
Venture Beat Features
Montefiore’s Healthcare
project with AllegroGraph
From VentureBeat August 2018

This article discusses Montefiore’s PALM project that uses
AllegroGraph:

Montefiore is one of the largest employers in New York State.
It’s also one of the busiest health care complexes — hundreds
of thousands of patients pass through its sprawling campuses,
which include Montefiore Medical Center, the Albert Einstein
College of Medicine, and Montefiore Medical Park.

Those logistical challenges catalyzed the development of
Montefiore’s Patient-centered Analytical Learning Machine
(PALM), a machine learning platform built from the ground up
to predict and prevent life-threatening medical conditions
and minimize wait times.

PALM juggles lots of datasets — electronic medical records,
insurance billing codes, drug databases, and clinical trial
results, to name a few. And its analytical models recently
expanded to handle voice, images, and sensor inputs from
internet of things devices.

Core to the semantic graph model are triplestores, which are
a type of database optimized for filing away and retrieving
triples. They’re an entity composed of subject-predicate-
object — “John has tuberculosis,” for example — which PALM
builds dynamically, as needed. Along the way, the system uses
a frame data language, or FDL, to resolve ambiguities, like
when some electronic records refer to medication by its brand
instead of by its scientific name (e.g., “Advil” or “Motrin”
instead of ibuprofen).

https://allegrograph.com/venture-beat-features-montefiores-healthcare-project-with-allegrograph/
https://allegrograph.com/venture-beat-features-montefiores-healthcare-project-with-allegrograph/
https://allegrograph.com/venture-beat-features-montefiores-healthcare-project-with-allegrograph/

Read the full article over at Venture Beat.

Transmuting Machine Learning
into Verifiable Knowledge
From AI Business – August 2018

This article covers machine learning and AI:

According to Franz CEO Jans Aasman, these machine learning
deployments not only maximize organizational investments in
them by driving business value, but also optimize the most
prominent aspects of the data systems supporting them.

“You start with the raw data…do analytics on it, get
interesting results, then you put the results of the machine
learning back in the database, and suddenly you have a far
more powerful database,” Aasman said.

Dr. Aasman is further quoted:

For internal applications, organizations can use machine
learning concepts (such as co-occurrence—how often defined
concepts occur together) alongside other analytics to monitor
employee behavior, efficiency, and success with customers or
certain types of customers. Aasman mentioned a project
management use case for a consultancy company in which these
analytics were used to “compute for every person, or every
combination of persons, whether or not the project was
successful: meaning, done on time to the satisfaction of the
customer.”

https://venturebeat.com/2018/08/02/how-intel-and-montefiore-medical-center-use-ai-to-improve-patient-outcomes/
https://allegrograph.com/transmuting-machine-learning-into-verifiable-knowledge/
https://allegrograph.com/transmuting-machine-learning-into-verifiable-knowledge/

Organizations can use whichever metrics are relevant for
their businesses to qualify success. This approach is useful
for determining a numerical rating for employees “and you
could put that rating back in the database,” Aasman said.
“Now you can do a follow up query where you say how much
money did I make on the top 10 successful people; how much
money did I lose on the top 10 people I don’t make a profit
on.”

Read the full article over at AI Business.

Using AI and Semantic Data
Lakes in Healthcare –
FeibusTech Research Report

Artificial intelligence has the potential to make huge
improvements in just about every aspect of healthcare. Learn
how Montefiore Health Systems is using semantic data lakes,
architectures, and triplestores to power AI patient-centered
learning. With origins in post-9/11 municipal emergency
projects, Montefiore Health Systems platform – called PALM,
short for patient-centered Analytical Learning Machine – is
beginning to prove itself out in the Intensive Care Unit,

https://aibusiness.com/machine-learning-verifiable-knowledge/
https://allegrograph.com/using-ai-and-semantic-data-lakes-in-healthcare-feibustech-research-report/
https://allegrograph.com/using-ai-and-semantic-data-lakes-in-healthcare-feibustech-research-report/
https://allegrograph.com/using-ai-and-semantic-data-lakes-in-healthcare-feibustech-research-report/

helping doctors save lives by flagging patients headed toward
respiratory failure.

Intel and Montefiore in collaboration with FeibusTech have
released a Research Brief covering Montefiore’s PALM Platform
(aka – The Semantic Data Lake) powered by AllegroGraph.

“Just atop all the databases is what’s known as a
triplestore, or triple, construct. That’s a key
piece of any semantic data architecture. A triple is a three-
part data series with a common
grammar structure: that is, subject-predicate-object. Like,
for example, John Smith has hives.
Or Jill Martin takes ibuprofen.”

“Triples are the heart and soul of graph databases, or
graphs, a powerful, labor-saving approach
that associates John and Jill to records of humans, hives to
definitions of maladies and Ibuprofen
to catalogues of drugs. And then it builds databases on the
fly for the task at hand based on
those associations.”

Read the full article on Intel’s website to learn more about
healthcare solutions based on AllegroGraph.

Navigating time in knowledge
graphs
Franz’s CEO, Jans Aasman, recently wrote the following article
for InfoWorld.

https://www.intel.com/content/www/us/en/analytics/artificial-intelligence/how-montefiore-health-systems-use-semantic-data-in-healthcare.html
https://allegrograph.com/montefiore-advance-patient-care-solution-brief/
https://www.intel.com/content/www/us/en/analytics/artificial-intelligence/how-montefiore-health-systems-use-semantic-data-in-healthcare.html
https://allegrograph.com/navigating-time-in-knowledge-graphs/
https://allegrograph.com/navigating-time-in-knowledge-graphs/
https://en.wikipedia.org/wiki/Jans_Aasman

The temporal benefits of cognitive knowledge graphs can
affect almost any business problem, including basic issues of
data management such as data quality, data cleansing, and
integration

The concept of time presents several distinct challenges for
data management, particularly as it applies to databases or
stores. Those difficulties are related to the nature of time,
which is ongoing, and its expressions in repositories. The
former means data are relevant both at state (a point in
time) and over periods of time, which increases the
complexity.

Read the Full Article

The Most Secure Graph
Database Available
Triples offer a way of describing model elements and relationships
between them. In come cases, however, it is also convenient to be
able to store data that is associated with a triple as a whole
rather than with a particular element. For instance one might wish
to record the source from which a triple has been imported or
access level necessary to include it in query results. Traditional
solutions of this problem include using graphs, RDF reification or
triple IDs. All of these approaches suffer from various
flexibility and performance issues. For this reason AllegroGraph
offers an alternative: triple attributes.
Attributes are key-value pairs associated with a triple. Keys
refer to attribute definitions that must be added to the store

https://www.infoworld.com/article/3265069/machine-learning/navigating-time-in-knowledge-graphs.html
https://allegrograph.com/the-most-secure-graph-database-available/
https://allegrograph.com/the-most-secure-graph-database-available/

before they are used. Values are strings. The set of legal values
of an attribute can be constrained by the definition of that
attribute. It is possible to associate multiple values of a given
attribute with a single triple.
Possible uses for triple attributes include:

Access control: It is possible to instruct AllegroGraph to
prevent an user from accessing triples with certain
attributes.
Sharding: Attributes can be used to ensure that related
triples are always placed in the same shard when
AllegroGraph acts as a distributed triple store.

Like all other triple components, attribute values are immutable.
They must be provided when the triple is added to the store and
cannot be changed or removed later.
To illustrate the use of triple attributes we will construct an
artificial data set containing a log of information about contacts
detected by a submarine at a single moment in time.

Managing attribute definitions
Before we can add triples with attributes to the store we must
create appropriate attribute definitions.
First let’s open a connection

from franz.openrdf.connect import ag_connect

conn = ag_connect('python-tutorial', create=True, clear=True)

Attribute definitions are represented
by AttributeDefinition objects. Each definition has a name, which
must be unique, and a few optional properties (that can also be
passed as constructor arguments):

allowed_values: a list of strings. If this property is set
then only the values from this list can be used for the
defined attribute.
ordered: a boolean. If true then attribute value comparisons
will use the ordering defined by allowed_values. The default
is false.
minimum_number, maximum_number: integers that can be used to
constrain the cardinality of an attribute. By default there
are no limits.

Let’s define a few attributes that we will later use to
demonstrate various attribute-related capabilities of
AllegroGraph. To do this, we will use
the setAttributeDefinition() method of the connection object.

from franz.openrdf.repository.attributes import AttributeDefinition

A simple attribute with no constraints governing the set
of legal values or the number of values that can be
associated with a triple.
tag = AttributeDefinition(name='tag')

An attribute with a limited set of legal values.
Every bit of data can come from multiple sources.
We encode this information in triple attributes,
since it refers to the tripe as a whole. Another
way of achieving this would be to use triple ids
or RDF reification.
source = AttributeDefinition(
 name='source',
 allowed_values=['sonar', 'radar', 'esm', 'visual'])

Security level - notice that the values are ordered
and each triple *must* have exactly one value for
this attribute. We will use this to prevent some
users from accessing classified data.
level = AttributeDefinition(
 name='level',
 allowed_values=['low', 'medium', 'high'],
 ordered=True,
 minimum_number=1,
 maximum_number=1)

An attribute like this could be used for sharding.
That would ensure that data related to a particular
contact is never partitioned across multiple shards.
Note that this attribute is required, since without
it an attribute-sharded triple store would not know
what to do with a triple.
contact = AttributeDefinition(
 name='contact',
 minimum_number=1,
 maximum_number=1)

So far we have created definition objects, but we
have not yet sent those definitions to the server.
Let's do this now.
conn.setAttributeDefinition(tag)
conn.setAttributeDefinition(source)

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.setAttributeDefinition

conn.setAttributeDefinition(level)
conn.setAttributeDefinition(contact)

This line is not strictly necessary, because our
connection operates in autocommit mode.
However, it is important to note that attribute
definitions have to be committed before they can
be used by other sessions.
conn.commit()

It is possible to retrieve the list of attribute definitions from
a repository by using the getAttributeDefinitions() method:

for attr in conn.getAttributeDefinitions():
 print('Name: {0}'.format(attr.name))
 if attr.allowed_values:
 print('Allowed values: {0}'.format(
 ', '.join(attr.allowed_values)))
 print('Ordered: {0}'.format(
 'Y' if attr.ordered else 'N'))
 print('Min count: {0}'.format(attr.minimum_number))
 print('Max count: {0}'.format(attr.maximum_number))
 print()

Notice that in cases where the maximum cardinality has not been
explicitly defined, the server replaced it with a default value.
In practice this value is high enough to be interpreted as ‘no
limit’.

 Name: tag
 Min count: 0
 Max count: 1152921504606846975

 Name: source
 Allowed values: sonar, radar, esm, visual
 Min count: 0
 Max count: 1152921504606846975
 Ordered: N

 Name: level
 Allowed values: low, medium, high
 Ordered: Y
 Min count: 1
 Max count: 1

 Name: contact
 Min count: 1
 Max count: 1

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.getAttributeDefinitions

Attribute definitions can be removed (provided that the attribute
is not used by the static attribute filter, which will be
discussed later) by calling deleteAttributeDefinition():

conn.deleteAttributeDefinition('tag')
defs = conn.getAttributeDefinitions()
print(', '.join(sorted(a.name for a in defs)))

contact, level, source

Adding triples with attributes
Now that the attribute definitions have been established we can
demonstrate the process of adding triples with attributes. This
can be achieved using various methods. A common element of all
these methods is the way in which triple attributes are
represented. In all cases dictionaries with attribute names as
keys and strings or lists of strings as values are used.
When addTriple() is used it is possible to pass attributes in a
keyword parameter, as shown below:

ex = conn.namespace('ex://')
conn.addTriple(ex.S1, ex.cls, ex.Udaloy, attributes={
 'source': 'sonar',
 'level': 'low',
 'contact': 'S1'
})

The addStatement() method works in similar way. Note that it is not
possible to include attributes in the Statement object itself.

from franz.openrdf.model import Statement

s = Statement(ex.M1, ex.cls, ex.Zumwalt)
conn.addStatement(s, attributes={
 'source': ['sonar', 'esm'],
 'level': 'medium',
 'contact': 'M1'
})

When adding multiple triples with addTriples() one can add a fifth
element to each tuple to represent attributes. Let us illustrate

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.deleteAttributeDefinition
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.addTriple
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.addStatement
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.model.html#franz.openrdf.model.Statement
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.addTriples

this by adding an aircraft to our dataset.

conn.addTriples(
 [(ex.R1, ex.cls, ex['Ka-27'], None,
 {'source': 'radar',
 'level': 'low',
 'contact': 'R1'}),
 (ex.R1, ex.altitude, 200, None,
 {'source': 'radar',
 'level': 'medium',
 'contact': 'R1'})])

When all or most of the added triples share the same attribute set
it might be convenient to use the attributes keyword parameter.
This provides default values, but is completely ignored for all
tuples that already contain attributes (the dictionaries are not
merged). In the example below we add a triple representing an
aircraft carrier and a few more triples that specify its position.
Notice that the first triple has a lower security level and
multiple sources. The common ‘contact’ attribute could be used to
ensure that all this data will remain on a single shard.

conn.addTriples(
 [(ex.M2, ex.cls, ex.Kuznetsov, None, {
 'source': ['sonar', 'radar', 'visual'],
 'contact': 'M2',
 'level': 'low',
 }),
 (ex.M2, ex.position, ex.pos343),
 (ex.pos343, ex.x, 430.0),
 (ex.pos343, ex.y, 240.0)],
 attributes={
 'contact': 'M2',
 'source': 'radar',
 'level': 'medium'
 })

Another method of adding triples with attributes is to use the NQX
file format. This works both
with addFile() and addData() (illustrated below):

from franz.openrdf.rio.rdfformat import RDFFormat

conn.addData('''
 <ex://S2> <ex://cls> <ex://Alpha> \
 {"source": "sonar", "level": "medium", "contact": "S2"} .
 <ex://S2> <ex://depth> "300" \

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.addFile
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.addData

 {"source": "sonar", "level": "medium", "contact": "S2"} .
 <ex://S2> <ex://speed_kn> "15.0" \
 {"source": "sonar", "level": "medium", "contact": "S2"} .
''', rdf_format=RDFFormat.NQX)

When importing from a format that does not support attributes, it
is possible to provide a common set of attribute values with a
keyword parameter:

from franz.openrdf.rio.rdfformat import RDFFormat

conn.addData('''
 <ex://V1> <ex://cls> <ex://Walrus> ;
 <ex://altitude> 100 ;
 <ex://speed_kn> 12.0e+8 .
 <ex://V2> <ex://cls> <ex://Walrus> ;
 <ex://altitude> 200 ;
 <ex://speed_kn> 12.0e+8 .
 <ex://V3> <ex://cls> <ex://Walrus> ;
 <ex://altitude> 300;
 <ex://speed_kn> 12.0e+8 .
 <ex://V4> <ex://cls> <ex://Walrus> ;
 <ex://altitude> 400 ;
 <ex://speed_kn> 12.0e+8 .
 <ex://V5> <ex://cls> <ex://Walrus> ;
 <ex://altitude> 500 ;
 <ex://speed_kn> 12.0e+8 .
 <ex://V6> <ex://cls> <ex://Walrus> ;
 <ex://altitude> 600 ;
 <ex://speed_kn> 12.0e+8 .
''', attributes={
 'source': 'visual',
 'level': 'high',
 'contact': 'a therapist'})

The data above represents six visually observed Walrus-class
submarines, flying at different altitudes and well above the speed
of light. It has been highly classified to conceal the fact that
someone has clearly been drinking while on duty – after all there
are only four Walrus-class submarines currently in service, so the
observation is obviously incorrect.

Retrieving attribute values
We will now print all the data we have added to the store,
including attributes, to verify that everything worked as

expected. The only way to do that is through a SPARQL query using
the appropriate magic property to access the attributes. The query
below binds a literal containing a JSON representation of triple
attributes to the ?a variable:

import json

r = conn.executeTupleQuery('''
 PREFIX attr: <http://franz.com/ns/allegrograph/6.2.0/>
 SELECT ?s ?p ?o ?a {
 ?s ?p ?o .
 ?a attr:attributes (?s ?p ?o) .
 } ORDER BY ?s ?p ?o''')
with r:
 for row in r:
 print(row['s'], row['p'], row['o'])
 print(json.dumps(json.loads(row['a'].label),
 sort_keys=True,
 indent=4))

The result contains all the expected triples with pretty-printed
attributes.

<ex://M1> <ex://cls> <ex://Zumwalt>
{
 "contact": "M1",
 "level": "medium",
 "source": [
 "esm",
 "sonar"
]
}
<ex://M2> <ex://cls> <ex://Kuznetsov>
{
 "contact": "M2",
 "level": "low",
 "source": [
 "visual",
 "radar",
 "sonar"
]
}
<ex://M2> <ex://position> <ex://pos343>
{
 "contact": "M2",
 "level": "medium",
 "source": "radar"
}

https://franz.com/ns/allegrograph/6.2.0/attributes

<ex://R1> <ex://altitude> "200"^^...
{
 "contact": "R1",
 "level": "medium",
 "source": "radar"
}
<ex://R1> <ex://cls> <ex://Ka-27>
{
 "contact": "R1",
 "level": "low",
 "source": "radar"
}
<ex://S1> <ex://cls> <ex://Udaloy>
{
 "contact": "S1",
 "level": "low",
 "source": "sonar"
}
<ex://S2> <ex://cls> <ex://Alpha>
{
 "contact": "S2",
 "level": "medium",
 "source": "sonar"
}
<ex://S2> <ex://depth> "300"
{
 "contact": "S2",
 "level": "medium",
 "source": "sonar"
}
<ex://S2> <ex://speed_kn> "15.0"
{
 "contact": "S2",
 "level": "medium",
 "source": "sonar"
}
<ex://V1> <ex://altitude> "100"^^...
{
 "contact": "a therapist",
 "level": "high",
 "source": "visual"
}
<ex://V1> <ex://cls> <ex://Walrus>
{
 "contact": "a therapist",
 "level": "high",
 "source": "visual"
}
<ex://V1> <ex://speed_kn> "1.2E9"^^...
{

 "contact": "a therapist",
 "level": "high",
 "source": "visual"
}
...
<ex://pos343> <ex://x> "4.3E2"^^...
{
 "contact": "M2",
 "level": "medium",
 "source": "radar"
}
<ex://pos343> <ex://y> "2.4E2"^^...
{
 "contact": "M2",
 "level": "medium",
 "source": "radar"
}

Attribute filters
Triple attributes can be used to provide fine-grained access
control. This can be achieved by using static attribute filters.
Static attribute filters are simple expressions that control which
triples are visible to a query based on triple attributes. Each
repository has a single, global attribute filter that can be
modified using setAttributeFilter(). The values passed to this
method must be either strings (the syntax is described in the
documentation of static attribute filters) or filter objects.
Filter objects are created by applying set operators to ‘attribute
sets’. These can then be combined using filter operators.
An attribute set can be one of the following:

a string or a list of strings: represents a constant set of
values.
TripleAttribute.name: represents the value of
the name attribute associated with the currently inspected
triple.
UserAttribute.name: represents the value of
the name attribute associated with current query. User
attributes will be discussed in more detail later.

Available set operators are shown in the table below. All classes
and functions mentioned here can be imported from
the franz.openrdf.repository.attributes package:

https://franz.com/agraph/support/documentation/current/triple-attributes.html#static-filters
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.setAttributeFilter
https://franz.com/agraph/support/documentation/current/triple-attributes.html#static-filters

Syntax Meaning

Empty(x)
True if the specified attribute set

is empty.

Overlap(x, y)
True if there is at least one
matching value between the two

attribute sets.

Subset(x, y), x << y
True if every element of x can be

found in y

Superset(x, y), x >> y
True if every element of y can be

found in x

Equal(x, y), x == y
True if x and y have exactly the same

contents.

Lt(x, y), x < y

True if both sets are singletons, at
least one of the sets refers to a
triple or user attribute, the

attribute is ordered and the value of
the single element of x occurs before

the single value of y in
the lowed_values list of the attribute.

Le(x, y), x <= y True if y < x is false.

Eq(x, y)
True if both x < y and y < x are

false. Note that using the == Python
operator translates toEqauls, not Eq.

Ge(x, y), x >= y True if x < y is false.

Gt(x, y), x > y True if y < x.
Note that the overloaded operators only work if at least one of
the attribute sets is a UserAttribute or TripleAttribute reference –
if both arguments are strings or lists of strings the default
Python semantics for each operator are used. The prefix syntax
always produces filters.
Filters can be combined using the following operators:

Syntax Meaning

Not(x), ~x Negates the meaning of the filter.

And(x, y, ...), x & y True if all subfilters are true.

Or(x, y, ...), x | y
True if at least one subfilter is

true.
Filter operators also work with raw strings, but overloaded
operators will only be recognized if at least one argument is a
filter object.

Using filters and user attributes
The example below displays all classes of vessels from the dataset
after establishing a static attribute filter which ensures that
only sonar contacts are visible:

from franz.openrdf.repository.attributes import *

conn.setAttributeFilter(TripleAttribute.source >> 'sonar')
conn.executeTupleQuery(
 'select ?class { ?s <ex://cls> ?class } order by ?class',
 output=True)

The output contains neither the visually observed Walruses nor the
radar detected ASW helicopter.

| class |
==================
| ex://Alpha |
| ex://Kuznetsov |
| ex://Udaloy |
ex://Zumwalt

To avoid having to set a static filter before each query (which
would be inefficient and cause concurrency issues) we can employ
user attributes. User attributes are specific to a particular
connection and are sent to the server with each query. The static
attribute filter can refer to these and compare them with triple
attributes. Thus we can use code presented below to create a
filter which ensures that a connection only accesses data at or

below the chosen clearance level.

conn.setUserAttributes({'level': 'low'})
conn.setAttributeFilter(
 TripleAttribute.level <= UserAttribute.level)
conn.executeTupleQuery(
 'select ?class { ?s <ex://cls> ?class } order by ?class',
 output=True)

We can see that the output here contains only contacts with the
access level of low. It omits the destroyer and Alpha submarine
(these require medium level) as well as the top-secret Walruses.

| class |
==================
| ex://Ka-27 |
| ex://Kuznetsov |
ex://Udaloy

The main advantage of the code presented above is that the filter
can be set globally during the application setup and access
control can then be achieved by varying user attributes on
connection objects.
Let us now remove the attribute filter to prevent it from
interfering with other examples. We will use
the clearAttributeFilter() method.

conn.clearAttributeFilter()

It might be useful to change connection’s attributes temporarily
for the duration of a single code block and restore prior
attributes after that. This can be achieved using
the temporaryUserAttributes() method, which returns a context
manager. The example below illustrates its use. It also shows how
to use getUserAttributes() to inspect user attributes.

with conn.temporaryUserAttributes({'level': 'high'}):
 print('User attributes inside the block:')
 for k, v in conn.getUserAttributes().items():
 print('{0}: {1}'.format(k, v))
 print()
print('User attributes outside the block:')
for k, v in conn.getUserAttributes().items():
 print('{0}: {1}'.format(k, v))

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.clearAttributeFilter
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.temporaryUserAttributes
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.getUserAttributes

User attributes inside the block:
level: high

User attributes outside the block:
level: low »

Allegro Knowledge Graph News
Franz periodically distributes newsletters to its Semantic
Technologies, and Common Lisp based Enterprise Development
Tools mailing lists, providing information on related upcoming
events and new software product developments.

Read our latest AllegroGraph newsletter.

Previous issues are listed in the Newsletter Archive.

Harmonizing big data with an
enterprise knowledge graph
Franz’s CEO, Jans Aasman, recently wrote the following article
for InfoWorld.

In addition to streamlining how users retrieve diverse data
via automation capabilities, a knowledge graph standardizes

https://allegrograph.com/franz-and-semantic-web-company-partner-to-create-a-noam-chomsky-knowledge-graph-2/
https://allegrograph.com/article/news-and-events/newsletter/
https://allegrograph.com/article/news-and-events/newsletter-archive/
https://allegrograph.com/harmonizing-big-data-with-an-enterprise-knowledge-graph/
https://allegrograph.com/harmonizing-big-data-with-an-enterprise-knowledge-graph/
https://en.wikipedia.org/wiki/Jans_Aasman

those data according to relevant business terms and models

One of the most significant results of the big data era
is the broadening diversity of data types required to
solidify data as an enterprise asset. The maturation of
technologies addressing scale and speed has done little to
decrease the difficulties associated with complexity, schema
transformation and integration of data necessary for informed
action.

The influence of cloud computing, mobile technologies, and
distributed computing environments contribute to today’s
variegated IT landscape for big data. Conventional approaches
to master data management and data lakes lack critical
requirements to unite data—regardless of location—across the
enterprise for singular control over multiple sources.

The enterprise knowledge graph concept directly addresses
these limitations, heralding an evolutionary leap forward in
big data management. It provides singular access for data
across the enterprise in any form, harmonizes those data in a
standardized format, and assists with the facilitation of
action required to repeatedly leverage them for use cases
spanning organizations and verticals.

Read the Full Article

Semantic Computing,
Predictive Analytics Need

https://www.infoworld.com/article/3250857/big-data/harmonizing-big-data-with-an-enterprise-knowledge-graph.html
https://allegrograph.com/semantic-computing-predictive-analytics-need-reliable-metadata/
https://allegrograph.com/semantic-computing-predictive-analytics-need-reliable-metadata/

Reliable Metadata

Our Healthcare Partners at Montefiore were interviewed at
Health Analytics:

Reliable metadata is the key to leveraging semantic computing
and predictive analytics for healthcare applications, such as
population health management and crisis care.

As the healthcare industry reaches the saturation point of
electronic health record adoption, and slowly moves past the
pain of the implementation process, it may seem like the
right time to stop thinking so much about hammering home
basic data governance principles for staff members and start
looking at the next phase of health IT implementation: the
big data analytics environment.

After all, most providers are now sitting on an enormous nest
egg of patient data, which may be just clean, complete, and
standardized enough to start experimenting with population
health management, operational analytics, or even a bit of
predictive risk stratification.Many healthcare organizations
are experimenting with these advanced analytics projects in
an effort to prepare themselves for the financial storm that
is approaching with the advent of value-based care.
The immense pressure to cut costs, meet quality benchmarks,
shoulder financial risk, and improve patient outcomes is
causing no small degree of anxiety for providers, who are
racing to batten down the hatches before the typhoon
overtakes them.

While it may be tempting to jump into quick-win analytics
that use “good enough” datasets to solve a specific pressing
use case, providers may be at risk of repeating the same

https://allegrograph.com/semantic-computing-predictive-analytics-need-reliable-metadata/

mistakes they made with slapdash EHR implementations:
creating data siloes, orphaned reports, and poor quality
datasets that cannot be used in a reliable, repeatable way
for meaningful quality improvements.

Read the full article at Health Analytics

Montefiore Semantic Data Lake
Tackles Predictive Analytics
Montefiore Medical Center is preparing to launch a
sophisticated predictive analytics program for crisis
patients, which is rooted in its real-time semantic data lake
technology.

Semantic computing is becoming a hot topic in the healthcare
industry as the first wave of big data analytics leaders looks
to move beyond the basics of population health management,
predictive analytics, and risk stratification.

This new approach to analytics eschews the rigid, limited
capabilities of the traditional relational database and
instead focuses on creating a fluid pool of standardized data
elements that can be mixed and matched on the fly to answer a
large number of unique queries.

Montefiore Medical Center, in partnership with Franz Inc., is
among the first healthcare organizations to invest in a robust
semantic data lake as the foundation for advanced clinical

https://healthitanalytics.com/news/semantic-computing-predictive-analytics-need-reliable-metadata
https://allegrograph.com/montefiore-semantic-data-lake-tackles-predictive-analytics/
https://allegrograph.com/montefiore-semantic-data-lake-tackles-predictive-analytics/

decision support and predictive analytics capabilities.

Read the full article at Health IT Analytics

AllegroGraph News
Franz periodically distributes newsletters to its Semantic
Technologies, and Common Lisp based Enterprise Development
Tools mailing lists, providing information on related upcoming
events and new software product developments.

https://healthitanalytics.com/news/montefiore-semantic-data-lake-tackles-predictive-analytics
https://allegrograph.com/allegrograph-news-september/

