
Franz Inc. to Present at The
Global Graph Summit and Data
Day Texas
Dr. Jans Aasman, CEO, Franz Inc., will be presenting,
“Creating Explainable AI with Rules” at the Global Graph

Summit, a part of Data Day Texas.
The abstract for Dr. Aasman’s
presentation:

“There’s a fascinating dichotomy in artificial intelligence
between statistics and rules, machine learning and expert
systems. Newcomers to artificial intelligence (AI) regard
machine learning as innately superior to brittle rules-
based systems, while the history of this field reveals both
rules and probabilistic learning are integral components of
AI. This fact is perhaps nowhere truer than in
establishing explainable AI, which is central to the long-
term business value of AI front-office use cases.”

“The fundamental necessity for explainable AI spans
regulatory compliance, fairness, transparency, ethics and
lack of bias — although this is not a complete list. For
example, the effectiveness of counteracting financial
crimes and increasing revenues from advanced machine
learning predictions in financial services could be greatly
enhanced by deploying more accurate deep learning models.
But all of this would be arduous to explain to regulators.
Translating those results into explainable rules is the
basis for more widespread AI deployments producing a more

https://allegrograph.com/franz-inc-to-present-at-the-global-graph-summit-and-data-day-texas/
https://allegrograph.com/franz-inc-to-present-at-the-global-graph-summit-and-data-day-texas/
https://allegrograph.com/franz-inc-to-present-at-the-global-graph-summit-and-data-day-texas/
http://datadaytexas.com/2020-graph-summit/sessions#aasman
http://datadaytexas.com/
http://datadaytexas.com/
https://www.forbes.com/sites/cognitiveworld/2018/12/20/geoff-hinton-dismissed-the-need-for-explainable-ai-8-experts-explain-why-hes-wrong/#7e5b5d7b756d

meaningful impact on society.”

The Global Graph Summit is an independently organized vendor-
neutral conference, bringing leaders from every corner of the
graph and linked-data community for sessions, workshops, and
its well-known before and after parties. Originally launched
in January 2011 as one of the first NoSQL / Big Data
conferences, Data Day Texas each year highlights the latest
tools, techniques, and projects in the data space, bringing
speakers and attendees from around the world to enjoy the
hospitality that is uniquely Austin. Since its inception, Data
Day Texas has continually been the largest independent data-
centric event held within 1000 miles of Texas.

Multi-Master Replication
Clusters in Kubernetes and
Docker Swarm
For more examples visit –
https://github.com/franzinc/agraph-examples

Introduction

In this document we primarily discuss running a Multi-Master
Replication cluster (MMR) inside Kubernetes. We will also show
a Docker Swarm implementation.

This directory and subdirectories contain code you can use to
run an MMR cluster. The second half of this document is
entitled Setting up and running MMR under Kubernetes and that
is where you’ll see the steps needed to run the MMR cluster in
Kubernetes.

https://allegrograph.com/multi-master-replication-clusters-in-kubernetes-and-docker-swarm/
https://allegrograph.com/multi-master-replication-clusters-in-kubernetes-and-docker-swarm/
https://allegrograph.com/multi-master-replication-clusters-in-kubernetes-and-docker-swarm/
https://github.com/franzinc/agraph-examples
https://franz.com/agraph/support/documentation/current/multi-master.html
https://franz.com/agraph/support/documentation/current/multi-master.html

MMR replication clusters are different from distributed
AllegroGraph clusters in these important ways:

Each member of the cluster needs to be able to make a1.
TCP connection to each other member of the cluster. The
connection is to a port computed at run time. The range
of port numbers to which a connection is made can be
constrained by the agraph.cfg file but typically this
will be a large range to ensure that at least one port
in that range is not in used.
All members of the cluster hold the complete database2.
(although for brief periods of time they can be out of
sync and catching up with one another).

MMR replication clusters don’t quite fit the Kubernetes model
in these ways

When the cluster is running normally each instance knows1.
the DNS name or IP address of each other instance. In
Kubernetes you don’t want to depend on the IP address of
another cluster’s pod as those pods can go away and a
replacement started at a different IP address. We’ll
describe below our solution to this.
Services are a way to hide the actual location of a pod2.
however they are designed to handle a set of known
ports.. In our case we need to connect from one pod to a
known-at-runtime port of another pod and this isn’t what
services are designed for.
A key feature of Kubernetes is the ability to scale up3.
and down the number of processes in order to handle the
load appropriately. Processes are usually single purpose
and stateless. An MMR process is a full database server
with a complete copy of the repository. Scaling up is
not a quick and simple operation – the database must be
copied from another node. Thus scaling up is a more
deliberate process rather than something automatically
done when the load on the system changes during the day.

The Design

We have a headless service for our controlling instance1.
StatefulSet and that causes there to be a DNS entry for
the name controlling that points to the current IP
address of the node in which the controlling instance
runs. Thus we don’t need to hardwire the IP address of
the controlling instance (as we do in our AWS load
balancer implementation).
The controlling instance uses two PersistentVolumes to2.
store: 1. The repo we’re replicating and 2. The token
that other nodes can use to connect to this node. Should
the controlling instance AllegroGraph server die (or the
pod in which it runs dies) then when the pod is started
again it will have access to the data on those two
persistent volumes.
We call the other instances in the cluster Copy3.
instances. These are full read-write instances of the
repository but we don’t back up their data in a
persistent volume. This is because we want to scale up
and down the number of Copy instances. When we scale
down we don’t want to save the old data since when we
scale down we remove that instance from the cluster thus
the repo in the cluster can never join the cluster
again. We denote the Copy instances by their IP
addresses. The Copy instances can find the address of
the controlling instance via DNS. The controlling
instance will pass the cluster configuration to the Copy
instance and that configuration information will have
the IP addresses of the other Copy instances. This is
how the Copy instances find each other.
We have a load balancer that allows one to access a4.
random Copy instance from an external IP address. This
load balancer doesn’t support sessions so it’s only
useful for doing queries and quick inserts that don’t
need a session.
We have a load balancer that allows access to the5.

https://github.com/franzinc/agraph-examples/blob/master/clustering/terraform-elb/using-terraform.md
https://github.com/franzinc/agraph-examples/blob/master/clustering/terraform-elb/using-terraform.md

Controlling instance via HTTP. While this load balancer
also doesn’t have session support, because there is only
one controlling instance it’s not a problem if you start
an AllegroGraph session because all sessions will live
on the single controlling instance.

We’ve had the most experience with Kubernetes on the Google
Cloud Platform. There is no requirement that the load balancer
support sessions and the GCP version does not at this time,
but that doesn’t mean that session support isn’t present in
the load balancer in other cloud platforms. Also there is a
large community of Kubernetes developers and one may find a
load balancer with session support available from a third
party.

Implementation

We build and deploy in three subdirectories. We’ll describe
the contents of the directories first and then give step by
step instructions on how to use the contents of the
directories.

Directory ag/

In this directory we build a Docker image holding an installed
AllegroGraph. The Dockerfile is

FROM centos:7

#
AllegroGraph root is /app/agraph
#

RUN yum -y install net-tools iputils bind-utils wget hostname

ARG agversion=agraph-6.6.0
ARG agdistfile=${agversion}-linuxamd64.64.tar.gz

This ADD command will automatically extract the contents
of the tar.gz file

ADD ${agdistfile} .

needed for agraph 6.7.0 and can't hurt for others
change to 11 if you only have OpenSSL 1.1 installed
ENV ACL_OPENSSL_VERSION=10

so prompts are readable in an emacs window
ENV PROMPT_COMMAND=

RUN groupadd agraph && useradd -d /home/agraph -g agraph
agraph
RUN mkdir /app

declare ARGs as late as possible to allow previous lines to
be cached
regardless of ARG values

ARG user
ARG password

RUN (cd ${agversion} ; ./install-agraph /app/agraph -- --non-
interactive \
 --runas-user agraph \
 --super-user $user \
 --super-password $password)

remove files we don't need
RUN rm -fr /app/agraph/lib/doc /app/agraph/lib/demos

we will attach persistent storage to this directory
VOLUME ["/app/agraph/data/rootcatalog"]

patch to reduce cache time so we’ll see when the controlling
instance moves.
ag 6.7.0 has config parameter StaleDNSRetainTime which
allows this to be
done in the configuration.
COPY dnspatch.cl /app/agraph/lib/patches/dnspatch.cl

RUN chown -R agraph.agraph /app/agraph

The Dockerfile installs AllegroGraph in /app/agraph and

creates an AllegroGraph super user with the name and password
passed in as arguments. It creates a user agraph so that the
AllegroGraph server will run as the user agraph rather than
as root.

We have to worry about the controlling instance process dying
and being restarted in another pod with a different IP
address. Thus if we’ve cached the DNS mapping
of controlling we need to notice as soon as possible that the
mapping as changed. The dnspatch.cl file changes a parameter
in the AllegroGraph DNS code to reduce the time we trust our
DNS cache to be accurate so that we’ll quickly notice if the
IP address of controlling changes.

We also install a number of networking tools. AllegroGraph
doesn’t need these but if we want to do debugging inside the
container they are useful to have installed.

The image created by this Dockerfile is pushed to the Docker
Hub using an account you’ve specified (see the Makefile in
this directory for details).

Directory agrepl/

Next we take the image created above and add the specific code
to support replication clusters.

The Dockerfile is

ARG DockerAccount=specifyaccount

FROM ${DockerAccount}/ag:latest

#
AllegroGraph root is /app/agraph

RUN mkdir /app/agraph/scripts
COPY . /app/agraph/scripts

since we only map one port from the outside into our cluster

we need any sessions created to continue to use that one
port.
RUN echo "UseMainPortForSessions true" >>
/app/agraph/lib/agraph.cfg

settings/user will be overwritten with a persistent mount so
copy
the data to another location so it can be restored.
RUN cp -rp /app/agraph/data/settings/user
/app/agraph/data/user

ENTRYPOINT ["/app/agraph/scripts/repl.sh"]

When building an image using this Dockerfile you must specify

--build-arg DockerAccount=MyDockerAccount

where MyDockerAccount is a Docker account you’re authorized to
push images to.

The Dockerfile installs the
scripts repl.sh, vars.sh and accounts.sh. These are run when
this container starts.

We modify the agraph.cfg with a line that ensures that even if
we create a session that we’ll continue to access it via port
10035 since the load balancer we’ll use to access AllegroGraph
only forwards 10035 to AllegroGraph.

Also we know that we’ll be installing a persistent volume
at /app/agraph/data/user so we make a copy of that directory
in another location since the current contents will be
invisible when a volume is mounted on top of it. We need the
contents as that is where the credentials for the user we
created when AllegroGraph was installed.

Initially the file settings/user/username will contain the
credentials we specified when we installed AllegroGraph in
first Dockerfile. When we create a cluster instance a new
token is created and this is used in place of the password for

the test account. This token is stored
in settings/user/username which is why we need this to be an
instance-specific and persistent filesystem for the
controlling instance.

When this container starts it runs repl.sh which first
runs accounts.sh and vars.sh.

accounts.sh is a file created by the top level Makefile to
store the account information for the user account we created
when we installed AllegroGraph.

vars.sh is

constants need by scripts
port=10035
reponame=myrepl

compute our ip address, the first one printed by hostname
myip=$(hostname -I | sed -e 's/ .*$//')

In vars.sh we specify the information about the repository
we’ll create and our IP address.

The script repl.sh is this:

#!/bin/bash
#
to start ag and then create or join a cluster
##

cd /app/agraph/scripts

set -x
. ./accounts.sh
. ./vars.sh

agtool=/app/agraph/bin/agtool

echo ip is $myip

move the copy of user with our login to the newly mounted
volume
if this is the first time we've run agraph on this volume
if [! -e /app/agraph/data/rootcatalog/$reponame] ; then

 cp -rp /app/agraph/data/user/*
/app/agraph/data/settings/user
fi

due to volume mounts /app/agraph/data could be owned by root
so we have to take back ownership
chown -R agraph.agraph /app/agraph/data

start agraph
/app/agraph/bin/agraph-control --config
/app/agraph/lib/agraph.cfg start

term_handler() {
 # this signal is delivered when the pod is
 # about to be killed. We remove ourselves
 # from the cluster.
 echo got term signal
 /bin/bash ./remove-instance.sh
 exit
}

sleepforever() {
 # This unusual way of sleeping allows
 # a TERM signal sent when the pod is to
 # die to then cause the shell to invoke
 # the term_handler function above.
 date
 while true
 do
 sleep 99999 & wait ${!}
 done
}

if [-e /app/agraph/data/rootcatalog/$reponame] ; then
 echo repository $reponame already exists in this
persistent volume

 sleepforever
fi

controllinghost=controlling

controllingspec=$authuser:$authpassword@$controllinghost:$port
/$reponame

if [x$Controlling == "xyes"] ;
then
 # It may take a little time for the dns record for
'controlling' to be present
 # and we need that record because the agtool program below
will use it
 until host controlling ; do echo controlling not in DNS
yet; sleep 5 ; done
 ## create first and controlling cluster instance
 $agtool repl create-cluster $controllingspec controlling

else
 # wait for the controlling ag server to be running

 until curl -s
http://$authuser:$authpassword@$controllinghost:$port/version
; do echo wait for controlling ; sleep 5; done

 # wait for server in this container to be running
 until curl -s

http://$authuser:$authpassword@$myip:$port/version ; do echo
wait for local server ; sleep 5; done

 # wait for cluster repo on the controlling instance to be
present
 until $agtool repl status $controllingspec > /dev/null ; do
echo wait for repo ; sleep 5; done
 myiname=i-$myip
 echo $myiname > instance-name.txt

 # construct the remove-instance.sh shell script to remove
this instance
 # from the cluster when the instance is terminated.
 echo $agtool repl remove $controllingspec $myiname >

remove-instance.sh
 chmod 755 remove-instance.sh
 #

 # note that
 # % docker kill container
 # will send a SIGKILL signal by default we can't trap on
SIGKILL.
 # so
 # % docker kill -s TERM container
 # in order to test this handler
 trap term_handler SIGTERM SIGHUP SIGUSR1
 trap -p
 echo this pid is $$

 # join the cluster
 echo joining the cluster
 $agtool repl grow-cluster $controllingspec

$authuser:$authpassword@$myip:$port/$reponame $myiname
fi
sleepforever

This script can be run under three different conditions

Run when the Controlling instance is starting for the1.
first time
Run when the Controlling instance is restarting having2.
run before and died (perhaps the machine on which it was
running crashed or the AllegroGraph process had some
error)
Run when a Copy instance is starting for the first time.3.
Copy instances are not restarted when they die. Instead
a new instance is created to take the place of the dead
instance. Therefore we don’t need to handle the case of
a Copy instance restarting.

In cases 1 and 2 the environment variable Controlling will
have the value “yes”.

In case 2 there will be a directory

at /app/agraph/data/rootcatalog/$reponame.

In all cases we start an AllegroGraph server.

In case 1 we create a new cluster. In case 2 we just sleep and
let the AllegroGraph server recover the replication repository
and reconnect to the other members of the cluster.

In case 3 we wait for the controlling instance’s AllegroGraph
to be running. Then we wait for our AllegroGraph server to be
running. Then we wait for the replication repository we want
to copy to be up and running. At that point we can grow the
cluster by copying the cluster repository.

We also create a script which will remove this instance from
the cluster should this pod be terminated. When the pod is
killed (likely due to us scaling down the number of Copy
instances) a termination signal will be sent first to the
process allowing it to run this remove script before the pod
completely disappears.

Directory kube/

This directory contains the yaml files that create kubernetes
resources which then create pods and start the containers that
create the AllegroGraph replication cluster.

controlling-service.yaml

We begin by defining the services. It may seem logical to
define the applications before defining the service to expose
the application but it’s the service we create that puts the
application’s address in DNS and we want the DNS information
to be present as soon as possible after the application
starts. In the repl.sh script above we include a test to check
when the DNS information is present before allowing the
application to proceed.

apiVersion: v1
kind: Service

metadata:
 name: controlling
spec:
 clusterIP: None
 selector:
 app: controlling
 ports:
 - name: http
 port: 10035
 targetPort: 10035

This selector defines a service for any container with a label
with a key app and a value controlling. There aren’t any such
containers yet but there will be. You create this service with

% kubectl create -f controlling-service.yaml

In fact for all the yaml files shown below you create the
object they define by running

% kubectl create -f filename.yaml

copy-service.yaml

We do a similar service for all the copy applications.

apiVersion: v1
kind: Service
metadata:
 name: copy
spec:
 clusterIP: None
 selector:
 app: copy
 ports:
 - name: main
 port: 10035
 targetPort: 10035

controlling.yaml

This is the most complex resource description for the cluster.
We use a StatefulSet so we have a predictable name for the

single pod we create. We define two persistent volumes. A
StatefulSet is designed to control more than one pod so rather
than a VolumeClaim we have a VolumeClaimTemplate so that each
Pod can have its own persistent volume… but as it turns out we
have only one pod in this set and we never scale up. There
must be exactly one controlling instance.

We setup a liveness check so that if the AllegroGraph server
dies Kubernetes will restart the pod and thus the AllegroGraph
server. Because we’ve used a persistent volume for the
AllegroGraph repositories when the AllegroGraph server
restarts it will find that there is an existing MMR
replication repository that was in use when the AllegroGraph
server was last running. AllegroGraph will restart that
replication repository which will cause that replication
instance to reconnect to all the copy instances and become
part of the cluster again.

We set the environment variable Controlling to yes and this
causes this container to start up as a controlling instance
(you’ll find the check for the Controlling environment
variable in the repl.sh script above).

We have a volume mount for /dev/shm, the shared memory
filesystem, because the default amount of shared memory
allocated to a container by Kubernetes is too small to support
AllegroGraph.

#
stateful set of controlling instance
#

apiVersion: apps/v1beta1
kind: StatefulSet
metadata:
 name: controlling
spec:
 serviceName: controlling
 replicas: 1

 template:
 metadata:
 labels:
 app: controlling
 spec:
 containers:
 - name: controlling
 image: dockeraccount/agrepl:latest
 imagePullPolicy: Always
 livenessProbe:
 httpGet:
 path: /hostname
 port: 10035
 initialDelaySeconds: 30
 volumeMounts:
 - name: shm
 mountPath: /dev/shm
 - name: data
 mountPath: /app/agraph/data/rootcatalog
 - name: user
 mountPath: /app/agraph/data/settings/user
 env:
 - name: Controlling
 value: "yes"
 volumes:
 - name: shm
 emptyDir:
 medium: Memory
 volumeClaimTemplates:
 - metadata:
 name: data
 spec:
 resources:
 requests:
 storage: 20Gi
 accessModes:
 - ReadWriteOnce
 - metadata:
 name: user
 spec:
 resources:

 requests:
 storage: 10Mi
 accessModes:
 - ReadWriteOnce

copy.yaml

This StatefulSet is responsible for starting all the other
instances. It’s much simpler as it doesn’t use Persistent
Volumes

#
stateful set of copies of the controlling instance
#

apiVersion: apps/v1beta1
kind: StatefulSet
metadata:
 name: copy
spec:
 serviceName: copy
 replicas: 2
 template:
 metadata:
 labels:
 app: copy
 spec:
 volumes:
 - name: shm
 emptyDir:
 medium: Memory
 containers:
 - name: controlling
 image: dockeraccount/agrepl:latest
 imagePullPolicy: Always
 livenessProbe:
 httpGet:
 path: /hostname
 port: 10035
 initialDelaySeconds: 30
 volumeMounts:
 - name: shm

 mountPath: /dev/shm

controlling-lb.yaml

We define a load balancer so applications on the internet
outside of our cluster can communicate with the controlling
instance. The IP address of the load balancer isn’t specified
here. The cloud service provider (i.e. Google Cloud Platform
or AWS) will determine an address after a minute or so and
will make that value visible if you run

% kubectl get svc controlling-loadbalancer

The file is

apiVersion: v1
kind: Service
metadata:
 name: controlling-loadbalancer
spec:
 type: LoadBalancer
 ports:
 - port: 10035
 targetPort: 10035
 selector:
 app: controlling

copy-lb.yaml

As noted earlier the load balancer for the copy instances does
not support sessions. However you can use the load balancer to
issue queries or simple inserts that don’t require a session.

apiVersion: v1
kind: Service
metadata:
 name: copy-loadbalancer
spec:
 type: LoadBalancer
 ports:
 - port: 10035
 targetPort: 10035

 selector:
 app: copy

copy-0-lb.yaml

If you wish to access one of the copy instances explicitly so
that you can create sessions you can create a load balancer
which links to just one instance, in this case the first copy
instance which is named “copy-0”.

apiVersion: v1
kind: Service
metadata:
 name: copy-0-loadbalancer
spec:
 type: LoadBalancer
 ports:
 - port: 10035
 targetPort: 10035
 selector:
 app: copy
 statefulset.kubernetes.io/pod-name: copy-0

Setting up and running MMR under Kubernetes

The code will build and deploy an AllegroGraph MMR cluster in
Kubernetes. We’ve tested this in Google Cloud Platform and
Amazon Web Service. This code requires Persistent Volumes and
load balancers and thus requires a sophisticated platform to
run (such as GCP or AWS).

Prerequisites

In order to use the code supplied you’ll need two additional
things

A Docker Hub account (https://hub.docker.com). A free1.
account will work. You’ll want to make sure you can push
to the hub without needing a password (use the docker
login command to set that up).
An AllegroGraph distribution in tar.gz format. We’ve2.

https://hub.docker.com/

been using agraph-6.6.0-linuxamd64.64.tar.gz in our
testing. You can find the current set of server files
at https://franz.com/agraph/downloads/server This file
should be put in the ag subdirectory. Note that the
Dockerfile in that directory has the line ARG
agversion=agraph-6.6.0 which specifies the version of
agraph to install. This must match the version of
the ...tar.gz file you put in that directory.

Steps

Do Prerequisites

Fullfill the prerequisites above

Set parameters

There are 5 parameters

Docker account – Must Specify1.
AllegroGraph user – May want to specify2.
AllegroGraph password – May want to specify3.
AllegroGraph repository name – Unlikely to want to4.
change
AllegroGraph port – Very unlikely to want to change5.

The first three parameters can be set using the Makefile in
the top level directory. The last two parameters are found
in agrepl/vars.sh if you wish to change them. Note that the
port number of 10035 is found in the yaml files in
the kube subdirectory. If you change the port number you’ll
have edit the yaml files as well.

The first three parameters are set via

% make account=DockerHubAccount user=username
password=password

The account must be specified but the last two can be omitted
and default to an AllegroGraph account name of test and a

password of xyzzy.

If you choose to specify a password make it a simple one
consisting of letters and numbers. The password will appear in
shell commands and URLs and our simple scripts don’t escape
characters that have a special meaning to the shell or URLs.

Install AllegroGraph

Change to the ag directory and build an image with
AllegroGraph installed. Then push it to the Docker Hub

% cd ag
% make build
% make push
% cd ..

Create cluster-aware AllegroGraph image

Add scripts to create an image that will either create an
AllegroGraph MMR cluster or join a cluster when started.

% cd agrepl
% make build
% make push
% cd ..

Setup a Kubernetes cluster

Now everything is ready to run in a Kubernetes cluster. You
may already have a Kubernetes cluster running or you may need
to create one. Both Google Cloud Platform and AWS have ways of
creating a cluster using a web UI or a shell command. When
you’ve got your cluster running you can do

% kubectl get nodes

and you’ll see your nodes listed. Once this works you can move
into the next step.

Run an AllegroGraph MMR cluster

Starting the MMR cluster involves setting up a number of
services and deploying pods. The Makefile will do that for
you.

% cd kube
% make doall

You’ll see when it displays the services that there isn’t an
external IP address allocated for the load balancers It can
take a few minutes for an external IP address to be allocated
and the load balancers setup so keep running

% kubectl get svc

until you see an IP address given, and even then it may not
work for a minute or two after that for the connection to be
made.

Verify that the MMR cluster is running

You can use AllegroGraph Webview to see if the MMR cluster is
running. Once you have an external IP address for the
controlling-load-balancer go to this address in a web browser

http://external-ip-address:10035

Login with the credentials you used when you created the
Docker images (the default is user test and password xyzzy).
You’ll see a repository myrepl listed. Click on that. Midway
down you’ll see a link titled

Manage Replication Instances as controller

Click on that link and you’ll see a table of three instances
which now serve the same repository. This verifies that three
pods started up and all linked to each other.

Namespaces

All objects created in Kubernetes have a name that is chosen
either by the user or Kubernetes based on a name given by the
user. Most names have an associated namespace. The combination

of namespace and name must be unique among all objects in a
Kubernetes cluster. The reason for having a namespace is that
it prevents name clashes between multiple projects running in
the same cluster that both choose to use the same name for an
object.

The default namespace is named default.

Another big advantage using namespaces is that if you delete a
namespace you delete all objects whose name is in that
namespace. This is useful because a project in Kubernetes uses
a lot of different types of objects and if you want to delete
all the objects you’ve added to a Kubernetes cluster it can
take a while to find all the objects by type and then delete
them. However if you put all the objects in one namespace then
you need only delete the namespace and you’re done.

In the Makefile we have this line

Namespace=testns

which is used by this rule

reset:
 -kubectl delete namespace ${Namespace}
 kubectl create namespace ${Namespace}
 kubectl config set-context `kubectl config current-
context` --namespace ${Namespace}

The reset rule deletes all members of the Namespace named at
the top of the Makefile (here testns) and then recreates the
namespace and switches to it as the active namespace. After
doing the reset all objects created will be created in
the testns namespace.

We include this in the Makefile because you may find it
useful.

Docker Swarm

The focus of this document is Kubernetes but we also have a

Docker Swarm implementation of an AllegroGraph MMR cluster.
Docker Swarm is significantly simpler to setup and manage than
Kubernetes but has far fewer bells and whistles. Once you’ve
gotten the ag and agrepl images built and pushed to the Docker
Hub you need only link a set of machines running Docker
together into a Docker Swarm and then

% cd swarm ; make controlling copy

and the AllegroGraph MMR cluster is running Once it is running
you can access the cluster using Webview at

http://localhost:10035/

AllegroGraph Replication on
Amazon’s AWS using Terraform

Introduction
In this document we describe how to setup an AllegroGraph
replication cluster on AWS using the terraform program. The
cluster will have one controlling instance and a set of
instances controlled by an Auto Scaling Group and reached via
a Load Balancer.

https://allegrograph.com/allegrograph-replication-on-amazons-aws-using-terraform/
https://allegrograph.com/allegrograph-replication-on-amazons-aws-using-terraform/
https://franz.com/agraph/support/documentation/current/multi-master.html
https://franz.com/agraph/support/documentation/current/multi-master.html
https://www.terraform.io/
https://docs.aws.amazon.com/autoscaling/
https://docs.aws.amazon.com/elasticloadbalancing/

Controlling instance

Replicas

Load Balancer

Application/Users

Creating such a system on AWS takes a long time if done
manually through their web interface. We have another document
that takes you through the steps. Describing the system in
terraform first takes a little time but once that’s done the
cluster can be started in less than five minutes.

Steps
Obtain an AMI with AllegroGraph and aws-repl (our1.
support code for aws) installed.
Edit the terraform file we supply to suit your needs2.
Run terraform to build the cluster3.

Obtain an AMI with AllegroGraph and
aws-repl
An AMI is an image of a virtual machine. You create an AMI by
launching an ec2 instance using an AMI, altering the root disk

https://github.com/franzinc/agraph-examples/blob/master/clustering/terraform-elb/agraph_mmr_elb.svg

of that instance and then telling AWS to create an AMI based
on your instance. You can repeat this process until you create
the AMI you need.

We have a prebuild AMI with all the code installed. It uses
AllegroGraph 6.5.0 and doesn’t contain a license code so it’s
limited to 5 million triples. You can use this AMI to test the
load balancer or you can use this image as the starting off
point for building your own image.

Alternatively you start from a fresh AMI and install
everything yourself as described next.

We will create an AMI to run AllegroGraph with Replication
with the following features

When an EC2 instance running this AMI is started it1.
starts AllegroGraph and joins the cluster of nodes
serving a particular repository.
When the the EC2 instance is terminated the instance2.
sends a message to the controlling instance to ensure
that the terminating instance is removed from the
cluster
If the EC2 instance is started at a particular IP3.
address it creates the cluster and acts as the
controlling instance of the cluster

This is a very simple setup but will serve many applications.
For more complex needs you’ll need to write your own tools.
Contact support@franz.com to discuss support options.

The choice of AMI on which to build our AMI is not important
except that our scripts assume that the initial account name
of the image is ec2-user. Thus we suggest that you use one of
the Amazon Linux images. If you use another kind of image
you’ll need to do extra work (as an example we describe below
how to use a Centos AMI). Since the instance we’ll build with
the AMI are used only for AllegroGraph and not for other uses
there’s no point in running a different version of Linux that

mailto:support@franz.com

you may use in your development work.

These are the steps to build an AMI:

Start an instance using an Amazon Linux AMI with EBS support.

We can’t specify the exact name of the image to start as the
names change over time and depending on the region. We will
usually pick one of the first images listed.

You don’t need to start a large virtual machine. A t2.micro
will do.

You’ll need to specify a VPC and subnet. There should be a
default VPC available. If not you’ll have to create one.

Make sure that when you specify that subnet that you want to
external IP address.

Copy an agraph distribution (tar.gz format) to the ec2
instance into the home directory of ec2-user. Also copy the
file aws-repl/aws-repl.tar to the home directory of ec2-user
on the instance. aws-repl.tar contains scripts to support
replication setup on AWS.

Extract the agraph repo in a temporary spot and run install-
agraph in it, specifying the root of the agraph distribution.

I put it in /home/ec2-user/agraph

For example:

% mkdir tmp
% cd tmp
% tar xfz ../agraph-6.5.0-linuxamd64.64.tar.gz
% cd agraph-6.5.0
% ./install-agraph ~/agraph

Edit the file ~/agraph/lib/agraph.cfg and add the line

UseMainPortForSessions yes

This will allow sessions to be tracked through the Load
Balancer.

If you have an agraph license key you should add it to the
agraph.cfg file.

Unpack and install the aws-repl code:

% tar xf aws-repl.tar
% cd aws-repl
% sudo ./install.sh

You can delete aws-repl.tar but don’t delete the aws-repl
directory. It will be used on startup.

Look at aws-repl/var.sh to see the parameter values. You’ll
see an agraphroot parameter which should match where you
installed agraph.

At this point the instance is setup.

You should go to the aws console, select this instance, and
from the Action menu select “Image / Create Image”. Wait for
the AMI to be built. At this time you can terminate the ec2
instance.

Using a CentOS 7 image:
If you wish to install on top of CentOS then you’ll need
additional steps. The initial user on CentOS is called
‘centos’ rather than ‘ec2-user’. In order to keep things
consistent we’ll create the ec2-user account and use that for
running agraph just as we do for the Amazon AMI.

ssh to the ec2 vm as centos and do the following to create the
ec2-user account and to allow ssh access to it just like the
centos account

[centos@ip-10-0-1-227 ~]$ sudo sh

sh-4.2# adduser ec2-user

sh-4.2# cp -rp .ssh ~ec2-user
sh-4.2# chown -R ec2-user ~ec2-user/.ssh
sh-4.2# exit

[centos@ip-10-0-1-227 ~]

$

At this point you can copy the agraph distribution to the ec2
vm. Scp to ec2-user@x.x.x.x rather than centos@x.x.x.x. Also
copy the aws-repl.tar file.

The only change to the procedure is when you must run
install.sh in the aws-repl directory.

The ec2-user account does not have the ability to sudo. So
this command must be run

when logged in as the user centos;

centos@ip-10-0-1-227 ~]$ sudo sh
sh-4.2# cd ~ec2-user/aws-repl
sh-4.2# ./install.sh
+ cp joincluster /etc/rc.d/init.d
+ chkconfig --add joincluster
sh-4.2# exit

[centos@ip-10-0-1-227 ~]

$

Edit the terraform file we supply
to suit your needs
Edit the file agelb.tf. This file contains directives to
terraform to create the cluster with load balancer. At the top
are the variables you can easily change. Other values are
found inside the directives and you can change those as well.

Two variables you definitely need to change are

mailto:ec2-user@x.x.x.x
mailto:centos@x.x.x.x

“ag-elb-ami” – this is the name of the AMI you created1.
in the previous step or the AMI we supply.
“ssh-key” – this is the name of the ssh key pair you2.
want to use in the instances created.

You may wish to change the region where you want the instances
built (that value is in the provider clause at the top of the
file) and if you do you’ll need to change the variable “azs”.

We suggest you try building the cluster with the minimum
changes to verify it works and then customize it to your
liking.

Run terraform to build the cluster
To build the cluster make sure your have an ~/.aws/config file
with a default entry, such as

[default]
aws_access_key_id = AKIAIXXXXXXXXXXXXXXX
aws_secret_access_key = o/dyrxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

This is what terraform uses as credentials when it contacts
AWS.

In order to use terraform the first time (or any time you
change the provider clause in agelb.tf) run this command

% terraform init

Terraform will download the files appropriate for the provider
you specified.

After that you can build your cluster with

% terraform apply

And watch the messages. If there are no errors terraform will
wait for confirmation from you to proceed. Type yes to
proceed, anything else to abort.

After terraform is finished you’ll see the address of the load
balancer printed.

You can make changes the agelb.tf file and again ‘terraform
apply ‘ and terraform will tell you what it needs to do to
change things from how they are now to what the agelb.tf file
specifies.

To delete everything terraform added type the command

% terraform destroy

And type yes when prompted.

