
Natural  Language  Processing
and  Machine  Learning  in
AllegroGraph
The majority of our customers build Knowledge Graphs with
Natural Language and Machine learning components. Because of
this trend AllegroGraph now offers strong support for the use
of Natural Language Processing and Machine learning.

Franz Inc has a team of NLP engineers and Taxonomy experts
that can help with building turn-key solutions. In general
however, our customers already have some expertise in house.
In those cases we train customers in how to take the output of
NLP  and  ML  processing  and  turn  that  into  an  efficient
Knowledge Graph based on best practices in the industry.

This  document  primarily  describes  the  NLP  and  ML  plug-in
AllegroGraph.

Note that many enterprises already have a data science team
with NLP experts that use modern open source NLP tools like
Spacy, Gensim or Polyglot, or Machine Learning based NLP tools
like BERT and Scikit-Learn. In another blog about Document
Handling we describe a pipeline of how to deal with NLP in
Document Knowledge Graphs by using our NLP and ML plugin and
mix that with open source tools.

PlugIn features for Natural Language Processing and Machine
Learning in AllegroGraph.

Here is the outline of the plugin features that we are going
to describe in more detail.

Machine learning

data acquisition
classifier training
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feature extraction support
performance analysis
model persistence

NLP

handling languages
handling dictionaries
tokenization
entity extraction
Sentiment analysis
basic pattern matching

SPARQL Access

Future development

 

Machine Learning

ML: Data Acquisition
Given  that  the  NLP  and  ML  functions  operate  within
AllegroGraph, after loading the plugins, data acquisition can
be performed directly from the triple-store, which drastically
simplifies the data scientist workflow. However, if the data
is not in AllegroGraph yet we can also import it directly from
ten  formats  of  triples  or  we  can  use  our  additional
capabilities  to  import  from  CSV/JSON/JSON-LD.

Part of the Data Acquisition is also that we need to pre-
process  the  data  for  training  so  we  provide  these  three
functions:

prepare-training-data
split-dev-test
equalize (for resampling)

Machine Learning: Classifiers

Currently we provide simple linear classifiers. In case



there’s  a  need  for  neural  net  or  other  advanced
classifiers,  those  can  be  integrated  on-demand.
We  also  provide  support  for  online  learning  (online
machine learning is an ML method in which data becomes
available in a sequential order and is used to update
the best predictor for future data at each step, as
opposed to batch learning techniques which generate the
best predictor by learning on the entire training data
set at once). This feature is useful for many real-world
data sets that are constantly updated.
The  default  classifiers  available  are  Averaged
Perceptron and AROW

Machine Learning: Feature Extraction

Each classifier is expecting a vector of features: either
feature  indices  (indicative  features)  or  pairs  of  numbers
(index – value). These are obtained in a two-step process:

1. A classifier-specific extract-features method should be
defined that will return raw feature vector with features
identified  by  strings  of  the  following  form:
prefix|feature.

The prefix should be provided as a keyword argument to the
collect-features method call, and it is used to distinguish
similar features from different sources (for instance, for
distinct predicates).

2. Those features will be automatically transformed to
unique  integer  ids.  The  resulting  feature  vector  of
indicator features may look like the following: #(1 123
2999 …)

Note that these features may be persisted to AllegroGraph for
repeated  re-use  (e.g.  for  experimenting  with  classifier
hyperparameter tuning or different classification models).

Many possible features may be extracted from data, but there



is a set of common ones, such as:

1. individual tokens of the text field
2. ngrams (of a specified order) of the text field
3. presence of a token in a specific dictionary (like, the
dictionary of slang words)
4. presence/value of a certain predicate for the subject of
the current triple
5. length of the text

And in case the user has a need for special types of tokens we
can write specific token methods, here is an example (in Lisp)
that produces an indicator feature of a presence of emojis in
the text:

(defmethod collect-features ((method (eql :emoji)) toks &key
pred)
(dolist (tok toks)
(when (some #'(lambda (code)
  (or (<= #x1F600 code #x1F64F)
      (<= #x1F650 code #x1F67F)
      (<= #x1F680 code #x1F6FF)))
   (map 'vector #'char-code tok))
(return (list "emoji")))))

 

Machine Learning: Integration with Spacy

The NLP and ML community invents new features and capabilities
at an incredible speed. Way faster than any database company
can keep up with. So why not embrace that? Whenever we need
something that we don’t have in AllegroGraph yet we can call
out to Spacy or any other external NLP tool. Here is an
example of using feature extraction from Spacy to collect
indicator features of the text dependency parse relations:

(defmethod  collect-features  ((method  (eql  :dep))  deps  &key
pred dep-type dep-labels)
 (loop :for ds :in deps :nconc
  (loop :for dep :in ds



   :when (and (member (dep-tag dep) dep-labels)
              (dep-head dep)
              (dep-tok dep))
    :collect (format nil "dep|~a|~a_~a"
              dep-type
              (tok-word (dep-head dep)
              (tok-word (dep-tok dep))))))

The demonstrated integration uses Spacy Docker instance and
its HTTP API.

Machine Learning: Classifier Analysis

We provide all the basic tools and metrics for classifier
quality analysis:

accuracy
f1, precision, recall
confusion matrix
and an aggregated classification report

 

Machine Learning: Model Persistence

The idea behind model persistence is that all the data can be
stored  in  AllegroGraph,  including  features  and  classifier
models. AllegroGraph stores classifiers directly as triples.
This is a far more robust and language-independent approach
than  currently  popular  among  data  scientists  reliance  on
Python  pickle  files.  For  the  storage  we  provide  a  basic
triple-based format, so it is also possible to interchange the
models using standard RDF data formats.

The biggest advantage of this approach is that when adding
text to AllegroGraph we don’t have to move the data externally
to perform the classification but can keep the whole pipeline
entirely internal.

 



Natural Language Procession (NLP)

NLP: Language Packs

Most of the NLP tools are language-dependent: i.e. there’s a
general function that uses language-specific model/rules/etc.
In AllegroGraph, support for particular languages is provided
on-demand and all the language-specific is grouped in the so
called “language pack” or langpack, for short – a directory
with a number of text and binary files with predefined names.

Currently,  the  langpack  for  English  is  provided  at
nlp/langs/en.zip,  with  the  following  files:

contractions.txt – a dictionary of contractions
abbrs.txt – a dictionary of abbreviations
stopwords.txt – a dictionary of stopwords
pos-dict.txt – positive sentiment words
neg-dict.txt – negative sentiment words
word-tok.txt – a list of word tokenization rules

Additionally,  we  use  a  general  dictionary,  a  word-form
dictionary (obtained from Wiktionary), and custom lexicons.

Loading a langpack for a particular language is performed
using load-langpack.

Creating a langpack is just a matter of adding the properly
named files to the directory and can be done manually. The
names of the files should correspond to the names of the
dictionary variables that will be filled by the pack. The
dictionaries that don’t have a corresponding file will be just
skipped.We have just finished creating a langpack for Spanish
and  it  will  be  published  soon.  In  case  you  need  other
dictionaries  we  use  our  AG/Spacy  infrastructure.  Spacy
recently added a comprehensive list of new languages:



 

NLP: Dictionaries

Dictionaries are read from the language packs or other sources
and  are  kept  in  memory  as  language-specific  hash-tables.
Alongside support for storing the dictionaries as text files,
there are also utilities for working with them as triples and
putting them into the triple store.

Note that we at Franz Inc specialize in Taxonomy Building
using various commercial taxonomy building tools. All these
tools  can  now  export  these  taxonomies  as  a  mix  of  SKOS
taxonomies and OWL. We have several functions to read directly
from these SKOS taxonomies and turn them into dictionaries
that support efficient phrase-level lookup.

NLP: Tokenization

Tokenization  is  performed  using  a  time-proven  rule-based
approach. There are 3 levels of tokenization that have both a
corresponding specific utility function and an :output format
of the tokenize function:

:parags – splits the text into a list of lists of tokens
for paragraphs and sentences in each paragraph
:sents – splits the text into a list of tokens for each
sentence
:words – splits the text into a plain list of tokens

Paragraph-level tokenization considers newlines as paragraph
delimiters.  Sentence-level  tokenization  is  geared  towards



western-style  writing  that  uses  dot  and  other  punctuation
marks to delimit sentences. It is, currently, hard-coded, but
if the need arises, additional handling may be added for other
writing systems. Word-level tokenization is performed using a
language-specific set of rules.

NLP: Entity Extraction

Entity extraction is performed by efficient matching (exactly
or fuzzy) of the token sequences to the existing dictionary
structure.

It is expected that the entities come from the triple store
and there’s a special utility function that builds lookup
dictionaries from all the triples of the repository identified
by certain graphs that have a skos:prefLabel or skos:altLabel
property.  The  lookup  may  be  case-insensitive  with  the
exception of abbreviations (default) or case-sensitive.

Similar  to  entity  extraction,  there’s  also  support  for
spotting  sentiment  words.  It  is  performed  using  the
positive/negative words dictionaries from the langpack.

One feature that we needed to develop for our customers is
‘heuristic entity extraction’ . In case you want to extract
complicated  product  names  from  text  or  call-center
conversations between customers and agents you run into the
problem that it becomes very expensive to develop altLabels in
a taxonomy tool. We created special software to facilitate the
automatic creation of altlabels.

NLP:  Basic  Pattern  Matching  for  relationship  and  event
detection

Getting  entities  out  of  text  is  now  well  understood  and
supported by the software community. However, to find complex
concepts or relationships between entities or even events is
way harder and requires a flexible rule-based pattern matcher.
Given our long time background in Lisp and Prolog one can



imagine we created a very powerful pattern matcher.

SPARQL Access

Currently all the features above can be controlled as stored
procedures or using Lisp as the command language. We have a
new (beta) version that uses SPARQL for most of the control.
Here are some examples. Note that fai is a magic-property
namespace for “AI”-related stuff and inc is a custom namespace
of an imaginary client:

1. Entity extraction

select ?ent {
   ?subj fai:entityTaxonomy inc:products .
   ?subj fai:entityTaxonomy inc:salesTerms .
   ?subj fai:textPredicate inc:text .
   ?subj  fai:entity(fai:language  "en",  fai:taxonomy
inc:products)  ?ent  .
}

The expressions ?subj fai:entityTaxonomy inc:poducts and ?subj
fai:entityTaxonomy inc:salesTerms specify which taxonomies to
use (the appropriate matchers are cached).
The expression ?subj fai:entity ?ent will either return the
already  extracted  entities  with  the  specified  predicate
(fai:entity) or extract the new entities according to the
taxonomies in the texts accessible by fai:textPredicate.

2. fai:sentiment will return a single triple with sentiment
score:

select ?sentiment {
   ?subj fai:textPredicate inc:text .
   ?subj fai:sentiment ?sentiment .
   ?subj fai:language "en" .
   ?subj fai:sentimentTaxonomy franz:sentiwords .
}

 



3. Text classification:
Provided inc:customClassifier was already trained previously,
this query will return labels for all texts as a result of
classification.

select ?label {
?subj fai:textPredicate inc:text .
?subj fai:classifier inc:customClassifier .
?subj fai:classify ?label .
?label fai:storeResultPredicate inc:label .
}

 

Further Development
Our team is currently working on these new features:

A more accessible UI (python client & web) to facilitate
NLP and ML pipelines
Addition of various classifier models
Sequence classification support (already implemented for
a customer project)
Pre-trained  models  shipped  with  AllegroGraph  (e.g.
English NER)
Graph ML algorithms (deepwalk, Google Expander)
Clustering algorithms (k-means, OPTICS)

 

 

 



Document  Knowledge  Graphs
with NLP and ML
A core competency for Franz Inc is turning text and documents
into Knowledge Graphs (KG) using Natural Language Processing
(NLP) and Machine Learning (ML) techniques in combination with
AllegroGraph. In this document we discuss how the techniques
described in [NLP and ML components of AllegroGraph] can be
combined  with  popular  software  tools  to  create  a  robust
Document Knowledge Graph pipeline.

We have applied these techniques for several Knowledge Graphs
but  in  this  document  we  will   primarily  focus  on  three
completely different examples that we summarize below. First
is the Chomsky Legacy Project where we have a large set of
very dense documents and very different knowledge sources,
Second is a knowledge graph for an intelligent call center
where we have to deal with high volume dynamic data and real-
time  decision  support  and  finally,   a  large  government
organization where it is very important that people can do a
semantic search against documents and policies that steadily
change over time and where it is important that you can see
the history of documents and policies.

Example [1] Chomsky Knowledge Graph
The Chomsky Legacy Project is a project run by a group of
admirers of Noam Chomsky with the primary goal to preserve all
his  written  work,  including  all  his  books,  papers  and
interviews but also everything written about him. Ultimately
students, researchers, journalists, lobbyists, people from the
AI community, and linguists can all use this knowledge graph
for their particular goals and questions.

The biggest challenges for this project are finding causal
relationships  in  his  work  using  event  and  relationship
extraction.  A  simple  example  we  extracted  from  an  author
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quoting  Chomsky  is  that  neoliberalism  ultimately  causes
childhood death.

Example 2: N3 Results and the Intelligent Call Center
This is a completely different use case (See a recent KMWorld
Articlehttps://allegrograph.com/knowledge-graphs-enhance-custo
mer-experience-through-speed-and-accuracy/).  Whereas  the
previous use case was very static, this one is highly dynamic.
We  analyze  in  real-time  the  text  chats  and  spoken
conversations between call center agents and customers. Our
knowledge graph software provides real-time decision support
to make the call center agents more efficient. N3 Results
helps big tech companies to sell their high tech solutions,
mostly cloud-based products and services but also helps their
clients sell many other technologies and services.

The main challenge we tackle is to really deeply understand
what the customer and agent are talking about. None of this
can be solved by only simple entity extraction but requires
elaborate rule-based and machine learning techniques. Just to
give a few examples. We want to know if the agent talked about
their most important talking points: that is, did the agent
ask if the customer has a budget, or the authority to make a
decision or a timeline about when they need the new technology
or whether they actually have expressed their need. But also
whether the agent reached the right person, and whether the
agent talked about the follow-up. In addition, if the customer



talks about competing technology we need to recognize that and
provide the agent in real-time with a battle card specific to
the competing technology. And in order to be able to do the
latter, we also analyzed the complicated marketing materials
of the clients of N3.

Example 3: Complex Government Documents
Imagine a regulatory body with tens of thousands of documents.
Where nearly every paragraph has reference to other paragraphs
in the same document or other documents and the documents
change over time. The goal here is to provide the end-users in
the government with the right document given their current
task at hand. The second goal is to keep track of all the
changes  in  the  documents  (and  the  relationship  between
documents) over time.

The Document to Knowledge Graph Pipeline





Let us first give a quick summary in words of how we turn
documents into a Knowledge Graph.

[1] Taxonomy Creation

Taxonomy of all the concepts important to the business using
open  source  or  commercial  taxonomy  builders.  An  available
industry taxonomy is a good starting point for additional
customizations.

[2] Document Preparation

We then take a document and turn it into an intermediate XML
using  Apache  Tika.  Apache  Tika  supports  more  than  1000
document types and although Apache Tika is a fantastic tool,
the output is still usually not clean enough to create a graph
from, so we use Spacy rules to clean up the XML to make it as
uniform as possible.

[3] Extract Document MetaData

Most documents also contain document metadata (author, date,
version, title, etc) and Apache Tika will also deliver the
metadata for a document as a JSON object.

[4] XML to Triples

Our tools ingest the XML and metadata and transform that into
a graph-based document tree. The document is the root and from
that, it branches out into chapters, optionally sections, all
the way down to paragraphs. The ultimate text content is in
the  paragraphs.  In  the  following  example  we  took  the  XML
version of Noam Chomsky’s book Media Control and turned that
into a tree. The following shows a tiny part of that tree. We
start with the Media Control node, then we show three (of the
11)  chapters,  for  one  chapter  we  show  three  (of  the  6)
paragraphs,  and  then  we  show  the  actual  text  in  that
paragraph. We sometimes can go even deeper to the level of
sentences and tokens but for most projects that is overkill.



[5] Entity Extractor

AllegroGraph’s entity extractor takes as input the text of
each paragraph in the document tree and one or more of the
taxonomies  and  returns  recognized  SKOS  concepts  based  on
prefLabels and altLabels. AllegroGraph’s entity extractor is
state of the art and especially powerful when it comes to
complex terms like product names. We find that in our call
center a technical product name can sometimes have up to six
synonyms  or  very  specific  jargon.  For  example  the  Cisco
product Catalyst 9000 will also be abbreviated as the cat 9k.
Instead of developing altLabels for every possible permutation
that human beings *will* use, we have specialized heuristics
to optimize the yield from the entity extractor. The following
picture shows 4 (of the 14) concepts discovered in paragraph
16. Plus one person that was extracted by IBM’s NLU.



[6] Linked Data Enrichment



In many use cases, AllegroGraph can link extracted entities to
concepts in the linked data cloud. The most prominent being
DBpedia, wikidata, the census database, GeoNames, but also
many Linked Open Data repositories. One tool that is very
useful  for  this  is  IBM’s  Natural  Language  Understanding
program but there are others available. In the following image
we see that the Nelson Mandela entity (Red) is linked to the
dbpedia entity for Nelson Mandela and that then links to the
DBpedia itself. We extracted some of his spouses and a child
with their pictures.

[7] Complex Relationship and Event Extraction

Entity extraction is a first good step to ‘see’ what is in
your documents but it is just the first step. For example: how
do you find in a text whether company C1 merged with company
C2. There are many different ways to express the fact that a
company fired a CEO. For example: Uber got rid of Kalanick,
Uber and Kalanick parted ways, the board of Uber kicked out
the CEO, etc. We need to write explicit symbolic rules for
this or we need a lot of training data to feed a machine
learning algorithm.

[8] NLP and Machine Learning



There are many many AI algorithms that can be applied in
Document  Knowledge  Graphs.  We  provide  best  practices  for
topics like:

[a]  Sentiment  Analysis,  using  good/bad  word  lists  or
training data.
[b]  Paragraph  or  Chapter  similarity  using  statistical
techniques like Gensim similarity or symbolic techniques
where we just the overlap of recognized entities as a
function of the size of a text.
[c]  Query  answering  using  word2vec  or  more  advanced
techniques like BERT
[d] Semantic search using the hierarchy in SKOS taxonomies.
[e] Summarization techniques for Abstractive or Extractive
abstracts using Gensim or Spacy.

[9] Versioning and Document tracking

Several of our customers with Document Knowledge Graphs have
noted the one constant in all of these KGs is that documents
change over time. As part of our solution, we have created
best practices where we deal with these changes. A crucial
first step is to put each document in its own graph (i.e. the
fourth element of every triple in the document tree is the
document id itself). When we get a new version of a document
the document ID changes but the new document will point back
to the old version. We then compute which paragraphs stayed
the same within a certain margin (there are always changes in
whitespace) and we materialize what paragraphs disappeared in
the new version and what new paragraphs appeared compared to
the previous version. Part of the best practice is to put the
old version of a document in a historical database that at all
times can be federated with the ‘current’ set of documents.

Note that in the following picture we see the progression of a
document. On the right hand side we have a newer version of a
document 1100.161 with a chapter -> section -> paragraph ->
contents where the content is almost the same as the one in



the  older  version.  But  note  that  the  newer  one  spells
‘decision making’ as one word whereas the older version said
‘decision-making’. Note that also the chapter titles and the
section titles are almost the same but not entirely. Also,
note that the new version has a back-pointer (changed-from) to
the older version.

[10] Statistical Relationships

One important analytic one can do on documents is to look at
the co-occurrence of terms. Although, given that certain words
might occur more frequently in text, we have to correct the
co-occurrence between words for the frequency of the two terms
in  a  co-occurrence  to  get  a  better  idea  of  the
‘surprisingness’  of  a  co-occurrence.  The  platform  offers
several techniques in Python and Lisp to compute these co-
occurrences. Note that in the following picture we computed
the odds ratios between recognized entities and so we see in



the following gruff picture that if Noam Chomsky talks about
South Africa then the chances are very high he will also talk
about Nelson Mandela.

The Knowledge Graph Cookbook
Recipes for Knowledge Graphs that Work:

Learn why and how to build knowledge graphs that help
enterprises  use  data  to  innovate,  create  value  and
increase  revenue.  This  practical  manual  is  full  of
recipes and knowledge on the subject.
Learn more about the variety of applications based on
knowledge graphs.
Learn how to build working knowledge graphs and which
technologies to use.
See how knowledge graphs can benefit different parts of
your organization.

https://allegrograph.com/the-knowledge-graph-cookbook/


Get ready for the next generation of enterprise data
management tools.

 

Dr. Jans Aasman, CEO, Franz Inc. is interviewed in the Expert
Opinion Section.

“KNOWLEDGE GRAPHS AREN’T WORTH THEIR NAME IF THEY DON’T
ALSO LEARN AND BECOME SMARTER DAY BY DAY” – Dr. Aasman

 

Click here to get the book as free PDF or Kindle version.

 

https://www.poolparty.biz/resources/the-knowledge-graph-cookbook-resource/


Important  Update  to  Franz
Inc.’s Customers and Partners
COVID-19 is having a dramatic impact on people, communities,
and businesses around the world. Our thoughts are with those
who  have  been  affected  by  the  virus.  Our  team  has  spent
considerable  time  preparing  for  the  weeks  ahead  with  a
directed focus on our employees, customers, and partners.

Our  number  one  priority  is  the  health  and  safety  of  our
employees and those we do business with around the globe. We
have taken several measures to ensure everyone’s well-being,
including;  restricting  travel,  implementing  a  global  work-
from-home  policy,  and  included  COVID-19  as  top  management
agenda items for all meetings in order to closely monitor and
rapidly respond to updates.

We have also taken a number of measures to ensure that the
COVID-19 crisis does not impact the quality of your experience
with Franz Inc. As part of our Business Continuity plan, our
support team will ensure we meet our SLAs and continue to
seamlessly deliver world-class customer support.  We are also
actively developing an exciting major update to AllegroGraph
and we look forward to sharing details with you in the coming
weeks..

As always, if you have any questions or concerns, please reach
out to our global Support team via email at support@franz.com.
If your questions are related to sales or general customer
service please email info@franz.com. 

On behalf of everyone at Franz Inc., thank you for trusting us
with your business. We wish you and your families safety and
good health.

Best Wishes,

https://allegrograph.com/important-update-to-franz-inc-s-customers-and-partners/
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Jans Aasman
CEO – Franz Inc.

Answering  the  Question  Why:
Explainable AI

The  statistical  branch  of  Artificial
Intelligence  has  enamored  organizations  across
industries, spurred an immense amount of capital
dedicated  to  its  technologies,  and  entranced
numerous  media  outlets  for  the  past  couple  of

years. All of this attention, however, will ultimately prove
unwarranted unless organizations, data scientists, and various
vendors  can  answer  one  simple  question:  can  they
provide  Explainable  AI?

Although  the  ability  to  explain  the  results  of  Machine
Learning models—and produce consistent results from them—has
never been easy, a number of emergent techniques have recently
appeared to open the proverbial ‘black box’ rendering these
models so difficult to explain.

One of the most useful involves modeling real-world events
with the adaptive schema of knowledge graphs and, via Machine
Learning, gleaning whether they’re related and how frequently
they take place together.

When the knowledge graph environment becomes endowed with an
additional temporal dimension that organizations can traverse
forwards and backwards with dynamic visualizations, they can
understand  what  actually  triggered  these  events,  how  one
affected  others,  and  the  critical  aspect  of  causation
necessary  for  Explainable  AI.
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Read the full article at AIthority.

Improving Data Processes with
Knowledge Graphs
AllegroGraph  Thought  Leadership  Article  from  Big  Data
Quarterly

Knowledge graphs link together data of
any variety, structure, or format in
business  terms  via  uniform  data
models.  Organizations  can  then  join
and  traverse  all  of  their  data,
semantically  tagged  with  unique

machine-readable identifiers, making the platform ideal for
intelligent  systems,  machine  learning  analytics,
interoperability, and an array of other benefits influential
for AI applications.

The technology is gaining the attention of research firms and
consultancies. In 2018 and 2019, knowledge graphs appeared on
Gartner’s Hype Cycle for Emerging Technologies, acknowledged
for their hearty connections to pertinent data. According to
Gartner, “These ecosystems developed as digitalization morphed
traditional  value  chains,  enabling  more  seamless,  dynamic
connections  to  a  variety  of  agents  and  entities  across
geographies and industries. In the future these will include
decentralized autonomous organizations (DAOs), which operate
independently of humans and rely on smart contracts.”

Download the Full White Paper.

https://www.aithority.com/guest-authors/answering-the-question-why-explainable-ai/
https://allegrograph.com/improving-data-processes-with-knowledge-graphs/
https://allegrograph.com/improving-data-processes-with-knowledge-graphs/
https://allegrograph.com/wp-content/uploads/2020/03/DBTA-BDQ-Knowledge-Graph-White-Paper-2020-Franz_BP_BDQ_Spring_2020_c1.pdf


100 Companies That Matter in
Knowledge Management
Franz Inc., is proud to announce that it has been named to The
100 Companies That Matter in Knowledge Management by KMWorld.
 The  annual  list  reflects  the  urgency  felt  among  many
organizations  to  provide  a  timely  flow  of  targeted
information. Among the more prominent initiatives is the use
of AI and cognitive computing, as well as related capabilities
such as machine learning, natural language processing, and
text analytics.

“Knowledge  management  software  and  services  providers  are
embracing a fresh wave of technological innovation to address
heightened expectations—among both customers and employees—for
the right information to be delivered to the right people at
the right time, said Tom Hogan, Group Publisher at KMWorld.
“To showcase organizations that are advancing their products
and  capabilities  to  meet  changing  requirements,  KMWorld
created  the  annual  list  of  100  Companies  That  Matter  in
Knowledge Management.”

“We  are  honored  to  receive  this  acknowledgement  for  our
efforts in delivering Enterprise Knowledge Graph Solutions,”
said Dr. Jans Aasman, CEO, Franz Inc. “In the past year, we
have seen demand for Enterprise Knowledge Graphs take off
across industries along with recognition from top technology
analyst  firms  that  Knowledge  Graphs  provide  the  critical
foundation  for  artificial  intelligence  applications  and
predictive  analytics.    Our  AllegroGraph  Knowledge  Graph
Platform Solution offers a unique comprehensive approach for
helping  companies  accelerate  the  creation  of  Enterprise
Knowledge  Graphs  that  deliver  new  value  to  their

https://allegrograph.com/100-companies-that-matter-in-knowledge-management/
https://allegrograph.com/100-companies-that-matter-in-knowledge-management/
https://franz.com
https://www.kmworld.com/Articles/Editorial/Features/KMWorld-100-Companies-That-Matter-in-Knowledge-Management-2020-135998.aspx
https://www.kmworld.com/Articles/Editorial/Features/KMWorld-100-Companies-That-Matter-in-Knowledge-Management-2020-135998.aspx


organization.”

How  To  Avoid  Another  AI
Winter
Forbes published the following article by Dr. Jans Aasman,
Franz Inc.’s CEO.

Although there has been great progress in
artificial intelligence (AI) over the past
few years, many of us remember the AI winter
in  the  1990s,  which  resulted  from
overinflated  promises  by  developers  and
unnaturally  high  expectations  from  end

users.  Now,  industry  insiders,  such  as  Facebook  head  of
AI  Jerome  Pesenti,  are  predicting  that  AI  will  soon  hit
another  wall—this  time  due  to  the  lack  of  semantic
understanding.

“Deep learning and current AI, if you are really honest, has a
lot of limitations,” said Pesenti. “We are very, very far from
human intelligence, and there are some criticisms that are
valid:  It  can  propagate  human  biases,  it’s  not  easy  to
explain, it doesn’t have common sense, it’s more on the level
of pattern matching than robust semantic understanding.”

Read the full article at Forbes.

 

https://allegrograph.com/how-to-avoid-another-ai-winter/
https://allegrograph.com/how-to-avoid-another-ai-winter/
https://towardsdatascience.com/history-of-the-first-ai-winter-6f8c2186f80b
https://towardsdatascience.com/history-of-the-first-ai-winter-6f8c2186f80b
https://www.wired.com/story/facebooks-ai-says-field-hit-wall/
https://www.forbes.com/sites/forbestechcouncil/2020/02/14/how-to-avoid-another-ai-winter/#3f846abf18a8


California  utilities  should
have  used  digital  twin
technology  instead  of  power
shutoffs

Northern California’s proactive power outages were
not necessary last fall. Digital Twin technology
can  predict  utility  line  failures  and  turn  off
power in milliseconds to avoid the potential of
sparks igniting the surrounding area.

Digital  twin  technologies  are  gaining  traction  across
industries and use cases. Initially devised as a means of
monitoring assets and production settings in manufacturing,
this technology has quietly seeped into other verticals like
hospitality, construction, and building management and soon,
electricity delivery.

The premier problem digital twins will solve is predicting
power  grid  failure,  which  would  alleviate  the  social,
economic, and political issues that resulted from efforts to
reduce  the  incidence  and  degree  of  catastrophes,  property
loss, and deaths stemming from downstream effects of power
grid failure—such as recurring wildfires.

Digital  twins  can  allay  these
concerns  because  they’re  based  on
real-time  signals  from  a
comprehensive  set  of  factors  that
could  be  indicative  of  power  grid

woes related to environmental, meteorological, or technology
concerns. Moreover, they can deliver accurate predictions for

https://allegrograph.com/california-utilities-should-have-used-digital-twin-technology-instead-of-power-shutoffs/
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each of these factors well in advance of failure—in some cases
as much as 28 days.

Read the full article at PowerGrid International.

 

 

 

Franz Inc. to Present at The
Global Graph Summit and Data
Day Texas
Dr.  Jans  Aasman,  CEO,  Franz  Inc.,  will  be  presenting,
“Creating  Explainable  AI  with  Rules”  at  the  Global  Graph

Summit, a part of Data Day Texas.
The  abstract  for  Dr.  Aasman’s
presentation:

“There’s a fascinating dichotomy in artificial intelligence
between statistics and rules, machine learning and expert
systems. Newcomers to artificial intelligence (AI) regard
machine learning as innately superior to brittle rules-
based systems, while the history of this field reveals both
rules and probabilistic learning are integral components of

https://www.power-grid.com/td/california-utilities-should-have-used-digital-twin-technology-instead-of-power-shutoffs/#gref
https://allegrograph.com/franz-inc-to-present-at-the-global-graph-summit-and-data-day-texas/
https://allegrograph.com/franz-inc-to-present-at-the-global-graph-summit-and-data-day-texas/
https://allegrograph.com/franz-inc-to-present-at-the-global-graph-summit-and-data-day-texas/
http://datadaytexas.com/2020-graph-summit/sessions#aasman
http://datadaytexas.com/
http://datadaytexas.com/


AI.   This  fact  is  perhaps  nowhere  truer  than  in
establishing explainable AI, which is central to the long-
term business value of AI front-office use cases.”

“The  fundamental  necessity  for  explainable  AI  spans
regulatory compliance, fairness, transparency, ethics and
lack of bias — although this is not a complete list. For
example,  the  effectiveness  of  counteracting  financial
crimes  and  increasing  revenues  from  advanced  machine
learning predictions in financial services could be greatly
enhanced by deploying more accurate deep learning models.
But all of this would be arduous to explain to regulators.
Translating those results into explainable rules is the
basis for more widespread AI deployments producing a more
meaningful impact on society.”

The Global Graph Summit is an independently organized vendor-
neutral conference,  bringing leaders from every corner of the
graph and linked-data community for sessions, workshops, and
its well-known before and after parties.  Originally launched
in  January  2011  as  one  of  the  first  NoSQL  /  Big  Data
conferences, Data Day Texas each year highlights the latest
tools, techniques, and projects in the data space, bringing
speakers and attendees from around the world to enjoy the
hospitality that is uniquely Austin. Since its inception, Data
Day Texas has continually been the largest independent data-
centric event held within 1000 miles of Texas.

https://www.forbes.com/sites/cognitiveworld/2018/12/20/geoff-hinton-dismissed-the-need-for-explainable-ai-8-experts-explain-why-hes-wrong/#7e5b5d7b756d

