
4 Benefits of Integrating a
Language With a Database
By Dr. Jans Aasman:

One of the hallmarks of a truly modern programming language is
the coupling of a language—for creating applications, devising
algorithms and solving business problems—with an
underlying database. When there is practically no separation
between a database and its programming language, developers
immensely increase their productivity, maximize the
effectiveness of the code they write and provide unparalleled
speed and flexibility in supporting business needs.

Predicating a programming
language on a database delivers
these advantages by enabling
developers to treat data as if
it is in-memory, liberating
them from the burden of

manipulating how data is represented in the underlying
database. This one simple advantage exponentially increases
the flexibility for addressing business problems and, when
used with advanced logic languages, enables developers to
write applications in a fraction of the time and with less
effort than it would otherwise require.

Specific benefits of tightly coupling a database with its
programming language include eliminating the time-honored
mismatch between data structures and database representations,
smart caching with transactional technologies for committing
or rolling back database changes and automatically changing
object definitions.

These benefits remove the database as an otherwise
complicating factor in supporting business use of data by

https://allegrograph.com/4-benefits-of-integrating-a-language-with-a-database/
https://allegrograph.com/4-benefits-of-integrating-a-language-with-a-database/
https://devops.com/?s=database

freeing developers to flexibly innovate solutions—and speedily
implement them.

In-Memory Manipulations
Developers focus on manipulating data structures to solve
business problems. Traditionally, this concern was hamstrung
by the onus of translating those structures into how data are
represented in the database, a time-consuming necessity
detracting from programmers’ attention to business problems.
By fully integrating an object-oriented database or graph
database with its programming environment, users can
manipulate data objects in memory and they’ll automatically
persist to storage. Developers can solely focus on working
with data structures for business objectives without spending
just as much, if not more, effort wrangling data’s
representation in the database.

Read the full article at DevOps.

Fixed Indices Speed up Slot
Access in Allegro CL
Instances of CLOS classes include a vector of slot values
associated with the instance. A new feature in Allegro CL
allows these slot values to be accessed more efficiently by
specifying at defclass time the index of the slot values
vector a particular slot will occupy.

1.0 Background
Object-oriented programming and specifically CLOS (the Common

https://www.gartner.com/en/information-technology/glossary/oodbms-object-oriented-database-management-system
https://devops.com/4-benefits-of-integrating-a-language-with-a-database/
https://allegrograph.com/fixed-indices-speed-up-slot-access-in-allegro-cl/
https://allegrograph.com/fixed-indices-speed-up-slot-access-in-allegro-cl/

Lisp Object System) provide a powerful programming tool but it
comes at a cost: the more complex the hierarchy of classes and
the provision of methods, the longer it takes for the system
to determine exactly what should be done in a specific method
call. When a method is called, the class of every required
argument must be determined and all methods associated with
the class pattern of the arguments must be found.

One common action is determining the value of a slot of a
class instance. Slots are specified when a CLOS class is
defined, with some slots being inherited from superclasses and
some being added by the new class definition. Regardless of
whether slots are inherited or new, when an instance of the
class is created, a vector of slot values is associated with
the instance.

Thus to obtain an instance’s slot value, the system must only
determine the index of the particular slot in the vector of
values. At its least optimized, finding the index involves
accessing information in the class definition, which can be
costly. This access is what takes time when getting a slot
value: once the index is known, the value is obtained by a
simple vector access.

2.0 Fixed indices
It is possible that the structure of the slot value vector
(that is, which index corresponds to which slot) might change
if a class is redefined. Therefore it is unsafe to assume
that, say, if a slot value is at index 2 in one call it will
be at that index in a later call. Slot accesses cannot, using
standard Common Lisp techniques be fully optimized.

Allegro CL has added a new feature which improves upon this:
fixed index values. Now when a class is defined, each slot can
be assigned an index value and the system guarantees that the
slot value will always be at that index of the slot value
vector. This means that a slot value access can be reduced to

(svref [slot-value-vector] [slot-index])

which, with proper declarations and optimization levels, can
be reduced to a few machine instructions. This can provide
significant speed-ups, as the following example shows.

(defclass foo ()
((a :initarg :a excl:fixed-index 2 :accessor foo-a)
(b :initarg :b excl:fixed-index 3 :accessor foo-b)
(c :initarg :c :accessor foo-c)))
(defvar *foo-inst* (make-instance ‘foo :a 1 :b 2 :c 3))

;; *VEC* is the slot values vector for *FOO-INST*.
;; The value of the ‘A slot is index 2.
(defvar *vec* (excl:std-instance-slots *foo-inst*))

;; The slot value vector of *foo-inst* has four elements
for three
;; values:
;; 0 – value if slot c
;; 1 – unused
;; 2 – value of slot a
;; 3 – value of slot b

;; Let’s time some accesses. We define test functions in a
file:

;; file sv.cl
(in-package :user)

(defun p1 () (dotimes (i 10000000) (foo-a *foo-inst*)))
(defun p2 () (dotimes (i 10000000) (slot-value *foo-inst*
‘a)))
(defun p3 () (dotimes (i 10000000) (svref *vec* 2)))
;; sv.cl end

;; We compile with speed 3:
Compiler optimize setting is

(declaim (optimize (safety 1) (space 1) (speed 3) (debug 0)
(compilation-speed 0)))
cl-user(39): :cl sv.cl
;;; Compiling file sv.cl
;;; Writing fasl file sv.fasl
;;; Fasl write complete
; Fast loading sv.fasl

;; And we run timings:
cl-user(41): (time (p1)) ;; USING THE FOO-A ACCESSOR:
; cpu time (non-gc) 0.127957 sec user, 0.000000 sec system
; cpu time (gc) 0.000000 sec user, 0.000000 sec system
; cpu time (total) 0.127957 sec user, 0.000000 sec system
; real time 0.127954 sec (100.0%)
; space allocation:
; 0 cons cells, 0 other bytes, 0 static bytes
; Page Faults: major: 0 (gc: 0), minor: 88 (gc: 0)
nil
cl-user(42): (time (p2)) ;; USING SLOT-VALUE:
; cpu time (non-gc) 0.274489 sec user, 0.000000 sec system
; cpu time (gc) 0.000000 sec user, 0.000000 sec system
; cpu time (total) 0.274489 sec user, 0.000000 sec system
; real time 0.274485 sec (100.0%)
; space allocation:
; 0 cons cells, 0 other bytes, 0 static bytes
; Page Faults: major: 0 (gc: 0), minor: 0 (gc: 0)
nil
cl-user(43): (time (p3)) ;; USING SVREF ON THE SLOT VALUE
VECTOR:
; cpu time (non-gc) 0.005561 sec user, 0.000994 sec system
; cpu time (gc) 0.000000 sec user, 0.000000 sec system
; cpu time (total) 0.005561 sec user, 0.000994 sec system
; real time 0.006555 sec (100.0%)
; space allocation:
; 0 cons cells, 0 other bytes, 0 static bytes
; Page Faults: major: 0 (gc: 0), minor: 0 (gc: 0)

Accesses using svref is thus 50 times faster than ordinary
access.

You will note we specified the value vector index of a slot
using the slot option excl:fixed-index in the defclass form.
This is an Allegro CL extension and if used in code which will
also be run in other Common Lisp implementation must be
conditionalized for Allegro CL only.

2.1 Before, after, and around methods
In the example above, we reduced a slot access to a svref call
into the slot value vector. This will produce the maximum
speedup but users must keep in mind that before, around, and
after methods defined on slot-value or on a slot accessor
function (foo-a and foo-b in our example as slot c did not
have a fixed index) will not be run in that case because the
actual methods are not run, just the call to svref. Users who
intend to write before, around, or after methods on slot
accessors can get the desired behavior and much of the speedup
with one additional level of indirection:

(defmethod generic-foo-a ((obj foo)) (foo-a obj))

Before, after, and around methods can then be written for
generic-foo-a and will run as expected.

3.0 Documentation
Allegro CL documentation can be found at
https://franz.com/support/documentation/. Fixed-index slots
are described in the section Defclass optimizations: fixed-
index slots and defclass embellishers in the
implementation.htm document. Also described in that section
are defclass embellishers, which we will discuss in a later
blog item.

https://franz.com/support/documentation/
https://franz.com/support/documentation/10.1/doc/implementation.htm#ef-slot-value-1
https://franz.com/support/documentation/10.1/doc/implementation.htm#ef-slot-value-1
https://franz.com/support/documentation/10.1/doc/implementation.htm

