DNS information
to be present as soon as possible after the application
starts. In the repl.sh script above we include a test to check
when the DNS information is present before allowing the
application to proceed.

apiVersion: v1
kind: Service
metadata:
 name: controlling
spec:
 clusterIP: None
 selector:
 app: controlling
 ports:
 - name: http
 port: 10035
 targetPort: 10035

This selector defines a service for any container with a label
with a key app and a value controlling. There aren’t any such
containers yet but there will be. You create this service with

% kubectl create -f controlling-service.yaml

In fact for all the yaml files shown below you create the
object they define by running

% kubectl create -f filename.yaml

copy-service.yaml

We do a similar service for all the copy applications.

apiVersion: v1
kind: Service
metadata:
 name: copy
spec:
 clusterIP: None
 selector:
 app: copy
 ports:
 - name: main
 port: 10035
 targetPort: 10035

controlling.yaml

This is the most complex resource description for the cluster.
We use a StatefulSet so we have a predictable name for the
single pod we create. We define two persistent volumes. A
StatefulSet is designed to control more than one pod so rather
than a VolumeClaim we have a VolumeClaimTemplate so that each
Pod can have its own persistent volume… but as it turns out we
have only one pod in this set and we never scale up. There
must be exactly one controlling instance.

We setup a liveness check so that if the AllegroGraph server
dies Kubernetes will restart the pod and thus the AllegroGraph
server. Because we’ve used a persistent volume for the
AllegroGraph repositories when the AllegroGraph server
restarts it will find that there is an existing MMR
replication repository that was in use when the AllegroGraph
server was last running. AllegroGraph will restart that
replication repository which will cause that replication
instance to reconnect to all the copy instances and become
part of the cluster again.

We set the environment variable Controlling to yes and this
causes this container to start up as a controlling instance
(you’ll find the check for the Controlling environment
variable in the repl.sh script above).

We have a volume mount for /dev/shm, the shared memory
filesystem, because the default amount of shared memory
allocated to a container by Kubernetes is too small to support
AllegroGraph.

#
stateful set of controlling instance
#

apiVersion: apps/v1beta1
kind: StatefulSet
metadata:
 name: controlling
spec:
 serviceName: controlling
 replicas: 1
 template:
 metadata:
 labels:
 app: controlling
 spec:
 containers:
 - name: controlling
 image: dockeraccount/agrepl:latest
 imagePullPolicy: Always
 livenessProbe:
 httpGet:
 path: /hostname
 port: 10035
 initialDelaySeconds: 30
 volumeMounts:
 - name: shm
 mountPath: /dev/shm
 - name: data
 mountPath: /app/agraph/data/rootcatalog
 - name: user

 mountPath: /app/agraph/data/settings/user
 env:
 - name: Controlling
 value: "yes"
 volumes:
 - name: shm
 emptyDir:
 medium: Memory
 volumeClaimTemplates:
 - metadata:
 name: data
 spec:
 resources:
 requests:
 storage: 20Gi
 accessModes:
 - ReadWriteOnce
 - metadata:
 name: user
 spec:
 resources:
 requests:
 storage: 10Mi
 accessModes:
 - ReadWriteOnce

copy.yaml

This StatefulSet is responsible for starting all the other
instances. It’s much simpler as it doesn’t use Persistent
Volumes

#
stateful set of copies of the controlling instance
#

apiVersion: apps/v1beta1
kind: StatefulSet
metadata:
 name: copy
spec:
 serviceName: copy

 replicas: 2
 template:
 metadata:
 labels:
 app: copy
 spec:
 volumes:
 - name: shm
 emptyDir:
 medium: Memory
 containers:
 - name: controlling
 image: dockeraccount/agrepl:latest
 imagePullPolicy: Always
 livenessProbe:
 httpGet:
 path: /hostname
 port: 10035
 initialDelaySeconds: 30
 volumeMounts:
 - name: shm
 mountPath: /dev/shm

controlling-lb.yaml

We define a load balancer so applications on the internet
outside of our cluster can communicate with the controlling
instance. The IP address of the load balancer isn’t specified
here. The cloud service provider (i.e. Google Cloud Platform
or AWS) will determine an address after a minute or so and
will make that value visible if you run

% kubectl get svc controlling-loadbalancer

The file is

apiVersion: v1
kind: Service
metadata:
 name: controlling-loadbalancer
spec:
 type: LoadBalancer

 ports:
 - port: 10035
 targetPort: 10035
 selector:
 app: controlling

copy-lb.yaml

As noted earlier the load balancer for the copy instances does
not support sessions. However you can use the load balancer to
issue queries or simple inserts that don’t require a session.

apiVersion: v1
kind: Service
metadata:
 name: copy-loadbalancer
spec:
 type: LoadBalancer
 ports:
 - port: 10035
 targetPort: 10035
 selector:
 app: copy

copy-0-lb.yaml

If you wish to access one of the copy instances explicitly so
that you can create sessions you can create a load balancer
which links to just one instance, in this case the first copy
instance which is named “copy-0”.

apiVersion: v1
kind: Service
metadata:
 name: copy-0-loadbalancer
spec:
 type: LoadBalancer
 ports:
 - port: 10035
 targetPort: 10035
 selector:
 app: copy

 statefulset.kubernetes.io/pod-name: copy-0

Setting up and running MMR under Kubernetes

The code will build and deploy an AllegroGraph MMR cluster in
Kubernetes. We’ve tested this in Google Cloud Platform and
Amazon Web Service. This code requires Persistent Volumes and
load balancers and thus requires a sophisticated platform to
run (such as GCP or AWS).

Prerequisites

In order to use the code supplied you’ll need two additional
things

A Docker Hub account (https://hub.docker.com). A free1.
account will work. You’ll want to make sure you can push
to the hub without needing a password (use the docker
login command to set that up).
An AllegroGraph distribution in tar.gz format. We’ve2.
been using agraph-6.6.0-linuxamd64.64.tar.gz in our
testing. You can find the current set of server files
at https://franz.com/agraph/downloads/server This file
should be put in the ag subdirectory. Note that the
Dockerfile in that directory has the line ARG
agversion=agraph-6.6.0 which specifies the version of
agraph to install. This must match the version of
the ...tar.gz file you put in that directory.

Steps

Do Prerequisites

Fullfill the prerequisites above

Set parameters

There are 5 parameters

Docker account – Must Specify1.
AllegroGraph user – May want to specify2.

https://hub.docker.com/

AllegroGraph password – May want to specify3.
AllegroGraph repository name – Unlikely to want to4.
change
AllegroGraph port – Very unlikely to want to change5.

The first three parameters can be set using the Makefile in
the top level directory. The last two parameters are found
in agrepl/vars.sh if you wish to change them. Note that the
port number of 10035 is found in the yaml files in
the kube subdirectory. If you change the port number you’ll
have edit the yaml files as well.

The first three parameters are set via

% make account=DockerHubAccount user=username
password=password

The account must be specified but the last two can be omitted
and default to an AllegroGraph account name of test and a
password of xyzzy.

If you choose to specify a password make it a simple one
consisting of letters and numbers. The password will appear in
shell commands and URLs and our simple scripts don’t escape
characters that have a special meaning to the shell or URLs.

Install AllegroGraph

Change to the ag directory and build an image with
AllegroGraph installed. Then push it to the Docker Hub

% cd ag
% make build
% make push
% cd ..

Create cluster-aware AllegroGraph image

Add scripts to create an image that will either create an
AllegroGraph MMR cluster or join a cluster when started.

% cd agrepl
% make build
% make push
% cd ..

Setup a Kubernetes cluster

Now everything is ready to run in a Kubernetes cluster. You
may already have a Kubernetes cluster running or you may need
to create one. Both Google Cloud Platform and AWS have ways of
creating a cluster using a web UI or a shell command. When
you’ve got your cluster running you can do

% kubectl get nodes

and you’ll see your nodes listed. Once this works you can move
into the next step.

Run an AllegroGraph MMR cluster

Starting the MMR cluster involves setting up a number of
services and deploying pods. The Makefile will do that for
you.

% cd kube
% make doall

You’ll see when it displays the services that there isn’t an
external IP address allocated for the load balancers It can
take a few minutes for an external IP address to be allocated
and the load balancers setup so keep running

% kubectl get svc

until you see an IP address given, and even then it may not
work for a minute or two after that for the connection to be
made.

Verify that the MMR cluster is running

You can use AllegroGraph Webview to see if the MMR cluster is

running. Once you have an external IP address for the
controlling-load-balancer go to this address in a web browser

http://external-ip-address:10035

Login with the credentials you used when you created the
Docker images (the default is user test and password xyzzy).
You’ll see a repository myrepl listed. Click on that. Midway
down you’ll see a link titled

Manage Replication Instances as controller

Click on that link and you’ll see a table of three instances
which now serve the same repository. This verifies that three
pods started up and all linked to each other.

Namespaces

All objects created in Kubernetes have a name that is chosen
either by the user or Kubernetes based on a name given by the
user. Most names have an associated namespace. The combination
of namespace and name must be unique among all objects in a
Kubernetes cluster. The reason for having a namespace is that
it prevents name clashes between multiple projects running in
the same cluster that both choose to use the same name for an
object.

The default namespace is named default.

Another big advantage using namespaces is that if you delete a
namespace you delete all objects whose name is in that
namespace. This is useful because a project in Kubernetes uses
a lot of different types of objects and if you want to delete
all the objects you’ve added to a Kubernetes cluster it can
take a while to find all the objects by type and then delete
them. However if you put all the objects in one namespace then
you need only delete the namespace and you’re done.

In the Makefile we have this line

Namespace=testns

which is used by this rule

reset:
 -kubectl delete namespace ${Namespace}
 kubectl create namespace ${Namespace}
 kubectl config set-context `kubectl config current-
context` --namespace ${Namespace}

The reset rule deletes all members of the Namespace named at
the top of the Makefile (here testns) and then recreates the
namespace and switches to it as the active namespace. After
doing the reset all objects created will be created in
the testns namespace.

We include this in the Makefile because you may find it
useful.

Docker Swarm

The focus of this document is Kubernetes but we also have a
Docker Swarm implementation of an AllegroGraph MMR cluster.
Docker Swarm is significantly simpler to setup and manage than
Kubernetes but has far fewer bells and whistles. Once you’ve
gotten the ag and agrepl images built and pushed to the Docker
Hub you need only link a set of machines running Docker
together into a Docker Swarm and then

% cd swarm ; make controlling copy

and the AllegroGraph MMR cluster is running Once it is running
you can access the cluster using Webview at

http://localhost:10035/

Graphorum – Dr. Aasman
Presenting
Graph-Driven Event Processing for Intelligent Customer
Operations

Wednesday, October 16, 2019
10:15 AM – 11:15 AM
Level: Case Study

In the typical organization, the
contents of the actual chat or
voice conversation between agent
and customer is a black hole. In
the modern Intelligent Customer
Operations center, the interactions
between agent and customer are a
source of rich information that
helps agents to improve the quality

of the interaction in real time, creates more sales, and
provides far better analytics for management. The Intelligent
Customer Operations center is enabled by a taxonomy of the
products and services sold, speech recognition to turn
conversations into text, a taxonomy-driven entity extractor to
take the important concepts out of conversations, and machine
learning to classify chats in various ways. All of this is
stored in a real-time Knowledge Graph that also knows (and
stores) everything about customers and agents and provides the
raw data for machine learning to improve the agent/customer
interaction.

In this presentation, we describe a real-world Intelligent
Customer Organization that uses graph-based technology for
taxonomy-driven entity extraction, speech recognition, machine
learning, and predictive analytics to improve quality of
conversations, increase sales, and improve business

https://allegrograph.com/graphorum-dr-aasman-presenting/
https://allegrograph.com/graphorum-dr-aasman-presenting/

visibility.

https://graphorum2019.dataversity.net/sessionPop.cfm?confid=13
2&proposalid=11010

Fixed Indices Speed up Slot
Access in Allegro CL
Instances of CLOS classes include a vector of slot values
associated with the instance. A new feature in Allegro CL
allows these slot values to be accessed more efficiently by
specifying at defclass time the index of the slot values
vector a particular slot will occupy.

1.0 Background
Object-oriented programming and specifically CLOS (the Common
Lisp Object System) provide a powerful programming tool but it
comes at a cost: the more complex the hierarchy of classes and
the provision of methods, the longer it takes for the system
to determine exactly what should be done in a specific method
call. When a method is called, the class of every required
argument must be determined and all methods associated with
the class pattern of the arguments must be found.

One common action is determining the value of a slot of a
class instance. Slots are specified when a CLOS class is
defined, with some slots being inherited from superclasses and
some being added by the new class definition. Regardless of
whether slots are inherited or new, when an instance of the
class is created, a vector of slot values is associated with

https://allegrograph.com/fixed-indices-speed-up-slot-access-in-allegro-cl/
https://allegrograph.com/fixed-indices-speed-up-slot-access-in-allegro-cl/

the instance.

Thus to obtain an instance’s slot value, the system must only
determine the index of the particular slot in the vector of
values. At its least optimized, finding the index involves
accessing information in the class definition, which can be
costly. This access is what takes time when getting a slot
value: once the index is known, the value is obtained by a
simple vector access.

2.0 Fixed indices
It is possible that the structure of the slot value vector
(that is, which index corresponds to which slot) might change
if a class is redefined. Therefore it is unsafe to assume
that, say, if a slot value is at index 2 in one call it will
be at that index in a later call. Slot accesses cannot, using
standard Common Lisp techniques be fully optimized.

Allegro CL has added a new feature which improves upon this:
fixed index values. Now when a class is defined, each slot can
be assigned an index value and the system guarantees that the
slot value will always be at that index of the slot value
vector. This means that a slot value access can be reduced to

(svref [slot-value-vector] [slot-index])

which, with proper declarations and optimization levels, can
be reduced to a few machine instructions. This can provide
significant speed-ups, as the following example shows.

(defclass foo ()
((a :initarg :a excl:fixed-index 2 :accessor foo-a)
(b :initarg :b excl:fixed-index 3 :accessor foo-b)
(c :initarg :c :accessor foo-c)))
(defvar *foo-inst* (make-instance ‘foo :a 1 :b 2 :c 3))

;; *VEC* is the slot values vector for *FOO-INST*.
;; The value of the ‘A slot is index 2.

(defvar *vec* (excl:std-instance-slots *foo-inst*))

;; The slot value vector of *foo-inst* has four elements
for three
;; values:
;; 0 – value if slot c
;; 1 – unused
;; 2 – value of slot a
;; 3 – value of slot b

;; Let’s time some accesses. We define test functions in a
file:

;; file sv.cl
(in-package :user)

(defun p1 () (dotimes (i 10000000) (foo-a *foo-inst*)))
(defun p2 () (dotimes (i 10000000) (slot-value *foo-inst*
‘a)))
(defun p3 () (dotimes (i 10000000) (svref *vec* 2)))
;; sv.cl end

;; We compile with speed 3:
Compiler optimize setting is
(declaim (optimize (safety 1) (space 1) (speed 3) (debug 0)
(compilation-speed 0)))
cl-user(39): :cl sv.cl
;;; Compiling file sv.cl
;;; Writing fasl file sv.fasl
;;; Fasl write complete
; Fast loading sv.fasl

;; And we run timings:
cl-user(41): (time (p1)) ;; USING THE FOO-A ACCESSOR:
; cpu time (non-gc) 0.127957 sec user, 0.000000 sec system
; cpu time (gc) 0.000000 sec user, 0.000000 sec system
; cpu time (total) 0.127957 sec user, 0.000000 sec system

; real time 0.127954 sec (100.0%)
; space allocation:
; 0 cons cells, 0 other bytes, 0 static bytes
; Page Faults: major: 0 (gc: 0), minor: 88 (gc: 0)
nil
cl-user(42): (time (p2)) ;; USING SLOT-VALUE:
; cpu time (non-gc) 0.274489 sec user, 0.000000 sec system
; cpu time (gc) 0.000000 sec user, 0.000000 sec system
; cpu time (total) 0.274489 sec user, 0.000000 sec system
; real time 0.274485 sec (100.0%)
; space allocation:
; 0 cons cells, 0 other bytes, 0 static bytes
; Page Faults: major: 0 (gc: 0), minor: 0 (gc: 0)
nil
cl-user(43): (time (p3)) ;; USING SVREF ON THE SLOT VALUE
VECTOR:
; cpu time (non-gc) 0.005561 sec user, 0.000994 sec system
; cpu time (gc) 0.000000 sec user, 0.000000 sec system
; cpu time (total) 0.005561 sec user, 0.000994 sec system
; real time 0.006555 sec (100.0%)
; space allocation:
; 0 cons cells, 0 other bytes, 0 static bytes
; Page Faults: major: 0 (gc: 0), minor: 0 (gc: 0)

Accesses using svref is thus 50 times faster than ordinary
access.

You will note we specified the value vector index of a slot
using the slot option excl:fixed-index in the defclass form.
This is an Allegro CL extension and if used in code which will
also be run in other Common Lisp implementation must be
conditionalized for Allegro CL only.

2.1 Before, after, and around methods
In the example above, we reduced a slot access to a svref call
into the slot value vector. This will produce the maximum
speedup but users must keep in mind that before, around, and

after methods defined on slot-value or on a slot accessor
function (foo-a and foo-b in our example as slot c did not
have a fixed index) will not be run in that case because the
actual methods are not run, just the call to svref. Users who
intend to write before, around, or after methods on slot
accessors can get the desired behavior and much of the speedup
with one additional level of indirection:

(defmethod generic-foo-a ((obj foo)) (foo-a obj))

Before, after, and around methods can then be written for
generic-foo-a and will run as expected.

3.0 Documentation
Allegro CL documentation can be found at
https://franz.com/support/documentation/. Fixed-index slots
are described in the section Defclass optimizations: fixed-
index slots and defclass embellishers in the
implementation.htm document. Also described in that section
are defclass embellishers, which we will discuss in a later
blog item.

Big Data 50 – Companies
Driving Innovation in 2019
Franz Inc. is proud to announce that it has been named to
Database Trends and Application (DBTA) – Big Data 50,
Companies Driving Innovation in 2019

https://franz.com/support/documentation/
https://franz.com/support/documentation/10.1/doc/implementation.htm#ef-slot-value-1
https://franz.com/support/documentation/10.1/doc/implementation.htm#ef-slot-value-1
https://franz.com/support/documentation/10.1/doc/implementation.htm
https://allegrograph.com/big-data-50-companies-driving-innovation-in-2019/
https://allegrograph.com/big-data-50-companies-driving-innovation-in-2019/

Today, more than
ever, businesses
rely on data to
deliver a
competitive edge.
The urgency to
compete on
analytics has
spread across
industries, fueled

by the need for greater efficiency, agility and innovation,”
remarked Thomas Hogan, Group Publisher at Database Trends and
Applications. “This list seeks to highlight those companies
that are really driving innovation and serve as a guide to
businesses navigating the rapidly changing big data
landscape.”

A new generation of tools is making it possible to leverage
the wealth of data flowing into organizations from a
previously unimaginable range of data sources. Machine
learning, AI, Spark, and object storage are just some of the
next-generation approaches gaining traction, according to
recent surveys conducted by Unisphere Research, a division of
Information Today, Inc.

But, it is also increasingly clear that there is no single way
to approach data-driven innovation today. Open source-based
technologies have gained strong adoption in organizations
alongside proprietary offerings, data lakes are increasingly
being implemented but data warehouses continue in widespread
use, and hybrid deployments spanning cloud and on-premise are
commonly accepted.

Organizations are seeking to use data-driven innovation for
better reporting and analytics, real-time decision making,
enhanced customer experience and personalization, and reduced
costs. But with data coming in from more places than ever,
being stored in more systems, and accessed by more users for a

wider array of use cases, there is greater recognition that
security and governance must be addressed intelligently.

Evaluating new and disruptive technologies, and then
identifying how and where they can be useful, can be
challenging.

To contribute to the discussion each year, Big Data Quarterly
presents the “Big Data 50,” a list of forward-thinking
companies that are working to expand what’s possible in terms
of capturing, storing, protecting, and deriving value from
data.

“We are honored to receive this acknowledgement for our
efforts in delivering Enterprise Knowledge Graph Solutions,”
said Dr. Jans Aasman, CEO, Franz Inc. “In the past year, we
have seen demand for Enterprise Knowledge Graphs take off
across industries along with recognition from top technology
analyst firms that Knowledge Graphs provide the critical
foundation for artificial intelligence applications and
predictive analytics. Our AllegroGraph Knowledge Graph
Platform Solution offers a unique comprehensive approach for
helping companies accelerate the creation of Enterprise
Knowledge Graphs that deliver new value to their
organization.”

The Importance of FAIR Data
in Earth Science
Franz’s CEO, Jans Aasman’s recent Marine Technology News:

Data’s valuation as an enterprise asset is most acutely
realized over time. When properly managed, the same dataset

https://allegrograph.com/the-importance-of-fair-data-in-earth-science/
https://allegrograph.com/the-importance-of-fair-data-in-earth-science/

supports a plurality of use cases,
becomes almost instantly available
upon request, and is exchangeable
between departments or
organizations to systematically
increase its yield with each
deployment.

These boons of leveraging data as an enterprise asset are the
foundation of GO FAIR’s Findable Accessible Interoperable
Reusable (FAIR) principles profoundly impacting the data
management rigors of geological science. Numerous
organizations in this space have embraced these tenets to
swiftly share information among a diversity of disciplines to
safely guide the stewardship of the earth.

According to Dr. Annie Burgess, Lab Director of Earth Science
Information Partners (ESIP), the “most pressing global
challenges cannot be solved by a single organization.
Scientists require data collected across multiple disciplines,
which are often managed by many different agencies and
institutions.” As numerous members of the earth science
community are realizing, the most effectual means of managing
those disparate data according to FAIR principles is by
utilizing the semantic standards underpinning knowledge
graphs.

Read the full article at Marine Technology News

Ontolog Forum – Why Knowledge

https://www.marinetechnologynews.com/news/importance-earth-science-593757
https://allegrograph.com/ontolog-forum-why-knowledge-graphs-now-recording/

Graphs Now (Recording)
Dr. Jans Aasman Presented

Why Knowledge Graphs Hit the Hype Cycle and What they have in
common.

The Ontolog Forum is an open, international, virtual community
of practice devoted to advancing the field of ontology,
ontological engineering and semantic technology, and
advocating their adoption into mainstream applications and
international standards.

Ontology Summit 2020 –
Knowledge Graphs
The Ontology Summit is an annual series of events that
involves the ontology community and communities related to
each year’s theme chosen for the summit. The Ontology Summit
was started by Ontolog and NIST, and the program has been co-
organized by Ontolog, NIST, NCOR, NCBO, IAOA, NCO_NITRD along
with the co-sponsorship of other organizations that are
supportive of the Summit goals and objectives.

Knowledge graphs, closely related to ontologies and semantic
networks, have emerged in the last few years to be an
important semantic technology and research area. As structured
representations of semantic knowledge that are stored in a
graph, KGs are lightweight versions of semantic networks that
scale to massive datasets such as the entire World Wide Web.
Industry has devoted a great deal of effort to the development

https://allegrograph.com/ontolog-forum-why-knowledge-graphs-now-recording/
https://ontologforum.org/
https://allegrograph.com/ontology-summit-2020-knowledge-graphs/
https://allegrograph.com/ontology-summit-2020-knowledge-graphs/

of knowledge graphs, and they are now critical to the
functions of intelligent virtual assistants such as Siri and
Alexa. Some of the research communities where KGs are relevant
are Ontologies, Big Data, Linked Data, Open Knowledge Network,
Artificial Intelligence, Deep Learning, and many others.

Dr. Jans Aasman presented – “Why Knowledge Graphs Hit the Hype
Cycle and What they have in common”

Presentation Page

Presentation Slides

Harnessing the Internet of
Things with JSON-LD

Franz’s CEO, Jans Aasman’s recent
IoT Evolution Article:

Conceptually, the promise of the Internet of Things is almost
halcyon. Its billions of sensors are all connected,

https://ontologforum.org/index.php/ConferenceCall_2019_09_04
https://ontologforum.s3.amazonaws.com/OntologySummit2020/Introduction/Why-Knowledge-Graphs-Now--JansAasman_20190904.pdf
https://allegrograph.com/harnessing-the-internet-of-things-with-json-ld/
https://allegrograph.com/harnessing-the-internet-of-things-with-json-ld/

continuously transmitting data to support tailored, cost-
saving measures maximizing revenues in applications as diverse
as smart cities, smart price tags, and predictive maintenance
in the Industrial Internet.

Practically, the data management necessities of capitalizing
on this promise by the outset of the next decade are daunting.
The vast majority of these datasets are unstructured or semi-
structured. The data modeling challenges of rectifying their
schema for integration are considerable. The low latency
action required to benefit from their data implies machine
intelligence largely elusive to today’s organizations.

…….
The self-describing, linked data approach upon which JSON-LD
is founded excels at the low latent action resulting from
machine to machine communication in the IoT. The nucleus of
the linked data methodology—semantic statements and their
unique Uniform Resource Identifiers (URIs)—are read and
understood by machines. This characteristic aids many of the
IoT use cases requiring machine intelligence; by transmitting
IoT data via the JSON-LD format organizations can maximize
this boon. Smart cities provide particularly compelling
examples of the machine intelligence fortified by this
expression of semantic technology.

Read the full article at IoT Evolution

https://www.iotevolutionworld.com/iot/articles/443068-harnessing-internet-things-with-json-ld.htm

