
Graph  Analytics  with
AllegroGraph and Apache Spark
AllegroGraph  enables  users  to  export  data  out  of  their
Knowledge Graph and perform graph analytics with Apache Spark,
one  of  the  most  popular  platforms  for  large-scale  data
processing. Users immediately gain machine learning and SQL
database solutions as well as GraphX and GraphFrames, two
frameworks for running graph compute operations on data.

A key benefit of using Apache Spark for graph analytics within
AllegroGraph is that it is built on top of Hadoop MapReduce
and extends the MapReduce model to efficiently use more types
of  computations.  Users  can  access  interfaces  (including
interactive  shells)  for  programming  entire  clusters  with
implicit data parallelism and fault-tolerance.

Apache Spark is one of the most popular platforms for large-
scale data processing. In addition to machine learning, SQL
database  solutions,  Spark  also  comes
with GraphX and GraphFrames two frameworks for running graph
compute operations on your data. In the AllegroGraph-Spark
notebook, we demonstrate how to read data from AllegroGraph
and then perform graph analytics with Spark.

Apache Spark was built on top
of  Hadoop  MapReduce  and  it
extends the MapReduce model to
efficiently use more types of
computations.  It  provides
interfaces  (including
interactive  shells)  for
programming  entire  clusters
with implicit data parallelism

and fault-tolerance. For a quick start of more Spark APIs,
please go to here.

https://allegrograph.com/graph-analytics-with-allegrograph-and-apache-spark/
https://allegrograph.com/graph-analytics-with-allegrograph-and-apache-spark/
https://spark.apache.org/
https://spark.apache.org/graphx/
https://graphframes.github.io/graphframes/docs/_site/index.html
https://spark.apache.org/docs/latest/quick-start.html


Visit our Github example page for more details.

 

The  Next  Step  in  Machine
Learning’s  Evolution:  Graph
Neural Networks

Dr. Aasman recently publish this article on
Graph Neural Networks at Toward Data Science.

The  capacity  to  consistently  attain  enterprise  value  from
mission critical machine learning deployments hinges on at
least one of the following three applications: classifying
entities,  predicting  events,  and  understanding  why  events
happened.

No  matter  which  technique  is  used,  whether  it  includes
supervised, unsupervised, or reinforcement learning, or if the
scale and compute of deep learning is involved, conventional
machine learning has limitations for solving these business
problems.

It works well for many types of data, but incurs difficulty
and  outright  failure  when  applied  to  high  dimensionality
networked datasets. These limits demand a new approach for
social  network  research,  recommendation  engines,  biology,
chemistry, computer vision, and Natural Language Processing
deployments in which context is pivotal.

https://github.com/franzinc/agraph-examples
https://allegrograph.com/the-next-step-in-machine-learnings-evolution-graph-neural-networks/
https://allegrograph.com/the-next-step-in-machine-learnings-evolution-graph-neural-networks/
https://allegrograph.com/the-next-step-in-machine-learnings-evolution-graph-neural-networks/


Graph Neural Networks excel at predicting events, explaining
them, and classifying entities at scale to deliver striking
accuracy for these and other pragmatic deployments. Pairing
their reasoning with semantic inferences creates additional
knowledge for predicting events based on the multifaceted,
contextualized relationships in high dimensionality data.

Read the full Article.

AiThority Interview with Dr.
Jans Aasman

Jans Aasman, please tell us about your current
role  and  the  team  /  technology  you  handle  at
Franz.
As CEO of Franz Inc., I drive the overall technology vision
for our Enterprise Knowledge Graph solutions and ensure our
customer projects deliver the ROI results expected with graph
based architectures.

Franz Inc. is composed of an expert team with skills in Graph
Databases,  Semantic  technologies,  Graph  Visualization,
AI,  NLP  and  Machine  Learning.   Our  domain  knowledge
encompasses large enterprises in Healthcare, Pharma, Customer
Support, and Intelligence Agencies.

https://arxiv.org/ftp/arxiv/papers/1812/1812.08434.pdf
https://towardsdatascience.com/the-next-step-in-machine-learnings-evolution-graph-neural-networks-fdf16b8df85a
https://allegrograph.com/aithority-interview-with-dr-jans-aasman-ceo-at-franz/
https://allegrograph.com/aithority-interview-with-dr-jans-aasman-ceo-at-franz/
https://aithority.com/tag/Knowledge-Graph-solutions
https://aithority.com/tag/NLP
https://aithority.com/tag/machine-learning/


Our  main  business  today  revolves  around  AllegroGraph,  a
Semantic Graph platform that allows infinite data integration
through  a  patented  approach  unifying  all  data  and  siloed
knowledge into an Entity-Event Knowledge Graph solution that
can  support  massive  big  data  analytics.  AllegroGraph’s
FedShard  feature  utilizes  patented  federated  sharding
capabilities that drive 360-degree insights and enable complex
reasoning across a distributed Knowledge Graph. AllegroGraph
is  utilized  by  dozens  of  the  top  Fortune  500  companies
worldwide.

We also offer a popular data visualization and no-code query
builder  called  Gruff  –  the  most  advanced  Knowledge  Graph
visualization application on the market, which we recently
integrated into Franz AllegroGraph. Gruff enables users to
create visual Knowledge Graphs that display data relationships
in views that are driven by the user. Ad hoc and exploratory
analysis can be performed by simply clicking on different
graph nodes to answer questions. Gruff’s unique ‘Time Machine’
feature provides the capability to explore temporal context
and connections within data. The visual query builder within
Gruff empowers both novice and expert users to create simple
to highly complex queries without writing any code.

Read the full interview at AIThority.

NLP:  Unlock  the  Hidden
Business  Value  in  Voice
Communications

https://aithority.com/tag/data-visualization
https://aithority.com/representation-reasoning/aithority-interview-with-dr-jans-aasman-franz/
https://allegrograph.com/nlp-unlock-the-hidden-business-value-in-voice-communications/
https://allegrograph.com/nlp-unlock-the-hidden-business-value-in-voice-communications/
https://allegrograph.com/nlp-unlock-the-hidden-business-value-in-voice-communications/


By Dr. Jans Aasman, CEO, Franz Inc.

Today organizations capture an enormous amount of information
in spoken conversations, from routine customer service calls
to sophisticated claims processing interactions in finance and
healthcare. But most of this information remains hidden and
unused due to the difficulty of turning these conversations
into meaningful data that can be effectively analyzed through
Natural Language Processing (NLP).

Simply  applying  speech  recognition  software  to  voice
conversations often results in unreliable data. State-of-the-
art  speech  recognition  systems  still  have  trouble
distinguishing  between  homophones  (words  with  the  same
pronunciation,  but  different  meanings),  as  well  as  the
difference between proper names (i.e. people, products) and
separate words. In addition, there is also the challenge of
identifying domain-specific words accurately. Thus, in most
cases, using speech recognition software alone doesn’t produce
accurate enough data for reliable NLP.

Domain-specific  taxonomies  are  key  to  understanding
conversations via speech recognition systems. With them, we
can feed conversations to knowledge graphs that understand the
conversation  and  make  connections  in  the  data.  Knowledge
graphs provide the ability to extract the correct meaning of
text from conversations and connect concepts in order to add
business value.

Knowledge graphs fed with NLP provide two prime opportunities
for monetization. First, organizations can better understand
their customers to improve products and services more to their
liking, which in turn boosts marketing, sales and customer



retention rates. Secondly, this analysis gives contact center
agents real-time support for optimizing customer interactions
to produce faster resolutions, better conversion rates, and
cross-selling and up-selling opportunities. These approaches
enable companies to capitalize on speech recognition knowledge
graphs, accelerate their ROI, and expand their bottom lines.

Taxonomy Driven Speech Recognition
The  story  of  taxonomy-driven  speech  recognition  closely
relates  to  knowledge  graphs.  The  first  wave  of  knowledge
graphs was built from taking structured data and turning it
into  semantic  graphs  that  support  the  linked  open  data
movement. The next wave is all about unstructured data. People
started doing Natural Language Processing on documents and
textual  conversations  like  emails  and  chats.  Doing  so
accurately  for  a  given  domain  requires  a  taxonomy  to
understand  the  words  and  concepts.  Otherwise,  downstream
processes like entity extraction and event detection won’t
work.

Read the full article at DZone.

The  Future  of  AI:  Machine
Learning and Knowledge Graphs
Bringing  knowledge  graph  and  machine  learning  technology
together can improve the accuracy of the outcomes and augment
the potential of machine learning approaches. With knowledge
graphs,  AI  language  models  are  able  to  represent  the
relationships and accurate meaning of data instead of simply
generating words based on patterns.

https://www.w3.org/egov/wiki/Linked_Open_Data
https://www.w3.org/egov/wiki/Linked_Open_Data
https://blogs.gartner.com/anthony_bradley/2020/10/07/announcing-gartners-new-emergence-cycle-research-for-ai/
https://dzone.com/articles/how-to-unlock-the-hidden-business-value-in-voice-c
https://allegrograph.com/the-future-of-ai-machine-learning-and-knowledge-graphs/
https://allegrograph.com/the-future-of-ai-machine-learning-and-knowledge-graphs/


Read this special report to dive into key uses cases, best
practices for getting started, and technology solutions every
organization should know about.

The Future of AI: Machine Learning and Knowledge Graphs

Understanding  What  Matters
With Text Analytics and NLP
Dr.  Jans  Aasman  was  quoted  extensively  in  this  KMWorld
Article:

Whether  employing
traditional  rulesbased
approaches  to  text
analytics or leveraging
more  modern  machine
learning  strategies,
users  must  initially
train  the  systems  on

relevant  business  domains.  One  way  to  do  so  is  with
comprehensive taxonomies of terms, their synonyms, and their
meanings—which are traditionally associated with rules-based
models. According to Franz CEO Jans Aasman, “There’s a part of
NLP where people create taxonomies and ontologies. That is
just a very acceptable way of doing NLP.” Historically, such
defined hierarchies of vocabularies were paired with rules to
find  patterns  in  text  and  create  actions  such  as
classifications  or  entity  extraction.

The trade-off between this approach and the taxonomic one is
clear: Organizations can forsake the extensive time required
to build taxonomies by simply using annotated training data.

https://allegrograph.com/wp-content/uploads/2021/04/THE-FUTURE-OF-AI-Machine-Learning-and-Knowledge-Graphs-2021.pdf
https://allegrograph.com/understanding-what-matters-with-text-analytics-and-nlp/
https://allegrograph.com/understanding-what-matters-with-text-analytics-and-nlp/


The  objective  is  to  “just  throw  statistics  and  machine
learning at the problem so it will all automatically work,”
Aasman said. Although reduced time-to-value is an advantage of
the deep learning approach, there are issues to consider,
including the following:

♦  Training  data:  Machine  learning  models  require  immense
amounts of training data, which organizations might not have
for their domains. Transfer learning solves this problem by
enabling subject matter experts to upload a couple of hundred
examples (instead of thousands), highlight them, and teach
dynamic models “the representative entities, key-value pairs,
and classes they’re trying to derive from these documents,”
Wilde noted.

♦ Controlled vocabularies: Transformers and techniques such as
Bidirectional Encoder Representations from Transformers (BERT)
reduce  the  training  data  quantities  for  machine  learning
models, broaden the array of training data that’s relevant,
and implement a controlled vocabulary that otherwise isn’t as
defined as taxonomic ones. Thus, organizations can take a
phrase and “generate a similar phrase that means the same, but
can be used in multiple reports in a controlled way,” Mishra
said. Additionally, it’s possible to simply purchase libraries
of terms and definitions. “Many companies end
up  buying  those  things  to  be  able  to  incorporate  those
capabilities,” Shankar added.

♦  Practical  knowledge:  Exclusively  using  machine  learning
models  to  train  text  analytics  decreases  the  real-world
understanding  and  applicability  of  text.  “People  that  do
machine learning don’t want to spend the effort to create a
vocabulary or the pragmatics or the semantics,” Aasman noted.
“Machine learning has a place in all of this, but it misses
part of the whole future solution where we have systems that
understand what people are talking about.”

Read the full article at KMWorld.

https://www.kmworld.com/Articles/Editorial/Features/Understanding-What-Matters-With-Text-Analytics-and-NLP-145539.aspx


Natural  Language  Processing
and  Machine  Learning  in
AllegroGraph
The majority of our customers build Knowledge Graphs with
Natural Language and Machine learning components. Because of
this trend AllegroGraph now offers strong support for the use
of Natural Language Processing and Machine learning.

Franz Inc has a team of NLP engineers and Taxonomy experts
that can help with building turn-key solutions. In general
however, our customers already have some expertise in house.
In those cases we train customers in how to take the output of
NLP  and  ML  processing  and  turn  that  into  an  efficient
Knowledge Graph based on best practices in the industry.

This  document  primarily  describes  the  NLP  and  ML  plug-in
AllegroGraph.

Note that many enterprises already have a data science team
with NLP experts that use modern open source NLP tools like
Spacy, Gensim or Polyglot, or Machine Learning based NLP tools
like BERT and Scikit-Learn. In another blog about Document
Handling we describe a pipeline of how to deal with NLP in
Document Knowledge Graphs by using our NLP and ML plugin and
mix that with open source tools.

PlugIn features for Natural Language Processing and Machine
Learning in AllegroGraph.

Here is the outline of the plugin features that we are going
to describe in more detail.

https://allegrograph.com/natural-language-processing-and-machine-learning-in-allegrograph/
https://allegrograph.com/natural-language-processing-and-machine-learning-in-allegrograph/
https://allegrograph.com/natural-language-processing-and-machine-learning-in-allegrograph/
https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/
https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/
https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/


Machine learning

data acquisition
classifier training
feature extraction support
performance analysis
model persistence

NLP

handling languages
handling dictionaries
tokenization
entity extraction
Sentiment analysis
basic pattern matching

SPARQL Access

Future development

 

Machine Learning

ML: Data Acquisition
Given  that  the  NLP  and  ML  functions  operate  within
AllegroGraph, after loading the plugins, data acquisition can
be performed directly from the triple-store, which drastically
simplifies the data scientist workflow. However, if the data
is not in AllegroGraph yet we can also import it directly from
ten  formats  of  triples  or  we  can  use  our  additional
capabilities  to  import  from  CSV/JSON/JSON-LD.

Part of the Data Acquisition is also that we need to pre-
process  the  data  for  training  so  we  provide  these  three
functions:

prepare-training-data
split-dev-test



equalize (for resampling)

Machine Learning: Classifiers

Currently we provide simple linear classifiers. In case
there’s  a  need  for  neural  net  or  other  advanced
classifiers,  those  can  be  integrated  on-demand.
We  also  provide  support  for  online  learning  (online
machine learning is an ML method in which data becomes
available in a sequential order and is used to update
the best predictor for future data at each step, as
opposed to batch learning techniques which generate the
best predictor by learning on the entire training data
set at once). This feature is useful for many real-world
data sets that are constantly updated.
The  default  classifiers  available  are  Averaged
Perceptron and AROW

Machine Learning: Feature Extraction

Each classifier is expecting a vector of features: either
feature  indices  (indicative  features)  or  pairs  of  numbers
(index – value). These are obtained in a two-step process:

1. A classifier-specific extract-features method should be
defined that will return raw feature vector with features
identified  by  strings  of  the  following  form:
prefix|feature.

The prefix should be provided as a keyword argument to the
collect-features method call, and it is used to distinguish
similar features from different sources (for instance, for
distinct predicates).

2. Those features will be automatically transformed to
unique  integer  ids.  The  resulting  feature  vector  of
indicator features may look like the following: #(1 123
2999 …)



Note that these features may be persisted to AllegroGraph for
repeated  re-use  (e.g.  for  experimenting  with  classifier
hyperparameter tuning or different classification models).

Many possible features may be extracted from data, but there
is a set of common ones, such as:

1. individual tokens of the text field
2. ngrams (of a specified order) of the text field
3. presence of a token in a specific dictionary (like, the
dictionary of slang words)
4. presence/value of a certain predicate for the subject of
the current triple
5. length of the text

And in case the user has a need for special types of tokens we
can write specific token methods, here is an example (in Lisp)
that produces an indicator feature of a presence of emojis in
the text:

(defmethod collect-features ((method (eql :emoji)) toks &key
pred)
(dolist (tok toks)
(when (some #'(lambda (code)
  (or (<= #x1F600 code #x1F64F)
      (<= #x1F650 code #x1F67F)
      (<= #x1F680 code #x1F6FF)))
   (map 'vector #'char-code tok))
(return (list "emoji")))))

 

Machine Learning: Integration with Spacy

The NLP and ML community invents new features and capabilities
at an incredible speed. Way faster than any database company
can keep up with. So why not embrace that? Whenever we need
something that we don’t have in AllegroGraph yet we can call
out to Spacy or any other external NLP tool. Here is an
example of using feature extraction from Spacy to collect



indicator features of the text dependency parse relations:

(defmethod  collect-features  ((method  (eql  :dep))  deps  &key
pred dep-type dep-labels)
 (loop :for ds :in deps :nconc
  (loop :for dep :in ds
   :when (and (member (dep-tag dep) dep-labels)
              (dep-head dep)
              (dep-tok dep))
    :collect (format nil "dep|~a|~a_~a"
              dep-type
              (tok-word (dep-head dep)
              (tok-word (dep-tok dep))))))

The demonstrated integration uses Spacy Docker instance and
its HTTP API.

Machine Learning: Classifier Analysis

We provide all the basic tools and metrics for classifier
quality analysis:

accuracy
f1, precision, recall
confusion matrix
and an aggregated classification report

 

Machine Learning: Model Persistence

The idea behind model persistence is that all the data can be
stored  in  AllegroGraph,  including  features  and  classifier
models. AllegroGraph stores classifiers directly as triples.
This is a far more robust and language-independent approach
than  currently  popular  among  data  scientists  reliance  on
Python  pickle  files.  For  the  storage  we  provide  a  basic
triple-based format, so it is also possible to interchange the
models using standard RDF data formats.

The biggest advantage of this approach is that when adding



text to AllegroGraph we don’t have to move the data externally
to perform the classification but can keep the whole pipeline
entirely internal.

 

Natural Language Procession (NLP)

NLP: Language Packs

Most of the NLP tools are language-dependent: i.e. there’s a
general function that uses language-specific model/rules/etc.
In AllegroGraph, support for particular languages is provided
on-demand and all the language-specific is grouped in the so
called “language pack” or langpack, for short – a directory
with a number of text and binary files with predefined names.

Currently,  the  langpack  for  English  is  provided  at
nlp/langs/en.zip,  with  the  following  files:

contractions.txt – a dictionary of contractions
abbrs.txt – a dictionary of abbreviations
stopwords.txt – a dictionary of stopwords
pos-dict.txt – positive sentiment words
neg-dict.txt – negative sentiment words
word-tok.txt – a list of word tokenization rules

Additionally,  we  use  a  general  dictionary,  a  word-form
dictionary (obtained from Wiktionary), and custom lexicons.

Loading a langpack for a particular language is performed
using load-langpack.

Creating a langpack is just a matter of adding the properly
named files to the directory and can be done manually. The
names of the files should correspond to the names of the
dictionary variables that will be filled by the pack. The
dictionaries that don’t have a corresponding file will be just
skipped.We have just finished creating a langpack for Spanish
and  it  will  be  published  soon.  In  case  you  need  other



dictionaries  we  use  our  AG/Spacy  infrastructure.  Spacy
recently added a comprehensive list of new languages:

 

NLP: Dictionaries

Dictionaries are read from the language packs or other sources
and  are  kept  in  memory  as  language-specific  hash-tables.
Alongside support for storing the dictionaries as text files,
there are also utilities for working with them as triples and
putting them into the triple store.

Note that we at Franz Inc specialize in Taxonomy Building
using various commercial taxonomy building tools. All these
tools  can  now  export  these  taxonomies  as  a  mix  of  SKOS
taxonomies and OWL. We have several functions to read directly
from these SKOS taxonomies and turn them into dictionaries
that support efficient phrase-level lookup.

NLP: Tokenization

Tokenization  is  performed  using  a  time-proven  rule-based
approach. There are 3 levels of tokenization that have both a
corresponding specific utility function and an :output format
of the tokenize function:

:parags – splits the text into a list of lists of tokens
for paragraphs and sentences in each paragraph
:sents – splits the text into a list of tokens for each
sentence
:words – splits the text into a plain list of tokens



Paragraph-level tokenization considers newlines as paragraph
delimiters.  Sentence-level  tokenization  is  geared  towards
western-style  writing  that  uses  dot  and  other  punctuation
marks to delimit sentences. It is, currently, hard-coded, but
if the need arises, additional handling may be added for other
writing systems. Word-level tokenization is performed using a
language-specific set of rules.

NLP: Entity Extraction

Entity extraction is performed by efficient matching (exactly
or fuzzy) of the token sequences to the existing dictionary
structure.

It is expected that the entities come from the triple store
and there’s a special utility function that builds lookup
dictionaries from all the triples of the repository identified
by certain graphs that have a skos:prefLabel or skos:altLabel
property.  The  lookup  may  be  case-insensitive  with  the
exception of abbreviations (default) or case-sensitive.

Similar  to  entity  extraction,  there’s  also  support  for
spotting  sentiment  words.  It  is  performed  using  the
positive/negative words dictionaries from the langpack.

One feature that we needed to develop for our customers is
‘heuristic entity extraction’ . In case you want to extract
complicated  product  names  from  text  or  call-center
conversations between customers and agents you run into the
problem that it becomes very expensive to develop altLabels in
a taxonomy tool. We created special software to facilitate the
automatic creation of altlabels.

NLP:  Basic  Pattern  Matching  for  relationship  and  event
detection

Getting  entities  out  of  text  is  now  well  understood  and
supported by the software community. However, to find complex
concepts or relationships between entities or even events is



way harder and requires a flexible rule-based pattern matcher.
Given our long time background in Lisp and Prolog one can
imagine we created a very powerful pattern matcher.

SPARQL Access

Currently all the features above can be controlled as stored
procedures or using Lisp as the command language. We have a
new (beta) version that uses SPARQL for most of the control.
Here are some examples. Note that fai is a magic-property
namespace for “AI”-related stuff and inc is a custom namespace
of an imaginary client:

1. Entity extraction

select ?ent {
   ?subj fai:entityTaxonomy inc:products .
   ?subj fai:entityTaxonomy inc:salesTerms .
   ?subj fai:textPredicate inc:text .
   ?subj  fai:entity(fai:language  "en",  fai:taxonomy
inc:products)  ?ent  .
}

The expressions ?subj fai:entityTaxonomy inc:poducts and ?subj
fai:entityTaxonomy inc:salesTerms specify which taxonomies to
use (the appropriate matchers are cached).
The expression ?subj fai:entity ?ent will either return the
already  extracted  entities  with  the  specified  predicate
(fai:entity) or extract the new entities according to the
taxonomies in the texts accessible by fai:textPredicate.

2. fai:sentiment will return a single triple with sentiment
score:

select ?sentiment {
   ?subj fai:textPredicate inc:text .
   ?subj fai:sentiment ?sentiment .
   ?subj fai:language "en" .
   ?subj fai:sentimentTaxonomy franz:sentiwords .
}



 

3. Text classification:
Provided inc:customClassifier was already trained previously,
this query will return labels for all texts as a result of
classification.

select ?label {
?subj fai:textPredicate inc:text .
?subj fai:classifier inc:customClassifier .
?subj fai:classify ?label .
?label fai:storeResultPredicate inc:label .
}

 

Further Development
Our team is currently working on these new features:

A more accessible UI (python client & web) to facilitate
NLP and ML pipelines
Addition of various classifier models
Sequence classification support (already implemented for
a customer project)
Pre-trained  models  shipped  with  AllegroGraph  (e.g.
English NER)
Graph ML algorithms (deepwalk, Google Expander)
Clustering algorithms (k-means, OPTICS)

 

 

 



Document  Knowledge  Graphs
with NLP and ML
A core competency for Franz Inc is turning text and documents
into Knowledge Graphs (KG) using Natural Language Processing
(NLP) and Machine Learning (ML) techniques in combination with
AllegroGraph. In this document we discuss how the techniques
described in [NLP and ML components of AllegroGraph] can be
combined  with  popular  software  tools  to  create  a  robust
Document Knowledge Graph pipeline.

We have applied these techniques for several Knowledge Graphs
but  in  this  document  we  will   primarily  focus  on  three
completely different examples that we summarize below. First
is the Chomsky Legacy Project where we have a large set of
very dense documents and very different knowledge sources,
Second is a knowledge graph for an intelligent call center
where we have to deal with high volume dynamic data and real-
time  decision  support  and  finally,   a  large  government
organization where it is very important that people can do a
semantic search against documents and policies that steadily
change over time and where it is important that you can see
the history of documents and policies.

Example [1] Chomsky Knowledge Graph
The Chomsky Legacy Project is a project run by a group of
admirers of Noam Chomsky with the primary goal to preserve all
his  written  work,  including  all  his  books,  papers  and
interviews but also everything written about him. Ultimately
students, researchers, journalists, lobbyists, people from the
AI community, and linguists can all use this knowledge graph
for their particular goals and questions.

The biggest challenges for this project are finding causal
relationships  in  his  work  using  event  and  relationship
extraction.  A  simple  example  we  extracted  from  an  author

https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/
https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/
https://allegrograph.com/natural-language-processing-and-machine-learning-in-allegrograph/


quoting  Chomsky  is  that  neoliberalism  ultimately  causes
childhood death.

Example 2: N3 Results and the Intelligent Call Center
This is a completely different use case (See a recent KMWorld
Articlehttps://allegrograph.com/knowledge-graphs-enhance-custo
mer-experience-through-speed-and-accuracy/).  Whereas  the
previous use case was very static, this one is highly dynamic.
We  analyze  in  real-time  the  text  chats  and  spoken
conversations between call center agents and customers. Our
knowledge graph software provides real-time decision support
to make the call center agents more efficient. N3 Results
helps big tech companies to sell their high tech solutions,
mostly cloud-based products and services but also helps their
clients sell many other technologies and services.

The main challenge we tackle is to really deeply understand
what the customer and agent are talking about. None of this
can be solved by only simple entity extraction but requires
elaborate rule-based and machine learning techniques. Just to
give a few examples. We want to know if the agent talked about
their most important talking points: that is, did the agent
ask if the customer has a budget, or the authority to make a
decision or a timeline about when they need the new technology
or whether they actually have expressed their need. But also
whether the agent reached the right person, and whether the
agent talked about the follow-up. In addition, if the customer



talks about competing technology we need to recognize that and
provide the agent in real-time with a battle card specific to
the competing technology. And in order to be able to do the
latter, we also analyzed the complicated marketing materials
of the clients of N3.

Example 3: Complex Government Documents
Imagine a regulatory body with tens of thousands of documents.
Where nearly every paragraph has reference to other paragraphs
in the same document or other documents and the documents
change over time. The goal here is to provide the end-users in
the government with the right document given their current
task at hand. The second goal is to keep track of all the
changes  in  the  documents  (and  the  relationship  between
documents) over time.

The Document to Knowledge Graph Pipeline





Let us first give a quick summary in words of how we turn
documents into a Knowledge Graph.

[1] Taxonomy Creation

Taxonomy of all the concepts important to the business using
open  source  or  commercial  taxonomy  builders.  An  available
industry taxonomy is a good starting point for additional
customizations.

[2] Document Preparation

We then take a document and turn it into an intermediate XML
using  Apache  Tika.  Apache  Tika  supports  more  than  1000
document types and although Apache Tika is a fantastic tool,
the output is still usually not clean enough to create a graph
from, so we use Spacy rules to clean up the XML to make it as
uniform as possible.

[3] Extract Document MetaData

Most documents also contain document metadata (author, date,
version, title, etc) and Apache Tika will also deliver the
metadata for a document as a JSON object.

[4] XML to Triples

Our tools ingest the XML and metadata and transform that into
a graph-based document tree. The document is the root and from
that, it branches out into chapters, optionally sections, all
the way down to paragraphs. The ultimate text content is in
the  paragraphs.  In  the  following  example  we  took  the  XML
version of Noam Chomsky’s book Media Control and turned that
into a tree. The following shows a tiny part of that tree. We
start with the Media Control node, then we show three (of the
11)  chapters,  for  one  chapter  we  show  three  (of  the  6)
paragraphs,  and  then  we  show  the  actual  text  in  that
paragraph. We sometimes can go even deeper to the level of
sentences and tokens but for most projects that is overkill.



[5] Entity Extractor

AllegroGraph’s entity extractor takes as input the text of
each paragraph in the document tree and one or more of the
taxonomies  and  returns  recognized  SKOS  concepts  based  on
prefLabels and altLabels. AllegroGraph’s entity extractor is
state of the art and especially powerful when it comes to
complex terms like product names. We find that in our call
center a technical product name can sometimes have up to six
synonyms  or  very  specific  jargon.  For  example  the  Cisco
product Catalyst 9000 will also be abbreviated as the cat 9k.
Instead of developing altLabels for every possible permutation
that human beings *will* use, we have specialized heuristics
to optimize the yield from the entity extractor. The following
picture shows 4 (of the 14) concepts discovered in paragraph
16. Plus one person that was extracted by IBM’s NLU.



[6] Linked Data Enrichment



In many use cases, AllegroGraph can link extracted entities to
concepts in the linked data cloud. The most prominent being
DBpedia, wikidata, the census database, GeoNames, but also
many Linked Open Data repositories. One tool that is very
useful  for  this  is  IBM’s  Natural  Language  Understanding
program but there are others available. In the following image
we see that the Nelson Mandela entity (Red) is linked to the
dbpedia entity for Nelson Mandela and that then links to the
DBpedia itself. We extracted some of his spouses and a child
with their pictures.

[7] Complex Relationship and Event Extraction

Entity extraction is a first good step to ‘see’ what is in
your documents but it is just the first step. For example: how
do you find in a text whether company C1 merged with company
C2. There are many different ways to express the fact that a
company fired a CEO. For example: Uber got rid of Kalanick,
Uber and Kalanick parted ways, the board of Uber kicked out
the CEO, etc. We need to write explicit symbolic rules for
this or we need a lot of training data to feed a machine
learning algorithm.

[8] NLP and Machine Learning



There are many many AI algorithms that can be applied in
Document  Knowledge  Graphs.  We  provide  best  practices  for
topics like:

[a]  Sentiment  Analysis,  using  good/bad  word  lists  or
training data.
[b]  Paragraph  or  Chapter  similarity  using  statistical
techniques like Gensim similarity or symbolic techniques
where we just the overlap of recognized entities as a
function of the size of a text.
[c]  Query  answering  using  word2vec  or  more  advanced
techniques like BERT
[d] Semantic search using the hierarchy in SKOS taxonomies.
[e] Summarization techniques for Abstractive or Extractive
abstracts using Gensim or Spacy.

[9] Versioning and Document tracking

Several of our customers with Document Knowledge Graphs have
noted the one constant in all of these KGs is that documents
change over time. As part of our solution, we have created
best practices where we deal with these changes. A crucial
first step is to put each document in its own graph (i.e. the
fourth element of every triple in the document tree is the
document id itself). When we get a new version of a document
the document ID changes but the new document will point back
to the old version. We then compute which paragraphs stayed
the same within a certain margin (there are always changes in
whitespace) and we materialize what paragraphs disappeared in
the new version and what new paragraphs appeared compared to
the previous version. Part of the best practice is to put the
old version of a document in a historical database that at all
times can be federated with the ‘current’ set of documents.

Note that in the following picture we see the progression of a
document. On the right hand side we have a newer version of a
document 1100.161 with a chapter -> section -> paragraph ->
contents where the content is almost the same as the one in



the  older  version.  But  note  that  the  newer  one  spells
‘decision making’ as one word whereas the older version said
‘decision-making’. Note that also the chapter titles and the
section titles are almost the same but not entirely. Also,
note that the new version has a back-pointer (changed-from) to
the older version.

[10] Statistical Relationships

One important analytic one can do on documents is to look at
the co-occurrence of terms. Although, given that certain words
might occur more frequently in text, we have to correct the
co-occurrence between words for the frequency of the two terms
in  a  co-occurrence  to  get  a  better  idea  of  the
‘surprisingness’  of  a  co-occurrence.  The  platform  offers
several techniques in Python and Lisp to compute these co-
occurrences. Note that in the following picture we computed
the odds ratios between recognized entities and so we see in



the following gruff picture that if Noam Chomsky talks about
South Africa then the chances are very high he will also talk
about Nelson Mandela.

Montefiore Semantic Data Lake
Tackles Predictive Analytics
Montefiore  Medical  Center  is  preparing  to  launch  a
sophisticated  predictive  analytics  program  for  crisis
patients, which is rooted in its real-time semantic data lake
technology.

Semantic computing is becoming a hot topic in the healthcare
industry as the first wave of big data analytics leaders looks
to move beyond the basics of population health management,
predictive analytics, and risk stratification.

This new approach to analytics eschews the rigid, limited

https://allegrograph.com/montefiore-semantic-data-lake-tackles-predictive-analytics/
https://allegrograph.com/montefiore-semantic-data-lake-tackles-predictive-analytics/


capabilities  of  the  traditional  relational  database  and
instead focuses on creating a fluid pool of standardized data
elements that can be mixed and matched on the fly to answer a
large number of unique queries.

Montefiore Medical Center, in partnership with Franz Inc., is
among the first healthcare organizations to invest in a robust
semantic data lake as the foundation for advanced clinical
decision support and predictive analytics capabilities.

Read the full article at Health IT Analytics

https://healthitanalytics.com/news/montefiore-semantic-data-lake-tackles-predictive-analytics

