
Ontology Summit 2020 –
Knowledge Graphs
The Ontology Summit is an annual series of events that
involves the ontology community and communities related to
each year’s theme chosen for the summit. The Ontology Summit
was started by Ontolog and NIST, and the program has been co-
organized by Ontolog, NIST, NCOR, NCBO, IAOA, NCO_NITRD along
with the co-sponsorship of other organizations that are
supportive of the Summit goals and objectives.

Knowledge graphs, closely related to ontologies and semantic
networks, have emerged in the last few years to be an
important semantic technology and research area. As structured
representations of semantic knowledge that are stored in a
graph, KGs are lightweight versions of semantic networks that
scale to massive datasets such as the entire World Wide Web.
Industry has devoted a great deal of effort to the development
of knowledge graphs, and they are now critical to the
functions of intelligent virtual assistants such as Siri and
Alexa. Some of the research communities where KGs are relevant
are Ontologies, Big Data, Linked Data, Open Knowledge Network,
Artificial Intelligence, Deep Learning, and many others.

Dr. Jans Aasman presented – “Why Knowledge Graphs Hit the Hype
Cycle and What they have in common”

Presentation Page

Presentation Slides

https://allegrograph.com/ontology-summit-2020-knowledge-graphs/
https://allegrograph.com/ontology-summit-2020-knowledge-graphs/
https://ontologforum.org/index.php/ConferenceCall_2019_09_04
https://ontologforum.s3.amazonaws.com/OntologySummit2020/Introduction/Why-Knowledge-Graphs-Now--JansAasman_20190904.pdf

Harnessing the Internet of
Things with JSON-LD

Franz’s CEO, Jans Aasman’s recent
IoT Evolution Article:

Conceptually, the promise of the Internet of Things is almost
halcyon. Its billions of sensors are all connected,
continuously transmitting data to support tailored, cost-
saving measures maximizing revenues in applications as diverse
as smart cities, smart price tags, and predictive maintenance
in the Industrial Internet.

Practically, the data management necessities of capitalizing
on this promise by the outset of the next decade are daunting.
The vast majority of these datasets are unstructured or semi-
structured. The data modeling challenges of rectifying their
schema for integration are considerable. The low latency
action required to benefit from their data implies machine
intelligence largely elusive to today’s organizations.

…….
The self-describing, linked data approach upon which JSON-LD
is founded excels at the low latent action resulting from
machine to machine communication in the IoT. The nucleus of
the linked data methodology—semantic statements and their
unique Uniform Resource Identifiers (URIs)—are read and

https://allegrograph.com/harnessing-the-internet-of-things-with-json-ld/
https://allegrograph.com/harnessing-the-internet-of-things-with-json-ld/

understood by machines. This characteristic aids many of the
IoT use cases requiring machine intelligence; by transmitting
IoT data via the JSON-LD format organizations can maximize
this boon. Smart cities provide particularly compelling
examples of the machine intelligence fortified by this
expression of semantic technology.

Read the full article at IoT Evolution

Knowledge Graphs rise in
Gartner’s Hype Cycle
“The 2019 Hype Cycle highlights the emerging technologies with
significant impact on business, society and people over the
next five to 10 years,” says Brian Burke, Research Vice
President, Gartner. “Technology innovation is the key to
competitive differentiation and is transforming many
industries.”

This year’s emerging technologies fall into five major trends:
Sensing and mobility, augmented human, postclassical compute
and comms, digital ecosystems, and advanced AI and analytics.

Read the full Gartner press release.

https://www.iotevolutionworld.com/iot/articles/443068-harnessing-internet-things-with-json-ld.htm
https://allegrograph.com/knowledge-graphs-rise-in-gartners-hype-cycle/
https://allegrograph.com/knowledge-graphs-rise-in-gartners-hype-cycle/
https://www.gartner.com/analyst/26081/Brian-Burke
https://www.gartner.com/smarterwithgartner/a-data-and-analytics-leaders-guide-to-data-literacy/
https://www.gartner.com/smarterwithgartner/5-trends-appear-on-the-gartner-hype-cycle-for-emerging-technologies-2019/

AllegroGraph Replication on
Amazon’s AWS using Terraform

https://allegrograph.com/allegrograph-replication-on-amazons-aws-using-terraform/
https://allegrograph.com/allegrograph-replication-on-amazons-aws-using-terraform/

Introduction
In this document we describe how to setup an AllegroGraph
replication cluster on AWS using the terraform program. The
cluster will have one controlling instance and a set of
instances controlled by an Auto Scaling Group and reached via
a Load Balancer.

Controlling instance

Replicas

Load Balancer

Application/Users

Creating such a system on AWS takes a long time if done
manually through their web interface. We have another document
that takes you through the steps. Describing the system in
terraform first takes a little time but once that’s done the
cluster can be started in less than five minutes.

Steps
Obtain an AMI with AllegroGraph and aws-repl (our1.
support code for aws) installed.
Edit the terraform file we supply to suit your needs2.

https://franz.com/agraph/support/documentation/current/multi-master.html
https://franz.com/agraph/support/documentation/current/multi-master.html
https://www.terraform.io/
https://docs.aws.amazon.com/autoscaling/
https://docs.aws.amazon.com/elasticloadbalancing/
https://github.com/franzinc/agraph-examples/blob/master/clustering/terraform-elb/agraph_mmr_elb.svg

Run terraform to build the cluster3.

Obtain an AMI with AllegroGraph and
aws-repl
An AMI is an image of a virtual machine. You create an AMI by
launching an ec2 instance using an AMI, altering the root disk
of that instance and then telling AWS to create an AMI based
on your instance. You can repeat this process until you create
the AMI you need.

We have a prebuild AMI with all the code installed. It uses
AllegroGraph 6.5.0 and doesn’t contain a license code so it’s
limited to 5 million triples. You can use this AMI to test the
load balancer or you can use this image as the starting off
point for building your own image.

Alternatively you start from a fresh AMI and install
everything yourself as described next.

We will create an AMI to run AllegroGraph with Replication
with the following features

When an EC2 instance running this AMI is started it1.
starts AllegroGraph and joins the cluster of nodes
serving a particular repository.
When the the EC2 instance is terminated the instance2.
sends a message to the controlling instance to ensure
that the terminating instance is removed from the
cluster
If the EC2 instance is started at a particular IP3.
address it creates the cluster and acts as the
controlling instance of the cluster

This is a very simple setup but will serve many applications.
For more complex needs you’ll need to write your own tools.
Contact support@franz.com to discuss support options.

mailto:support@franz.com

The choice of AMI on which to build our AMI is not important
except that our scripts assume that the initial account name
of the image is ec2-user. Thus we suggest that you use one of
the Amazon Linux images. If you use another kind of image
you’ll need to do extra work (as an example we describe below
how to use a Centos AMI). Since the instance we’ll build with
the AMI are used only for AllegroGraph and not for other uses
there’s no point in running a different version of Linux that
you may use in your development work.

These are the steps to build an AMI:

Start an instance using an Amazon Linux AMI with EBS support.

We can’t specify the exact name of the image to start as the
names change over time and depending on the region. We will
usually pick one of the first images listed.

You don’t need to start a large virtual machine. A t2.micro
will do.

You’ll need to specify a VPC and subnet. There should be a
default VPC available. If not you’ll have to create one.

Make sure that when you specify that subnet that you want to
external IP address.

Copy an agraph distribution (tar.gz format) to the ec2
instance into the home directory of ec2-user. Also copy the
file aws-repl/aws-repl.tar to the home directory of ec2-user
on the instance. aws-repl.tar contains scripts to support
replication setup on AWS.

Extract the agraph repo in a temporary spot and run install-
agraph in it, specifying the root of the agraph distribution.

I put it in /home/ec2-user/agraph

For example:

% mkdir tmp
% cd tmp
% tar xfz ../agraph-6.5.0-linuxamd64.64.tar.gz
% cd agraph-6.5.0
% ./install-agraph ~/agraph

Edit the file ~/agraph/lib/agraph.cfg and add the line

UseMainPortForSessions yes

This will allow sessions to be tracked through the Load
Balancer.

If you have an agraph license key you should add it to the
agraph.cfg file.

Unpack and install the aws-repl code:

% tar xf aws-repl.tar
% cd aws-repl
% sudo ./install.sh

You can delete aws-repl.tar but don’t delete the aws-repl
directory. It will be used on startup.

Look at aws-repl/var.sh to see the parameter values. You’ll
see an agraphroot parameter which should match where you
installed agraph.

At this point the instance is setup.

You should go to the aws console, select this instance, and
from the Action menu select “Image / Create Image”. Wait for
the AMI to be built. At this time you can terminate the ec2
instance.

Using a CentOS 7 image:
If you wish to install on top of CentOS then you’ll need
additional steps. The initial user on CentOS is called
‘centos’ rather than ‘ec2-user’. In order to keep things

consistent we’ll create the ec2-user account and use that for
running agraph just as we do for the Amazon AMI.

ssh to the ec2 vm as centos and do the following to create the
ec2-user account and to allow ssh access to it just like the
centos account

[centos@ip-10-0-1-227 ~]$ sudo sh

sh-4.2# adduser ec2-user
sh-4.2# cp -rp .ssh ~ec2-user
sh-4.2# chown -R ec2-user ~ec2-user/.ssh
sh-4.2# exit

[centos@ip-10-0-1-227 ~]

$

At this point you can copy the agraph distribution to the ec2
vm. Scp to ec2-user@x.x.x.x rather than centos@x.x.x.x. Also
copy the aws-repl.tar file.

The only change to the procedure is when you must run
install.sh in the aws-repl directory.

The ec2-user account does not have the ability to sudo. So
this command must be run

when logged in as the user centos;

centos@ip-10-0-1-227 ~]$ sudo sh
sh-4.2# cd ~ec2-user/aws-repl
sh-4.2# ./install.sh
+ cp joincluster /etc/rc.d/init.d
+ chkconfig --add joincluster
sh-4.2# exit

[centos@ip-10-0-1-227 ~]

$

mailto:ec2-user@x.x.x.x
mailto:centos@x.x.x.x

Edit the terraform file we supply
to suit your needs
Edit the file agelb.tf. This file contains directives to
terraform to create the cluster with load balancer. At the top
are the variables you can easily change. Other values are
found inside the directives and you can change those as well.

Two variables you definitely need to change are

“ag-elb-ami” – this is the name of the AMI you created1.
in the previous step or the AMI we supply.
“ssh-key” – this is the name of the ssh key pair you2.
want to use in the instances created.

You may wish to change the region where you want the instances
built (that value is in the provider clause at the top of the
file) and if you do you’ll need to change the variable “azs”.

We suggest you try building the cluster with the minimum
changes to verify it works and then customize it to your
liking.

Run terraform to build the cluster
To build the cluster make sure your have an ~/.aws/config file
with a default entry, such as

[default]
aws_access_key_id = AKIAIXXXXXXXXXXXXXXX
aws_secret_access_key = o/dyrxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

This is what terraform uses as credentials when it contacts
AWS.

In order to use terraform the first time (or any time you
change the provider clause in agelb.tf) run this command

% terraform init

Terraform will download the files appropriate for the provider
you specified.

After that you can build your cluster with

% terraform apply

And watch the messages. If there are no errors terraform will
wait for confirmation from you to proceed. Type yes to
proceed, anything else to abort.

After terraform is finished you’ll see the address of the load
balancer printed.

You can make changes the agelb.tf file and again ‘terraform
apply ‘ and terraform will tell you what it needs to do to
change things from how they are now to what the agelb.tf file
specifies.

To delete everything terraform added type the command

% terraform destroy

And type yes when prompted.

SHACL – Shapes Constraint
Language in AllegroGraph
SHACL is a SHApe Constraint Language. It specifies a
vocabulary (using triples) to describe the shape that data
should have. The shape specifies things like the following
simple requirements:

How many triples with a specified subject and predicate
should be in the repository (e.g. at least 1, at most 1,

https://allegrograph.com/shacl-shapes-constraint-language-in-allegrograph/
https://allegrograph.com/shacl-shapes-constraint-language-in-allegrograph/
https://www.w3.org/TR/shacl/

exactly 1).
What the nature of the object of a triple with a
specified subject and predicate should be (e.g. a
string, an integer, etc.)

See the specification for more examples.

SHACL allows you to validate that your data is conforming to
desired requirements.

For a given validation, the shapes are in the Shapes
Graph (where graph means a collection of triples) and the data
to be validated is in the Data Graph (again, a collection of
triples). The SHACL vocabularly describes how a given shape is
linked to targets in the data and also provides a way for a
Data Graph to specify the Shapes Graph that should be used for
validatation. The result of a SHACL validation describes
whether the Data Graph conforms to the Shapes Graph and, if it
does not, describes each of the failures.

Namespaces Used in this Document
Along with standard predefined namespaces (such
as rdf: for <http://www.w3.org/1999/02/22-rdf-syntax-
ns#> and rdfs: for <http://www.w3.org/2000/01/rdf-schema#>),
the following are used in code and examples below:

prefix fr: <https://franz.com#>
prefix sh: <http://www.w3.org/ns/shacl#>
prefix franz: <https://franz.com/ns/allegrograph/6.6.0/>

A Simple Example
Suppose we have a Employee class and for each Employee
instance, there must be exactly one triple of the form

emp001 hasID "000-12-3456"

https://www.w3.org/TR/shacl/

where the object is the employee’s ID Number, which has the
format is [3 digits]-[2 digits]-[4 digits].

This TriG file encapsulates the constraints above:

@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<https://franz.com#Shapes> {
 <https://franz.com#EmployeeShape>
 a sh:NodeShape ;
 sh:targetClass <https://franz.com#Employee> ;
 sh:property [
 sh:path <https://franz.com#hasID> ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:datatype xsd:string ;
 sh:pattern "^[0-9][0-9][0-9]-[0-9][0-9]-

[0-9][0-9][0-9][0-9]$" ;
] .
}

It says that for instances of fr:Employee (sh:targetClass
<https://franz.com#Employee>), there must be exactly 1 triple
with predicate (path) fr:hasID and the object of that triple
must be a string with pattern [3 digits]-[2 digits]-[4 digits]
(sh:pattern "^[0-9][0-9][0-9]-[0-9][0-9]-
[0-9][0-9][0-9][0-9]$").

This TriG file defines the Employee class and some employee
instances:

@prefix fr: <https://franz.com#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

{
 fr:Employee
 a rdfs:Class .
 fr:emp001
 a fr:Employee ;

 fr:hasID "000-12-3456" ;
 fr:hasID "000-77-3456" .
 fr:emp002
 a fr:Employee ;
 fr:hasID "00-56-3456" .
 fr:emp003
 a fr:Employee .
 }

Recalling the requirements above, we immediately see these
problems with these triples:

emp001 has two hasID triples.1.
The value of emp002‘s ID has the wrong format (two2.
leading digits rather than 3).
emp003 does not have a hasID triple.3.

We load the two TriG files into our repository, and end up
with the following triple set. Note that all the employee
triples use the default graph and the SHACL-related triples
use the graph <https://franz.com#Shapes> specified in the TriG
file.

Now we use agtool shacl-validate to validate our data:

bin/agtool shacl-validate --data-graph default --shapes-graph
https://franz.com#Shapes shacl-repo-1
Validation report: Does not conform
Created: 2019-06-27T10:24:10
Number of shapes graphs: 1

Number of data graphs: 1
Number of NodeShapes: 1
Number of focus nodes checked: 3

3 validation results:
Result:
 Focus node: <https://franz.com#emp001>
 Path: <https://franz.com#hasID>
 Source Shape: _:b7A1D241Ax1

 Constraint Component:
<http://www.w3.org/ns/shacl#MaxCountConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp002>
 Path: <https://franz.com#hasID>
 Value: "00-56-3456"
 Source Shape: _:b7A1D241Ax1

 Constraint Component:
<http://www.w3.org/ns/shacl#PatternConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp003>
 Path: <https://franz.com#hasID>
 Source Shape: _:b7A1D241Ax1

 Constraint Component:
<http://www.w3.org/ns/shacl#MinCountConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

The validation fails with the problems listed above. The Focus
node is the subject of a triple that did not conform. Path is
the predicate or a property path (predicates in this
example). Value is the offending value. Source Shape is the
shape that established the constraint (you must look at the
shape triples to see exactly what Source Shape is requiring).

We revise our employee data with the following SPARQL
expresssion, deleting one of the emp001 triples, deleting
the emp002 triple and adding a new one with the correct
format, and adding an emp003 triple.

prefix fr: <https://franz.com#>

DELETE DATA {fr:emp002 fr:hasID "00-56-3456" } ;

INSERT DATA {fr:emp002 fr:hasID "000-14-1772" } ;

DELETE DATA {fr:emp001 fr:hasID "000-77-3456" } ;

INSERT DATA {fr:emp003 fr:hasID "000-54-9662" } ;

Now our employee triples are

We run the validation again and are told our data conforms:

% bin/agtool shacl-validate --data-graph default --shapes-
graph https://franz.com#Shapes shacl-repo-1
Validation report: Conforms
Created: 2019-06-27T10:32:19
Number of shapes graphs: 1
Number of data graphs: 1
Number of NodeShapes: 1
Number of focus nodes checked: 3

When we refer to this example in the remainder of this
document, it is to the un-updated (incorrect) triples.

SHACL API
The example above illustrates the SHACL steps:

Have a data set with triples that should conform to a1.
shape
Have SHACL triples that express the desired shape2.
Run SHACL validation to determine if the data conforms3.

Note that SHACL validation does not modify the data being
validated. Once you have the conformance report, you must
modify the data to fix the conformance problems and then rerun
the validation test.

The main entry point to the API is agtool shacl-validate. It
takes various options and has several output choices. Online
help for agtool shacl-validate is displayed by running agtool
shacl-validate --help.

In order to validate triples, the system must know:

What tripes to examine1.
What rules (SHACL triples) to use2.
What to do with the results3.

Specifying what triples to examine
Two arguments to agtool shacl-validate specify the triples to
evaluate: --data-graph and --focus-node. Each can be specified
multiple times.

The --data-graph argument specifies the graph value for
triples to be examined. Its value must be an IRI
or default. Only triples in the specified graphs will be
examined. default specifies the default graph. It is
also the default value of the --data-graph argument. If
no value is specified for --data-graph, only triples in
the default graph will be examined. If a value for --
data-graph is specified, triples in the default graph
will only be examined if --data-graph default is also
specified.
The --focus-node argument specifies IRIs which are
subjects of triples. If this argument is specified, only
triples with these subjects will be examined. To be
examined, triples must also have graph values specified
by --data-graph arguments. --focus-node does not have a
default value. If unspecified, all triples in the

specified data graphs will be examined. This argument
can be specified multiple times.

The --data-graph argument was used in the simple
example above. Here is how the --focus-node argument can be
used to restrict validation to triples with
subjects <https://franz.com#emp002>and <https://franz.com#emp0
03> and to ignore triples with
subject <https://franz.com#emp001> (applying agtool shacl-
validate to the orignal non-conformant data):

% bin/agtool shacl-validate --data-graph default \
 --shapes-graph https://franz.com#Shapes \
 --focus-node https://franz.com#emp003 \
 --focus-node https://franz.com#emp002 shacl-repo-1
Validation report: Does not conform
Created: 2019-06-27T11:37:49
Number of shapes graphs: 1
Number of data graphs: 1
Number of NodeShapes: 1
Number of focus nodes checked: 2

2 validation results:
Result:
 Focus node: <https://franz.com#emp003>
 Path: <https://franz.com#hasID>
 Source Shape: _:b7A1D241Ax2

 Constraint Component:
<http://www.w3.org/ns/shacl#MinCountConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp002>
 Path: <https://franz.com#hasID>
 Value: "00-56-3456"
 Source Shape: _:b7A1D241Ax2

 Constraint Component:
<http://www.w3.org/ns/shacl#PatternConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

https://franz.com/agraph/support/documentation/current/shacl.html#simple-example
https://franz.com/agraph/support/documentation/current/shacl.html#simple-example

Specifying What Shape Triples to Use
Two arguments to agtool shacl-validate, analogous to the two
arguments for data described above, specify Shape triples to
use. Further, following the SHACL spec, data triples with
predicate <http://www.w3.org/ns/shacl#shapeGraph> also specify
graphs containing Shape triples to be used.

The arguments to agtool shacl-validate are the following. Each
may be specified multiple times.

The --shapes-graph argument specifies the graph value
for shape triples to be used for SHACL validation. Its
value must be an IRI or default. default specifies the
default graph. The --shapes-graph argument has no
default value. If unspecified, graphs specified by data
triples with
the <http://www.w3.org/ns/shacl#shapeGraph> predicate
will be used (they are used whether or not --shapes-
graph has a value). If --shapes-graph has no value and
there are no data triples with
the <http://www.w3.org/ns/shacl#shapeGraph> predicate,
the data graphs are used for shape graphs. (Shape
triples have a known format and so can be identified
among the data triples.)
The --shape argument specifies IRIs which are subjects
of shape nodes. If this argument is specified, only
shape triples with these subjects and subsiduary triples
to these will be used for validation. To be included,
the triples must also have graph values specified by
the --shapes-graph arguments or specified by a data
triple with
the <http://www.w3.org/ns/shacl#shapeGraph> predicate. -
-shape does not have a default value. If unspecified,
all shapes in the shapes graphs will be used.

Other APIs
There is a lisp API using the function validate-data-graph,
defined next:

validate-data-graphdb &key data-graph-iri/s shapes-graph-
iri/s shape/s focus-node/s verbose conformance-only?
function

Perform SHACL validation and return a validation-report
structure.

The validation uses data-graph-iri/s to construct the
dataGraph. This can be a single IRI, a list of IRIs or NIL, in
which case the default graph will be used. The shapesGraph can
be specified using the shapes-graph-iri/s parameter which can
also be a single IRI or a list of IRIs. If shape-graph-
iri/s is not specified, the SHACL processor will first look to
create the shapesGraph by finding triples with the
predicate sh:shapeGraph in the dataGraph. If there are no such
triples, then the shapesGraph will be assumed to be the same
as the dataGraph.

Validation can be restricted to particular shapes and focus
nodes using the shape/s and focus-node/s parameters. Each of
these can be an IRI or list of IRIs.

If conformance-only? is true, then validation will stop as
soon as any validation failures are detected.

You can use validation-report-conforms-p to see whether or not
the dataGraph conforms to the shapesGraph (possibly restricted
to just particular shape/s and focus-node/s).

The function validation-report-conforms-p returns t or nil as
the validation struct returned by validate-data-graph does or
does not conform.

https://franz.com/agraph/support/documentation/current/shacl.html#validate-data-graph
https://franz.com/agraph/support/documentation/current/shacl.html#validation-report-conforms-p
https://franz.com/agraph/support/documentation/current/shacl.html#validation-report-conforms-p
https://franz.com/agraph/support/documentation/current/shacl.html#validate-data-graph

validation-report-conforms-preport
function

Returns t or nil to indicate whether or not REPORT (a
validation-report struct) indicates that validation conformed.
There is also a REST API. See HTTP reference.

Validation Output
The simple example above and the SHACL examples below show
output from agtool validate-shacl. There are various output
formats, specified by the --output option. Those examples use
the plain format, which means printing results descriptively.
Other choices include json, trig, trix, turtle, nquads, rdf-
n3, rdf/xml, and ntriples. Here are the simple
example (uncorrected) results using ntriples output:

% bin/agtool shacl-validate --output ntriples --data-graph
default --shapes-graph https://franz.com#Shapes shacl-repo-1

_:b271983AAx1
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/ns/shacl#ValidationReport> .
_:b271983AAx1 <http://www.w3.org/ns/shacl#conforms>
"false"^^<http://www.w3.org/2001/XMLSchema#boolean> .
_:b271983AAx1 <http://purl.org/dc/terms/created>
"2019-07-01T18:26:03"^^<http://www.w3.org/2001/XMLSchema#dateT
ime> .
_:b271983AAx1 <http://www.w3.org/ns/shacl#result>
_:b271983AAx2 .
_:b271983AAx2
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/ns/shacl#ValidationResult> .
_:b271983AAx2 <http://www.w3.org/ns/shacl#focusNode>
<https://franz.com#emp001> .
_:b271983AAx2 <http://www.w3.org/ns/shacl#resultPath>
<https://franz.com#hasID> .
_:b271983AAx2 <http://www.w3.org/ns/shacl#resultSeverity>
<http://www.w3.org/ns/shacl#Violation> .
_:b271983AAx2

https://franz.com/agraph/support/documentation/current/http-reference.html
https://franz.com/agraph/support/documentation/current/shacl.html#simple-example
https://franz.com/agraph/support/documentation/current/shacl.html#shacl-examples
https://franz.com/agraph/support/documentation/current/shacl.html#simple-example
https://franz.com/agraph/support/documentation/current/shacl.html#simple-example

<http://www.w3.org/ns/shacl#sourceConstraintComponent>
<http://www.w3.org/ns/shacl#MaxCountConstraintComponent> .
_:b271983AAx2 <http://www.w3.org/ns/shacl#sourceShape>
_:b271983AAx3 .
_:b271983AAx1 <http://www.w3.org/ns/shacl#result>
_:b271983AAx4 .
_:b271983AAx4
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/ns/shacl#ValidationResult> .
_:b271983AAx4 <http://www.w3.org/ns/shacl#focusNode>
<https://franz.com#emp002> .
_:b271983AAx4 <http://www.w3.org/ns/shacl#resultPath>
<https://franz.com#hasID> .
_:b271983AAx4 <http://www.w3.org/ns/shacl#resultSeverity>
<http://www.w3.org/ns/shacl#Violation> .
_:b271983AAx4
<http://www.w3.org/ns/shacl#sourceConstraintComponent>
<http://www.w3.org/ns/shacl#PatternConstraintComponent> .
_:b271983AAx4 <http://www.w3.org/ns/shacl#sourceShape>
_:b271983AAx3 .
_:b271983AAx4 <http://www.w3.org/ns/shacl#value> "00-56-3456"
.
_:b271983AAx1 <http://www.w3.org/ns/shacl#result>
_:b271983AAx5 .
_:b271983AAx5
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/ns/shacl#ValidationResult> .
_:b271983AAx5 <http://www.w3.org/ns/shacl#focusNode>
<https://franz.com#emp003> .
_:b271983AAx5 <http://www.w3.org/ns/shacl#resultPath>
<https://franz.com#hasID> .
_:b271983AAx5 <http://www.w3.org/ns/shacl#resultSeverity>
<http://www.w3.org/ns/shacl#Violation> .
_:b271983AAx5
<http://www.w3.org/ns/shacl#sourceConstraintComponent>
<http://www.w3.org/ns/shacl#MinCountConstraintComponent> .
_:b271983AAx5 <http://www.w3.org/ns/shacl#sourceShape>
_:b271983AAx3 .

You can have the triples added to the repository by specifying
the --add-to-repo option true.

In the plain output information is provided about how many
data graphs are examined, how many shape graphs were specified
and node shapes are found, and how many focus nodes are
checked. If zero focus nodes are checked, that is likely not
what you want and something has gone wrong. Here we mis-spell
the name of the shape graph (https://franz.com#shapes instead
of https://franz.com#Shapes) and get 0 focus nodes checked:

% bin/agtool shacl-validate --data-graph default --shapes-
graph https://franz.com#shapes shacl-repo-1
Validation report: Conforms
Created: 2019-06-28T10:34:22
Number of shapes graphs: 1
Number of data graphs: 1
Number of NodeShapes: 0
Number of focus nodes checked: 0

SPARQL integration
There are two sets of magic properties defined: one checks for
basic conformance and the other produces validation reports as
triples:

?valid franz:shaclConforms (?dataGraph [?shapesGraph]
)
?valid franz:shaclFocusNodeConforms1 (?dataGraph
?nodeOrNodeCollection)
?valid franz:shaclFocusNodeConforms2 (?dataGraph
?shapesGraph ?nodeOrNodeCollection)
?valid franz:shaclShapeConforms1 (?dataGraph
?shapeOrShapeCollection [?nodeOrNodeCollection])
?valid franz:shaclShapeConforms2 (?dataGraph
?shapesGraph ?shapeOrShapeCollection [
?nodeOrNodeCollection])
(?s ?p ?o) franz:shaclValidationReport (?dataGraph [
?shapesGraph])
(?s ?p ?o) franz:shaclFocusNodeValidationReport1 (
?dataGraph ?nodeOrNodeCollection) .

(?s ?p ?o) franz:shaclFocusNodeValidationReport2 (
?dataGraph ?shapesGraph ?nodeOrNodeCollection) .
(?s ?p ?o) franz:shaclShapeValidationReport1 (
?dataGraph ?shapeOrShapeCollection [
?nodeOrNodeCollection]) .
(?s ?p ?o) franz:shaclShapeValidationReport2 (
?dataGraph ?shapesGraph ?shapeOrShapeCollection [
?nodeOrNodeCollection]) .

In all of the above ?dataGraph and ?shapesGraph can be IRIs,
the literal ‘default’, or a variable that is bound to a SPARQL
collection (list or set) that was previously created with a
function
like https://franz.com/ns/allegrograph/6.5.0/fn#makeSPARQLList
 or https://franz.com/ns/allegrograph/6.5.0/fn#lookupRdfList.
If a collection is used, then the SHACL processor will create
a temporary RDF merge of all of the graphs in it to produce
the data graph or the shapes graph.

Similarly, ?shapeOrShapeCollection and ?nodeOrNodeCollection c
an be bound to an IRI or a SPARQL collection. If a collection
is used, then it must be bound to a list of IRIs. The SHACL
processor will restrict validation to the shape(s) and focus
node(s) (i.e. nodes that should be validated) specified.

The shapesGraph argument is optional in both of
the shaclConforms and shaclValidationReport magic properties.
If the shapesGraph is not specified, then the shapesGraph will
be created by following triples in the dataGraph that use
the sh:shapesGraph predicate. If there are no such triples,
then the shapesGraph will be the same as the dataGraph.

For example, the following SPARQL expression

construct { ?s ?p ?o } where {
 # form a collection of focusNodes
bind(<https://franz.com/ns/allegrograph/6.6.0/fn#makeSPARQLLis
t>(
 <http://Journal1/1942/Article25>,

https://franz.com/ns/allegrograph/6.5.0/fn#makeSPARQLList
https://franz.com/ns/allegrograph/6.5.0/fn#lookupRdfList

 <http://Journal1/1943>) as ?nodes)
 (?s ?p ?o)

<https://franz.com/ns/allegrograph/6.6.0/shaclShapeValidationR
eport1>
 ('default' <ex://franz.com/documentShape1> ?nodes) .
}

would use the default graph as the Data Graph and the Shapes
Graph and then validate two focus nodes against the
shape <ex://franz.com/documentShape1>.

SHACL Example
We build on our simple example above. Start with a fresh
repository so triples from the simple example do not interfere
with this example.

We start with a TriG file with various shapes defined on some
classes.

@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix fr: <https://franz.com#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<https://franz.com#ShapesGraph> {
fr:EmployeeShape
 a sh:NodeShape ;
 sh:targetClass fr:Employee ;
 sh:property [
 ## Every employee must have exactly one ID
 sh:path fr:hasID ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:datatype xsd:string ;
 sh:pattern "^[0-9][0-9][0-9]-[0-9][0-9]-

[0-9][0-9][0-9][0-9]$" ;
] ;
 sh:property [

https://franz.com/agraph/support/documentation/current/shacl.html#simple-example

 ## Every employee is a manager or a worker
 sh:path fr:employeeType ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:datatype xsd:string ;
 sh:in ("Manager" "Worker") ;
] ;
 sh:property [
 ## If birthyear supplied, must be 2001 or before
 sh:path fr:birthYear ;
 sh:maxInclusive 2001 ;
 sh:datatype xsd:integer ;
] ;
 sh:property [
 ## Must have a title, may have more than one
 sh:path fr:hasTitle ;
 sh:datatype xsd:string ;
 sh:minCount 1 ;
] ;

 sh:or (
 ## The President does not have a supervisor
 [
 sh:path fr:hasTitle ;
 sh:hasValue "President" ;
]
 [
 ## Must have a supervisor
 sh:path fr:hasSupervisor ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:class fr:Employee ;
]
) ;

 sh:or (
 # Every employee must either have a wage or a salary
 [
 sh:path fr:hasSalary ;
 sh:datatype xsd:integer ;
 sh:minInclusive 3000 ;

 sh:minCount 1 ;
 sh:maxCount 1 ;
]
 [
 sh:path fr:hasWage ;
 sh:datatype xsd:decimal ;
 sh:minExclusive 15.00 ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
]
)
 .
 }

This file says the following about instances of the
class fr:Employee:

Every employee must have exactly one ID (object1.
of fr:hasID), a string of the form NNN-NN-NNNN where
the Ns are digits (this is the simple example
requirement).
Every employee must have exactly2.
one fr:employeeType triple with value either “Manager”
or “Worker”.
Employees may have a fr:birthYear triple, and if so, the3.
value must be 2001 or earlier.
Employees must have a fr:hasTitle and may have more than4.
one.
All employees except the one with title “President” must5.
have a supervisor (specified with fr:hasSupervisor).
Every employee must either have a wage (a decimal6.
specifying hourly pay, greater than 15.00) or a salary
(an integer specifying monthly pay, greater than or
equal to 3000).

Here is some employee data:

@prefix fr: <https://franz.com#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

{
 fr:Employee
 a rdfs:Class .

 fr:emp001
 a fr:Employee ;
 fr:hasID "000-12-3456" ;
 fr:hasTitle "President" ;
 fr:employeeType "Manager" ;
 fr:birthYear "1953"^^xsd:integer ;
 fr:hasSalary "10000"^^xsd:integer .

 fr:emp002
 a fr:Employee ;
 fr:hasID "000-56-3456" ;
 fr:hasTitle "Foreman" ;
 fr:employeeType "Worker" ;
 fr:birthYear "1966"^^xsd:integer ;
 fr:hasSupervisor fr:emp003 ;
 fr:hasWage "20.20"^^xsd:decimal .

 fr:emp003
 a fr:Employee ;
 fr:hasID "000-77-3232" ;
 fr:hasTitle "Production Manager" ;
 fr:employeeType "Manager" ;
 fr:birthYear "1968"^^xsd:integer ;
 fr:hasSupervisor fr:emp001 ;
 fr:hasSalary "4000"^^xsd:integer .

 fr:emp004
 a fr:Employee ;
 fr:hasID "000-88-3456" ;
 fr:hasTitle "Fitter" ;
 fr:employeeType "Worker" ;
 fr:birthYear "1979"^^xsd:integer ;
 fr:hasSupervisor fr:emp002 ;
 fr:hasWage "17.20"^^xsd:decimal .

 fr:emp005
 a fr:Employee ;
 fr:hasID "000-99-3492" ;
 fr:hasTitle "Fitter" ;
 fr:employeeType "Worker" ;
 fr:birthYear "2000"^^xsd:integer ;
 fr:hasWage "17.20"^^xsd:decimal .

 fr:emp006
 a fr:Employee ;
 fr:hasID "000-78-5592" ;
 fr:hasTitle "Filer" ;
 fr:employeeType "Intern" ;
 fr:birthYear "2003"^^xsd:integer ;
 fr:hasSupervisor fr:emp002 ;
 fr:hasWage "14.20"^^xsd:decimal .

 fr:emp007
 a fr:Employee ;
 fr:hasID "000-77-3232" ;
 fr:hasTitle "Sales Manager" ;
 fr:hasTitle "Vice President" ;
 fr:employeeType "Manager" ;
 fr:birthYear "1962"^^xsd:integer ;
 fr:hasSupervisor fr:emp001 ;
 fr:hasSalary "7000"^^xsd:integer .
 }

Comparing these data with the requirements, we see these
problems:

emp005 does not have a supervisor.1.
emp006 is pretty messed up, with (1) employeeType2.
“Intern”, not an allowed value, (2) a birthYear (2003)
later than the required maximum of 2001, and (3) a wage
(14.40) less than the minimum (15.00).

Otherwise the data seems OK.

We load these two TriG files into an emply repository (which
we have named shacl-repo-2). We specify the default graph for

the data and the https://franz.com#ShapesGraph for the shapes.
(Though not required, it is a good idea to specify a graph for
shape data as it makes it easy to delete and reload shapes
while developing.) We have 101 triples, 49 data and 52 shape.
Then we run agtool shacl-validate:

% bin/agtool shacl-validate --shapes-graph
https://franz.com#ShapesGraph --data-graph default shacl-
repo-2

There are four violations, as expected, one for emp005 and
three for emp006.

Validation report: Does not conform
Created: 2019-07-03T11:35:27
Number of shapes graphs: 1
Number of data graphs: 1
Number of NodeShapes: 1
Number of focus nodes checked: 7

4 validation results:
Result:
 Focus node: <https://franz.com#emp005>
 Value: <https://franz.com#emp005>
 Source Shape: <https://franz.com#EmployeeShape>

 Constraint Component:
<https://www.w3.org/ns/shacl#OrConstraintComponent>
 Severity: <https://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp006>
 Path: <https://franz.com#employeeType>
 Value: "Intern"
 Source Shape: _:b19D062B9x221

 Constraint Component:
<http://www.w3.org/ns/shacl#InConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp006>
 Path: <https://franz.com#birthYear>

 Value:
"2003"^^<http://www.w3.org/2001/XMLSchema#integer>
 Source Shape: _:b19D062B9x225

 Constraint Component:
<http://www.w3.org/ns/shacl#MaxInclusiveConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp006>
 Value: <https://franz.com#emp006>
 Source Shape: <https://franz.com#EmployeeShape>

 Constraint Component:
<http://www.w3.org/ns/shacl#OrConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Fixing the data is left as an exercise for the reader.

Turn Customer Service Calls
into Enterprise Knowledge
Graphs
Franz’s CEO, Jans Aasman’s recent Destination CRM article:

The need for text analytics and speech recognition has
broadened over the years, becoming more prevalent and
essential in the sales, marketing, and customer service
departments of various types of businesses and industries. The
goal is simple for these contact center use cases: provide
real-time assistance to human agents interacting with
potential customers to close sales, initiate them, and
increase customer satisfaction.

Until fairly recently, the rich array of unstructured data
encompassing client texts, chats, and phone calls was obscured

https://allegrograph.com/turn-customer-service-calls-into-enterprise-knowledge-graphs/
https://allegrograph.com/turn-customer-service-calls-into-enterprise-knowledge-graphs/
https://allegrograph.com/turn-customer-service-calls-into-enterprise-knowledge-graphs/
https://www.gartner.com/it-glossary/speech-recognition/

from contact centers and organizations due to the sheer
arduousness of speech recognition and text analytics. When
readily integrated into knowledge graphs, however, these same
sources become some of the most credible for improving agent
interactions and achieving business objectives.

Powered by the shrewd usage of organizational taxonomies,
machine learning, natural language processing (NLP), and
semantic search, knowledge graphs make speech recognition and
text analytics immediately accessible, enabling real-time
customer interactions that can maximize business
objectives—and revenues.

Taxonomies
Taxonomies are the foundation of the knowledge graph approach
to rapidly conveying results of speech recognition and text
analytics for timely customer interactions. Agents need three
types of information to optimize customer interactions: their
personas (such as an executive or a purchase department
representative, for example), their reasons for contacting
them, and their industries. Taxonomies are instrumental to
performing these functions because they provide a hierarchy of
relevant terms to organizations.

Read the full article at Destination CRM

AllegroGraph Named to DBTA
Top 100 That Matter Most in

https://go.forrester.com/blogs/use-text-analytics-technologies-to-handle-mountains-of-unstructured-data/
https://go.forrester.com/blogs/use-text-analytics-technologies-to-handle-mountains-of-unstructured-data/
https://www.destinationcrm.com/Articles/Web-Exclusives/Viewpoints/Turn-Customer-Service-Calls-into-Enterprise-Knowledge-Graphs-133284.aspx
https://allegrograph.com/allegrograph-named-to-dbta-top-100-that-matter-most-in-data/
https://allegrograph.com/allegrograph-named-to-dbta-top-100-that-matter-most-in-data/

Data
Franz Inc., an early innovator in Artificial Intelligence (AI)
and leading supplier of Graph and Document Database technology
for Knowledge Graphs, today announced that it has been named
to Database Trends and Applications (DBTA) – 2019 Top 100 That
Matter Most in Data.

“We’re excited to announce our seventh annual list, as the
industry continues to grow and evolve,” remarked Thomas Hogan,
Group Publisher at Database Trends and Applications. “Today,
more than ever, businesses are looking to increase their
efficiency, agility and ability to innovate by managing and
leveraging data in new and novel ways. This list seeks to
highlight those companies that have been successful in
establishing themselves as unique resources for data
professionals and stakeholders.”

“We are honored to receive this acknowledgement for our
efforts in delivering Enterprise Knowledge Graph Solutions,”
said Dr. Jans Aasman, CEO, Franz Inc. “In the past year, we
have seen demand for Enterprise Knowledge Graphs take off
across industries along with recognition from top technology
analyst firms that Knowledge Graphs provide the critical
foundation for artificial intelligence applications and
predictive analytics. Our AllegroGraph Knowledge Graph
Platform Solution offers a unique comprehensive approach for
helping companies accelerate the creation of Enterprise
Knowledge Graphs that deliver new value to their
organization.”

Franz’s Knowledge Graph Platform Solution includes both
technology and services for building industrial strength
Knowledge Graphs based on best-of-class tools, products,
knowledge, skills and experience. At the core of the solution
is Franz’s graph database technology, AllegroGraph, which is
utilized by dozens of the top F500 companies worldwide and

https://allegrograph.com/allegrograph-named-to-dbta-top-100-that-matter-most-in-data/
http://www.dbta.com/Magazine/Database-Trends-and-Applications-Magazine-June-July-2019-Issue-9074.aspx
http://www.dbta.com/Magazine/Database-Trends-and-Applications-Magazine-June-July-2019-Issue-9074.aspx
https://en.wikipedia.org/wiki/Jans_Aasman

enables businesses to extract sophisticated decision insights
and predictive analytics from highly complex, distributed data
that cannot be uncovered with conventional databases.

Franz delivers the expertise for designing ontology and
taxonomy-based solutions by utilizing standards-based
development processes and tools. Franz also offers data
integration services from siloed data using W3C industry
standard semantics, which can then be continually integrated
with information that comes from other data sources. In
addition, the Franz data science team provides expertise in
custom algorithms to maximize data analytics and uncover
hidden knowledge.

Companies Across the Globe Use Franz Knowledge Graph Solutions

Organizations in customer service, healthcare, life science,
publishing and technology have relied on Franz to help develop
their knowledge graph solutions.

Global B2B technology firm N3 Results has utilized Franz’s
Knowledge Graph Solution to build an ‘Intelligent Sales
Organization,’ which uses graph based technology for taxonomy
driven entity extraction, speech recognition, machine learning
and predictive analytics to improve quality of conversations,
increase sales and improve business visibility.

“In a typical sales organization, the valuable content within
the online chat or voice conversation between the agent and
customer goes into a black hole,” said Shannon Copeland, COO
of N3. “Franz helped us build a modern Intelligent Sales
Organization (ISO) by creating a real-time Knowledge Graph
that knows everything about customers and agents and provides
the raw data for machine learning to improve doing the
business of ISO. Now we use the rich information between
agents and customers to improve the quality of the interaction
in real time, which ultimately creates more sales and provides
far better analytics for management.”

https://allegrograph.com/consulting

In 2015, Dr. Parsa Mirhaji, his colleagues and industry
partners, including Franz Inc. embarked on a project to bring
Knowledge Graph technology to Montefiore, a Bronx-based
medical center. “Our strategy at Montefiore is to build a
data-driven and evidence-based health system – essentially a
learning healthcare system – that can understand its own
population thoroughly, understand and improve its practices,
and develop the highest quality of services for the people it
serves,” said Parsa Mirhaji, MD, PhD, Director of the Center
for Health Data Innovations at Montefiore and the Albert
Einstein College of Medicine. “In order to accomplish that
goal, we have created a system that harvests every piece of
data that we can possibly find, from our own EMRs and devices
to patient-generated data to socioeconomic data from the
community. It’s extremely important to use anything we can
find that can help us categorize our patients more
accurately.” (Health IT Analytics, At Montefiore, Artificial
Intelligence Becomes Key to Patient Care, September 10, 2018)

Wolters Kluwer is using graph analytic techniques to
accelerate the knowledge discovery process for its clients.
“What we’re really interested in is achieving insights that
today take a person to analyze and that are prohibitive
computationally,” said Greg Tatham, Wolters Kluwer CTO of
Global Platforms. “We’re providing this live feedback. As
you’re typing, we’re providing question and suggestions for
you live. AllegroGraph gives us a performant way to be able to
just work our way through the whole knowledge model and come
up with suggestions to the user in real time.” (Datanami, How
AI Boosts Human Expertise at Wolters Kluwer, June 6, 2018)

Gartner Identifies Knowledge Graphs and Semantics as Key
Technologies for AI
Gartner recently recognized knowledge graphs as a key new
technology in both their Hype Cycle for Artificial
Intelligence and Hype Cycle for Emerging Technologies.
Gartner’s Hype Cycle for Artificial Intelligence 2018 states,

“The rising role of content and context for delivering
insights with AI technologies, as well as recent knowledge
graph offerings for AI applications have pulled knowledge
graphs to the surface.”

Semantics has also been identified by Gartner as critical for
effectively utilizing enterprise data assets. “Unprecedented
levels of data scale and distribution are making it almost
impossible for organizations to effectively exploit their data
assets. Data and analytics leaders must adopt a semantic
approach to their enterprise data assets or face losing the
battle for competitive advantage.” (Gartner, How to Use
Semantics to Drive the Business Value of Your Data, Guido De
Simoni, November 27, 2018) For more information about the
Gartner report, visit the Gartner Report Order Page.

About Franz Inc.
Franz Inc. is an early innovator in Artificial Intelligence
(AI) and leading supplier of Semantic Graph Database
technology with expert knowledge in developing and deploying
Knowledge Graph solutions. The foundation for Knowledge Graphs
and AI lies in the facets of semantic technology provided by
AllegroGraph and Allegro CL. The ability to rapidly integrate
new knowledge is the crux of the Knowledge Graph and Franz
Inc. provides the key technologies and services to address
your complex challenges. Franz Inc. is your Knowledge Graph
technology partner.

About Database Trends and Applications
Database Trends and Applications (DBTA), published by
Information Today, Inc., is a bimonthly magazine that delivers
advanced trends analysis and case studies in data management
and analysis developed by a team with more than 25 years of
industry experience. Visit www.dbta.com for subscription
information. DBTA also delivers groundbreaking market research
exclusively through its Unisphere Research group.

https://gtnr.it/2H5ZCyY

Gruff Time Machine Tutorial

Here is an example for trying out the new time slider in
Gruff’s graph view. It uses triples from crunchbase.com that
contain a history of corporate acquisitions and funding events
over several years. Gruff’s time bar allows you to examine
those events chronologically, and also to display only the
nodes that have events within a specified date range.

Download the Crunchbase triples from the bottom of the
Gruff
download page at
https://allegrograph.com/products/gruff/

Create a new triple-store and used “File | Load Triples
| Load
N-Triples” to load that triples file into the new
triple-store. Use
“File | Commit” to ensure that the loaded triples get
saved.

Select “Visual Graph Options | Time Bar | Momentary Time
Predicates”
and paste the following five predicate IRIs into the
dialog that
appears. The time bar will then work with the date
properties that
are provided by these predicates, whenever you are
browsing this

https://allegrograph.com/gruff-time-machine-tutorial/
https://allegrograph.com/products/gruff/

particular triple-store.

http://www.franz.com/hasfunded_at
http://www.franz.com/hasfirst_funding_at
http://www.franz.com/hasfounded_at
http://www.franz.com/haslast_funding_at
http://www.franz.com/hasacquired_at

Select “View | Optional Graph View Panes | Show Time
Bar” to reveal
the time bar at the bottom of the graph view. The
keyboard shortcut
for this command is Shift+A to allow quickly toggling
the time bar
on and off.

Select “Display | Display Some Sample Triples” to do
just that. The
time bar will now display a vertical line for each of
the requested
date properties of the displayed nodes. Moving the mouse
cursor
over these “date property markers” will display more
information
about those events.

Click down on the yellow-orange rectangle at the right
end of the
time bar and drag it to the left. This will make the
“time filter
range” smaller, and nodes that have date properties that
are no
longer in this range will temporarily disappear from the
display.
They will reappear if you drag the slider back to the

right or
toggle the time bar back off.

For more information, the full time bar introduction is in the
Gruff documentation under the command “View | Optional Graph
View Panes | Show Time Bar”.

Check out the “Chart Widget” for showing date properties of
the visible nodes.

Why Smart Cities Need AI
Knowledge Graphs
A linked data framework can empower smart cities to realize
social, political, and financial goals.

Smart cities are projected to become one of the
most prominent manifestations of the Internet of
Things (IoT). Current estimates for the emerging
smart city market exceed $40 trillion, and San
Jose, Barcelona, Singapore, and many other major

metropolises are adopting smart technologies.

The appeal of smart cities is binary. On the one hand, the
automated connectivity of the IoT is instrumental in reducing
costs associated with public expenditures for infrastructure
such as street lighting and transportation. With smart
lighting, municipalities only pay for street light expenses
when people are present. Additionally, by leveraging options
for dynamic pricing with smart parking, for example, the

https://allegrograph.com/why-smart-cities-need-ai-knowledge-graphs/
https://allegrograph.com/why-smart-cities-need-ai-knowledge-graphs/

technology can provide new revenue opportunities.

Despite these advantages, smart cities demand extensive data
management. Consistent data integration from multiple
locations and departments is necessary to enable
interoperability between new and legacy systems. Smart cities
need granular data governance for long-term sustainability.
Finally, they necessitate open standards to future-proof their
perpetual utility.

Knowledge graphs—enterprise-wide graphs which link all data
assets for internal or external use—offer all these benefits
and more. They deliver a uniform, linked framework for sharing
data in accordance with governance protocols, are based on
open standards, and exploit relationships between data for
business and operational optimization. They supply everything
smart cities need to realize their social, political, and
financial goals. Knowledge graphs can use machine learning to
reinsert the output of contextualized analytics into the
technology stack, transforming the IoT’s copious data into
foundational knowledge to spur improved civic applications.

Read the full article at Trajectory Magazine

http://trajectorymagazine.com/smart-cities-need-ai-knowledge-graphs/

New Gruff v7.4 – Now
Available!
DOWNLOAD – Gruff

Gruff is the Knowledge Graph industry’s leading Graph
Visualization software for exploring and discovering
connections within data. Gruff provides novice users and graph
experts the ability to visually build queries and explore
connections as they developed over time.

Gruff produces dynamic data visualizations that organize
connections between data in views that are driven by the user.
This visual flexibility can instantly unveil new discoveries
and knowledge that turn complex data into actionable business
insights. Gruff was developed by Franz to address Graph Search
in large data sets and empower users to intelligently explore
graphs in multiple views including:

Graphical View with “Time Machine” feature – See the
shape and density of graph data evolve over time
Tabular view – Understand objects as a whole
Outline view – Explore the often hierarchical nature of
graphs
Query view – Write Prolog or SPARQL queries
Graphical Query Builder – Create queries visually via
drag and drop

Gruff’s ‘Time Machine’ feature provides users an important
capability to explore temporal connections in your data.
Users can see how relationships are created over time and are
able to replay the evolving graph for new temporal based
insights.

https://allegrograph.com/new-gruff-v7-4-now-available/
https://allegrograph.com/new-gruff-v7-4-now-available/
https://allegrograph.com/downloads/

Key New Features and Updates in Gruff v7.4 – To see the full
list – Release Notes.

The new command “File | Connect to Gruff Demo Server”
lets you try out Gruff on the “extended actors” database
at a public AllegroGraph server that’s provided by
Franz, when you don’t have an AllegroGraph server
yourself. See the Example button in the query view and
in the graphical query view for a few example queries.
“Help | Animated Demo” also works there.
The graphical query view has new grouper boxes for graph
group graph pattens, either for a particular graph or
for a graph variable.
The graphical query view now has node filters for the
SPARQL operators IN and NOT IN (for limiting a node
variable to a particular set of values), for langMatches
(for selecting only literals of a particular language),
and for CONTAINS, STRSTARTS, and STRENDS (for finding
literals that contain specified text). Also, the “bound”
and “not bound” filters were broken, and the LIMIT and
OFFSET values will now be included when saving a
graphical query.
Gruff can now connect to AllegroGraph servers through an
HTTP proxy (as was possible with SPARQL endpoints
already). See Global Options | Communications | HTTP
Proxy.
Additional triple file formats can now be loaded with
the new commands “File | Load Triples | Load JSON-LD”,
“Load TriG”, and “Load N-Quads Extended”. Corresponding
new commands are also on the “File | Export Displayed
Data As” child menu. Also, the new command “Global
Options | Miscellaneous | Commit Frequency When Loading
Triples” lets you control whether and how often commits
will happen during loading.
The query view’s “Create Visual Graph” button will now
create link lines for additional SPARQL property path
operators, namely InversePath (^) and AlternativePath

https://franz.com/agraph/support/documentation/current/gruff.html#ReleaseNotes

(|). And it will draw the correct character for
ZeroOrOnePath (?). (See “Query Options | Show Links
for Property Paths in Visual Graphs” for turning this
off.)
If the triple store defines label properties for
predicates, then Gruff will now display those labels for
the predicate objects as it has always done for nodes,
as long as “Global Options | Node Label Predicates | Use
Label Predicates for Node Labels” is on.
When “Visual Graph Options | Node Labels | Show Full
URIs on Nodes” is on, full URIs will be also displayed
for the predicates in link labels. And full URIs will be
shown in the legend as well.

Gruff Documentation

https://franz.com/agraph/support/documentation/current/gruff.html

