Franz Inc. Announces
AllegroGraph Has No Log4j
Security Exposure

Franz Inc. has clearly stated that all of its products
including: AllegroGraph, Allegro CL, Allegro NFS and Gruff
have no exposure to the security vulnerability from Log4j.
Franz’s products have never used Log4j, unlike other Java
based graph databases and products that are vulnerable to this
security exploit.

Apache Log4j is a Java-based logging utility and 1is part of
the Apache Logging Services, a project of the Apache Software
Foundation. As reported by Wired News, “A vulnerability in the
widely used logging library has become a full-blown security
meltdown, affecting digital systems across the internet.
Hackers are already attempting to exploit it, but even as
fixes emerge, researchers warn that the flaw could have
serious repercussions worldwide.”

According to Wired, “The problem lies in Log4j, a ubiquitous,
open source Apache logging framework that developers use to
keep a record of activity within an application. Security
responders are scrambling to patch the bug, which can be
easily exploited to take control of vulnerable systems
remotely. At the same time, hackers are actively scanning the
internet for affected systems. Some have already developed
tools that automatically attempt to exploit the bug, as well
as worms that can spread independently from one vulnerable
system to another under the right conditions.”

“Decades of working with intelligence and government agencies
has instilled a ‘security-first approach’ in all of our
technology development,” said Dr. Jans Aasman, CEO of Franz,
Inc. “This exploit has the potential to affect any type of

https://allegrograph.com/franz-inc-announces-allegrograph-has-no-log4j-security-exposure/
https://allegrograph.com/franz-inc-announces-allegrograph-has-no-log4j-security-exposure/
https://allegrograph.com/franz-inc-announces-allegrograph-has-no-log4j-security-exposure/

business or organization. We want to assure all of our
customers that their products from Franz are not at risk of
exposure from Log4j."”

Born from early architectural influence within national
intelligence and defense agencies, AllegroGraph offers the
highest level of security available from a graph database. Not
only does AllegroGraph not use Log4j, but the product offers
unrivaled security via Triple Attributes, which is designed to
protect the most sensitive data within the flexible
environment of a graph database.

Download AllegroGraph, Allegro CL, Allegro NFS, or Gruff.

Adding Properties to Triples
in AllegroGraph

AllegroGraph provides two ways to add metadata to triples. The
first one is very similar to what typical property graph
databases provide: we use the named graph of triples to store
meta data about that triple. The second approach is what we
have termed triple attributes. An attribute is a key/value
pair associated with an individual triple. Each triple can
have any number of attributes. This approach, which is built
into AllegroGraph’s storage layer, is especially handy for
security and bookkeeping purposes. Most of this article will
discuss triple attributes but first we quickly discuss the
named graph (i.e. fourth element or quad) approach.

1.0 The Named Graph for Properties

Semantic Graph Databases are actually defined by the W3C
standard to store RDF as ‘Quads’ (Named Graph, Subject,

https://franz.com/
https://allegrograph.com/adding-properties-to-triples-in-allegrograph/
https://allegrograph.com/adding-properties-to-triples-in-allegrograph/
https://franz.com/agraph/support/documentation/current/agraph-introduction.html
https://franz.com/agraph/support/documentation/current/triple-attributes.html

Predicate, and Object). The ‘Triple Store’ terminology has
stuck even though the industry has moved on to storing
quads. We believe using the named graph approach to store
metadata about triples is richer model that the property graph
database method.

The best way to understand this is to give an example. Below
we see two statements about Bruce weighing 105 kilos. The
triple portions (subject, predicate, object) are identical but
the named graphs (fourth elements) differ. They are used to
provide additional information about the triples. The graph
values are S1 and S2. By looking at these graphs we see that

= The author of the first triple (with graph S1) is Sophia
and the author of the second (with graph S2) is Bruce
(who is also the subject of the two triples).

- Sophia is 100% certain about her statement while Bruce
is only 10% certain about his.

Using the named graph we can do even more than a property
graph database, as the value of a graph can itself be a node,
and is the subject of various triples which specify the
original triple’s author, date, and certainty. Additional
triples tell us the ages of the authors and the fact that the
authors are married.

Subject Predicate Object Graph

Bruce Weighs 105kg 51
Bruce Weighs 105kg 52
Bruce Age 45
Bruce MarriedTo Sophia
51 Author Sophia
Date 2012-12-12T0&:00:00
Certainty 100 %
52 Author Bruce
Date 2012-12-12T0&:00:00
certainty 10%
Sophia Age 47

Here is the data displayed in Gruff, AllegroGraph’s associated
triple store browser:

_.|.I:f.-1ﬂf5-il.lmilngmﬁrqph£112l;nw412.21 best vesd Fwite 11 triphes un!flﬂlﬁ&lﬂ‘ﬂd.
File View TedSesrch Displyy Lk Remove Layout Select Edd Globed Options Vipssl Graph Optices Melp

O

Auhor

Cartasnty

Dae [105]

Marriadio

Waighs

| Literal |

\Bio.Type)

[2012-12-12T08:00:00

[2012-12-12T08:00:00

Using named graphs for a triple’s metadata is a powerful tool
but it does have limitations: (1) only one graph value can be
associated with a triple, (2) it can be important that
metadata 1s stored directly and physically with the triple
(with named graphs, the actual metadata is usually stored in
additional triples with the graph as the subject, as in the
example above), and (3) named graphs have competing uses and

may not be available for metadata.

2.0 The Triple Attributes approach

AllegroGraph uniquely offers a mechanism called triple
attributes where a collection of user defined key/value pairs
can be stored with each individual triple. The advantage of
this approach is manyfold, but the original use case was
designed for triple level security for an Intelligence agency.

By having triple attributes physically connected to the
triples in the storage layer we can provide a very powerful
and flexible mechanism to protect triples at the lowest
possible level in AllegroGraph’s architecture. Our first
example below shows this use case in great detail. Other use
cases are for example to add weights or costs to triples, to
be used in graph algorithms. Or we can add a recorded time or
expiration times to a triple and use that to provide a time
machine in AllegroGraph or do automatic clean-up of old data.

Example with Attributes:

Subject — <http://dbpedia.org/resource/Arif Babayev>
Predicate — <http://dbpedia.org/property/place0OfDeath>
Object — <http://dbpedia.org/resource/Baku>
Named Graph — <http://ex#trans@all42684573200001>
Triple Attributes - {“securitylLevel”: *“high”,
“department”: “hr”, “accessToken”: [“E"”, “D"]}

This article provides an initial introduction to attributes
and the associated concept of static filters, showing how they
are set up and used. We start with a security example which
also describes the basics of adding attributes to triples and

filtering query results based on attribute values. Then we
discuss other potential uses of attributes.

2.1 Triple Attribute Basics: a Security Example

One important purpose of attributes, when they were added as a
feature, was to allow for very fine triple-level security, so
that triples would be visible or invisible to users according
to the attributes of the triples and the permissions
associated with the query being posed by the user.

Note that users as such do not have attributes. Instead,
attribute values are assigned when a query is posed. This is
an important point: it is natural to think that there can be
an attribute SECURITY-LEVEL, and a triple can have attribute
SECURITY-LEVEL=3, and USER1l can have an attribute SECURITY-
LEVEL=2 and USER2 can have an attribute SECURITY-LEVEL=4, and
the system can require that the user SECURITY-LEVEL attribute
must be greater than the triple SECURITY-LEVEL for the triple
to be visible to the user. But that is not how attributes
work. The triples can have the attribute SECURITY-LEVEL=2 but
users do not have attributes. Instead, the filter is made part
of the query.

Here is a simple example. We define attributes and static
attribute filters using AGWebView. We have a repository named
repo. Here is a portion of its AGWebView page:

AllegroGraph WebView repository repo
* | Repository | Queries | Utilities | Admin | User test

Repository repo — 0 statements
[edit description]
Load and Delete Data

o Add a statement

o Delete statements

¢ Import RDE:
o from an uploaded file
o from a server-zide file
¢ from a text area input

Explore the Repository
e Wiew triples
e View quads
e View reposttory’s classes
e View reposttory’s predicates
e Wiew reposttory’s named graphs

Reports
o Storage report
o Triple indices
o String table
o Full list of reports ...

Multi-Master Replication
¢ Convert store to a replication instance

Warm Standby Replication
¢ Control replication

Repository Control
o Export reposttory as | N-Triples ¥
Start a zeszion — support tranzactions and Prolog functors
Warmuop store
Bacl-up thiz repository
Export duplicate statements | Subject, Predicate, Object and Graph (spog) ¥
Delete duplicate statements
Svppress duplicate staternents false
WView active tranzactions
Eecognize geozpatial datatypes automatically:
Control durability (bulk-load mods)

Manage attribute definitions @
Set static attribute filter

MManage triple indices

= Optimize the repository 0

The red arrow points to the commands of interest: Manage
attribute definitions and Set static attribute filter. We
click on Set static attribute filter to define an attribute.
We have filled in the attribute information (name security-
level, minimum and maximum number allowed per triple, allowed
values, and whether order or not (yes in our case):

AllegroGraph WebView repositony repe

" | Repository | Queries | Utllities | Admin | User test

New Anribute
Name | secusity-level
Min guember | 0
Alax number 1

Allowed Valoes | 0,0,234,5 (7]

Attribute Definitions

Name Adin. msmiber Max, number Alloved values Ordered

No attributes have been defined

We click Save and the attribute 1is defined:

+ Add MNew

Name Min. number Max. number Allowed values Ordered

Then we define a filter (on the Set static attribute filter
page):

AllegroGraph WebView repository repo
“ | Repository | Queries | Utilities | Admin | User test

Static Filter

Current filter

{attribute-sets wser.security-Level triple.security-Level)

Edit filter

{attribute-set> user.security-level triple.security-level)

Save || Revert to current | | Clear

We defined the filter (attribute-set> user.security-level
triple.security-level) and clicked Save (the definition
appears in both the Edit and the Current fields). The filter
says that the “user” security level must be greater than the
triple security level. We put “user” in quotes because the
user security level is specified as part of the query, and has
no direct connection to any specific user.

Here are some triples in a ngx file fr.ngx. The first triple
has no attributes and the other three each has a security-
level attribute value.

<http://www.franz.com#emp0>

<http://www.franz.com#position> “intern”

<http://www.franz.com#empl>
<http://www.franz.com#position> “worker” {“security-level”:
llzll}

<http://www.franz.com#emp2>
<http://www.franz.com#position> “manager” {“security-level”:
ll3ll}

<http://www.franz.com#emp3>
<http://www.franz.com#position> “boss” {“security-level”: “4"}

We load this file into a repository which has the security-
level attribute defined as above and the static filter
mentioned above also defined. (Triples with attributes can
also be entered directly when using AGWebView with the Import
RDF from a text area input command).

Once the triples are loaded, we click View triples in
AGWebView and we see no triples:

AllegroGraph WebView repository repo

Edit query

F View triples

SELELCT ?s ?p ?o s 'p o

Execute || Log Query || Show Plan Save |as Add to repository

No results

This result is often surprising to users just beginning to
work with attributes and filters, who may expect the first
triple, abbreviated to [empO position intern], to be visible,
but the system is doing what it is supposed to do. It will
only show triples where the security-level of the user posing
the query is greater than the security level of the triple.
The user has no security level and so the comparison fails,
even with triples that have no security-level attribute value.
We will describe below how to ensure you can see triples with
no attributes.

So we need to specify an attribute value to the user posing
the query. (As said above, users do not themselves have
attribute values. But the attribute value of a user posing a
query can be specified as part of the query.) “User”
attributes are specified with a prefix like the following:

prefix franzOption userAttributes: <franz:%7B%22security-

level%22%3A%223%22%7D>

so the query should be

prefix franzOption userAttributes: <franz:%7B%22security-
level%22%3A%223%22%7D>

select ?s ?p 20 { ?s ?p 70 . }

We will show the results below, but first what are all the %
signs and numbers doing there? Why isn’t the prefix just
prefix franzOption userAttributes: <franz:{“security-
level”:"”3”}>? The issue is that {“security-level”:”3”} won't
read correctly. It must be URL encoded. We do this by going to
https://www.urlencoder.org/ (there are other websites that do
this as well) and put {“security-level”:”3”} in the first box,
click Encode and get %7B%22security-level%22%3A%223%22%7D. We
then paste that into the query, as shown above.

When we try that query in AGWebView, we get one result:

AllegroGraph WebView repository repo
* | Repository | Queries | Utilities | Admin | User test

Edit query

1 prefix franzoption_userattributes: «<franz:¥7e¥22security-levelX¥22¥3a¥z23%22%70
select ?s ?p o0 { *s ¥p o

| Execute I Log Query I Show Plan | | Save | as | Add to repository |
1 Result in 2619 ms Inforrmation
5 p o
=http://www.franz.com#empl>= <http://www.franz.com#position> "worker’

If we encode {“security-level”:”5”} to get the query

prefix franzOption userAttributes: <franz:%7B%22security-
level%22%3A%225%22%7D>
select ?s ?p 20 { ?s ?7p 70 . }

we get three results:

emp3 position “boss”
emp2 position “manager”’
empl position “worker”

since now the “user” security-level is greater than that of
any triples with a security-level attribute. But what about

the triple with subject emp0O, the triple with no attributes?
It does not pass the filter which required that the user
attribute be greater than the triple attribute. Since the
triple has no attribute value so the comparison failed.

Let us redefine the filter to:

(or (attribute-set> user.security-level triple.security-level)
(empty triple.security-level))

AllegroGraph WebView repository repo
" | Repository | Queries | Utilities | Admin | User test

Static Filter

Current filter

{or {attribute-set: user.security-Llevel triple.security-Level)

{empty triple.security-Llevel))

Edit filter

{or {attribute-set:> user.security-level triple.security-lewvel)
(empty triple.security-lewvel})

Save || Revert to current || Clear

Now a triple will pass the filter if either (1) the “user”
security-level is greater than the triple security-level or

(2) the triple does not have a security-level attribute. Now
the query from above where the user has attribute security-
level:”5” will show all the triples with security-level less
than 5 and with no attributes at all. That happens to be all

four triples so far defined:

AllegroGraph WebView repository repo
* | Repository | Queries | Utilities | Admin | User test

Edit query

1 i:_r_'g_a_fiw_ franzOption_userattributes: «franz:%7BER22security-level¥22X3aX225X22%70>

2 select ?= ?p o s Pp o

| Execute I Log Query I Show Plan | | Save |as i Add to repository |

4 Results in 0.286 ms Information
o

5 p
=http://www.franz.com#position= "intern

<http://www.franz.com£empl=
=<http://www.franz.com#emp3> <http://www.franz.com#position= "boss"
<http://www.franz.com#femp2>= <http://www.franz.com#position= “manager"
<http://www.franz.com#empl>= <http://www.franz.com#£position= “worker”

The triple
empoO position “intern”

will now appears as a result in any query where it satisfies
the SPARQL select regardless of the security-level of the

“user”.

It would be a useful feature that we could associate
attributes with actual users. However, this is not as simple
as it sounds. Attributes are features of repositories. If I
have a REPOl1l repository, it can have a bunch of defined
attributes and filters but my REPO2 may know nothing about
them and its triples may not have any attributes at all, and
no attributes are defined, and (as a result) no filters. But
users are not repository-linked objects. While a repository
can be made read-only or unreadable for a user, users do not
have finer repository features. So an interface for providing
users with attributes, since it would only make sense on a
per-repository basis, requires a complicated interface. That
is not yet implemented (though we are considering how it can
be done).

Instead, users can have specific prefixes associated with them
and that prefix and be included in any query made by the user.

But if all it takes to specify “user” attributes is to put the
right line at the top of your SPARQL query, that does not seem
to provide much security. There is a feature for users “Allow
user attributes via SPARQL PREFIX franzOption_userAttributes”
which can restrict a user’s ability to specify “user”
attributes in a query, but that is a rather blunt instrument.
Instead, the model is that most users (outside of trusted
administrators) are not actually allowed to pose SPARQL
queries directly. Instead, there is an intermediary program
which takes the query a user requests and, having determined
the status of the user and what attribute values should be
given to the user, modifies the query with the appropriate
franzOption userAttributes prefixes and then sends the query
on to the server, following which it captures the results and

sends them back to the requesting user. That intermediate
program will store the prefix suitable for a user and thus
associate “user” attributes with specific users.

2.2 Using attributes as additional data

Although triple security is one powerful use of attributes,
security is far from the only use. Just as the named graph can
serve as additional data, so can attributes. SPARQL queries
can use attribute values just as static filters can filter out
triples before displaying them. Let us take a simple example:
the attribute timeAdded. Every triple we add will have a
timeAdded attribute value which will be a string whose
contents are a datetime value, such as “2017-09-11T:15:52”. We
define the attribute:

Attribute Definitions

Name Min. number Max. number Allowed values Ordered

timeAddad 1 1

Now let us define some triples:

<http://www.franz.com#emp0>
<http://www.franz.com#callRank> “2"” {“timeAdded”:
“2019-01-12T10:12:45" } .

<http://www.franz.com#emp0>
<http://www.franz.com#callRank> “1” {“timeAdded”:
“2019-01-14T14:16:12" } .

<http://www.franz.com#emp0>
<http://www.franz.com#callRank> “3"” {“timeAdded”:
“2019-01-11T11:15:52" } .

<http://www.franz.com#empl>
<http://www.franz.com#callRank> “5"” {“timeAdded”:
“2019-01-13T11:03:22” } .

<http://www. franz.com#emp0>
<http://www.franz.com#callRank> “2"” {“timeAdded”:
“2019-01-13T09:03:22" } .

We have a call center with employees making calls. Each call
has a ranking from 1 to 5, with 1 the lowest and 5 the
highest. We have data on five calls, four from emp0® and one
from empl. Each triples has a timeAdded attribute with a
string containing a dateTime value. We load these into a empty
repository named at-test where the timeAdded attribute is
defined as above:

AllegroGraph WebView repository at-test
" | Repository | Queries | Utilities | Admin | User test
Repository at-test — 5 statements
[edit description]

Load and Delete Data

SPARQL queries can use the attribute magic properties (see
https://franz.com/agraph/support/documentation/current/triple-
attributes.html#Querying-Attributes-using-SPARQL). We use the
attributesNameValue magic property to see the subject, object,
and attribute value:

select ?s ?0 ?value {
(?ta ?value)

https://franz.com/agraph/support/documentation/current/triple-attributes.html#Querying-Attributes-using-SPARQL
https://franz.com/agraph/support/documentation/current/triple-attributes.html#Querying-Attributes-using-SPARQL

<http://franz.com/ns/allegrograph/6.2.0/attributesNameValue>
(?s ?p ?0)

}

* | Repository | Queries | Utilities | Admin | User test

Edit query

1 select ?= @ ?value

ta ?value) «<http://franz.comfns/allegrograph/e.2.8/attributesNamevalue: s ’p @
| Execute || Log Query || Show Plan | | Save |as | Add to repository |
5 Results in 0.363 ms Information
5 (o] value

2019-01-13T09:03:22"

"2019-01-13T11:03:22"

=http://www.franz.com#emp0=
=http://www.franz.com#empl=
ww.franz.com#emp0=

fod I—l-] u-| fod

=http:// 2019-01-11T11:15:52"
=http://www.franz.com#Zemp0 "2019-01-14T14:16:12"
=http://www.franz.com#emp0 2019-01-12T10:12:45"

But we are really interested just in emp® and we would like to
see the results ordered by time, that is by the attribute
value, so we restrict the query to emp0 as the subject and
order the results:

select 70 ?value {
(?7ta ?value)
<http://franz.com/ns/allegrograph/6.2.0/attributesNameValue>
(<http://www.franz.com#emp0> ?p ?0)
} order by ?value

Edit query

select ?o0 Fwalue

*ta Pwalue) <http://franz.com/ns/allegregraph/6.2.8/attributesNamevalues: :http: [weiw. franz. con#enpe: 2
order by value
Execute || Log Query || Show Plan Save |as Add to repository
4 Results in 0.630 ms Information
o] value
3 2015-01-11T11:15:52"
2" "2019-01-12T10:12:45"
2019-01-13T09:03:22"
"1" "2019-01-14T14:16:12"

There are the results for emp0O, who is clearly having
difficulties because the call rankings have been steadily
falling over time.

Another example using timeAdded is employee salary data. In
the Human Resources data, the salary of an employee is stored:

emp0 hasSalary 50000

Now empO gets a raise to 55000. So we delete the triple above
and add the triple

emp® hasSalary 55000

But that is not satisfactory because we have lost the salary

history. If the boss asks “How much was emp0® paid initially?”
we cannot answer. There are various solutions. We could define
a salary change object, with predicates effectiveDate,
previousSalary, newSalary, and so on:

salaryChange017 forEmployee emp0
salaryChange017 effectiveDate ““2019-01-12T10:12:45"
salaryChange017 oldSalary “50000”
salaryChange017 newSalary “55000"”

empO® hasSalaryChange salaryChange017

and that would work fine, but perhaps it is more setup and
effort than is needed. Suppose we just have hasSalary triples
each with a timeAdded attribute. Then the current salary is
the latest one and the history is the ordered list. Here that
idea is worked out:

<http://www.franz.com#emp0> <http://www.franz.com#hasSalary>
“50000”"""<http://www.w3.0rg/2001/XMLSchema#integer>
{“timeAdded”: “2017-01-12T710:12:45" }
<http://www.franz.com#emp0> <http://www.franz.com#hasSalary>
“55000”"""<http://www.w3.0rg/2001/XMLSchema#integer>
{“timeAdded”: “2019-03-17T712:00:00" }

What is the current salary? A simple SPARQL query tells us:

select 7?0 ?value {
(?7ta ?value)
<http://franz.com/ns/allegrograph/6.2.0/attributesNameValue>
(<http://www.franz.com#emp0>
<http://www.franz.com#hasSalary> ?0)
} order by desc(?value) limit 1

Edit query

select o0 ?value

*ta ?value) <http:/ffranz.com/ns/allegrograph/6.2.8/attributesNamevalue:
<http: /v, franz.comffempd: <htip://www.franz.com#hassalary> o
t order by desc(?value) limit 1
Execute || Log Query || Show Plan Save |as Add to repository
1 Result in 0.388 ms Information
o value
S5000" 2019-03-17T12:00:00"

The salary history is provided by the same query without the
LIMIT:

select 7?0 ?value {
(?ta ?value)

<http://franz.com/ns/allegrograph/6.2.0/attributesNameValue>

(<http://www.franz.com#emp0>

<http://www.franz.com#hasSalary> ?0) .

} order by desc(?value)

Edit query

select 20 value {
ta ?value) «<http://franz.comfns/allegrograph/6.2.8/attributesNamevalues
<http://waw.Tranz. confempe> <http:/ www.Tranz.com#hassalary> o
} order by desc{?value

Execute || Log Query || Show Plan Save a3 Add to repository

2 Results in 0.413 ms Information

0 value
55000" 201%-03-17T12:00;00"

"50000" "2017-01-12T10:12:45"

This method of storing salary data may not easily support more
complex questions which might be easily answered if we went
the salaryChange object route mentioned above but if you are
not looking to ask those questions, you should not do the
extra work (and the risk of data errors) required.

You could use the graph of each triple for the timeAdded. A1l
the examples above would work with minor tweaks. But there are
many uses for the named graph of a triple. Attributes are
available and using them for one purpose does not restrict
their use for other purposes.

Unraveling the Quandary of
Access Layer versus Storage
Layer Security

InfoSecurity — February 2019

Dr. Jans Aasman was quoted in this article about how
AllegroGraph’s Triple Attributes provide Storage Layer
Security.

With horizontal standards such as the General Data Protection
Regulation (GDPR) and vertical mandates like the Fair Credit
Reporting Act increasing in scope and number, information
security is impacted by regulatory compliance more than ever.

Organizations frequently decide between concentrating
protection at the access layer via role-based security
filtering, or at the storage layer with methods like
encryption, masking, and tokenization.

The argument is that the former underpins data governance
policy and regulatory compliance by restricting data access
according to department or organizational role. However, the
latter’s perceived as providing more granular security
implemented at the data layer.

A hybrid of access based security and security at the data
layer—-implemented by triple attributes—can counteract the
weakness of each approach with the other’s strength,
resulting in information security that Franz CEO Jans Aasman
characterized as “fine-grained and flexible enough” for any
regulatory requirements or security model.

https://allegrograph.com/unraveling-the-quandary-of-access-layer-versus-storage-layer-security/
https://allegrograph.com/unraveling-the-quandary-of-access-layer-versus-storage-layer-security/
https://allegrograph.com/unraveling-the-quandary-of-access-layer-versus-storage-layer-security/
https://franz.com/agraph/support/documentation/current/triple-attributes.html
https://franz.com/

The security provided by this semantic technology 1is
considerably enhanced by the addition of key-value pairs as
JSON objects, which can be arbitrarily assigned to triples
within databases. These key-value pairs provide a second
security mechanism “embedded in the storage, so you cannot
cheat,” Aasman remarked.

When implementing HIPPA standards with triple attributes,
“even if you’re a doctor, you can only see a patient record
if all your other attributes are okay,” Aasman mentioned.

“We’re talking about a very flexible mechanism where we can
add any combination of key-value pairs to any triples, and
have a very flexible language to specify how to use that to
create flexible security models,” Aasman said.

Read the full article at InfoSecurity.

Going Beyond Blockchain with
Directed Acyclic Graphs (DAG)

Crypto Slate — January 2019
by Dr. Jans Aasman, CEO, Franz Inc.

If organizations could only augment blockchain’s strengths—its
immutability, security, and decentralization—-while addressing
its latency and scalability issues, it could become the

https://www.pcmag.com/encyclopedia/term/45782/key-value-pair
https://www.infosecurity-magazine.com/opinions/access-storage-layer-security/
https://allegrograph.com/going-beyond-blockchain-with-directed-acyclic-graphs-dag/
https://allegrograph.com/going-beyond-blockchain-with-directed-acyclic-graphs-dag/

vaunted enterprise tool it was initially intended. That day
will soon come courtesy of Directed Acyclic Graphs (DAGs).

Blockchain’s premise is straightforward, utilitarian, and more
lucrative than that of any other new technology to recently
emerge. This distributed ledger system promises near real-time
updates of transactions between remote parties for
trustworthy, impenetrable peer-to-peer networks, eliminating
the need (and expense) of middlemen.

Read the full article at Crypto Slate.

Venture Beat Features
Montefiore’s Healthcare
project with AllegroGraph

From VentureBeat August 2018

This article discusses Montefiore’s PALM project that uses
AllegroGraph:

Montefiore is one of the largest employers in New York State.
It’s also one of the busiest health care complexes — hundreds
of thousands of patients pass through its sprawling campuses,
which include Montefiore Medical Center, the Albert Einstein
College of Medicine, and Montefiore Medical Park.

Those logistical challenges catalyzed the development of
Montefiore’s Patient-centered Analytical Learning Machine
(PALM), a machine learning platform built from the ground up
to predict and prevent life-threatening medical conditions
and minimize wailt times.

https://cryptoslate.com/beyond-blockchain-directed-acylic-graphs-dag/
https://allegrograph.com/venture-beat-features-montefiores-healthcare-project-with-allegrograph/
https://allegrograph.com/venture-beat-features-montefiores-healthcare-project-with-allegrograph/
https://allegrograph.com/venture-beat-features-montefiores-healthcare-project-with-allegrograph/

PALM juggles lots of datasets — electronic medical records,
insurance billing codes, drug databases, and clinical trial
results, to name a few. And its analytical models recently
expanded to handle voice, images, and sensor inputs from
internet of things devices.

Core to the semantic graph model are triplestores, which are
a type of database optimized for filing away and retrieving
triples. They’'re an entity composed of subject-predicate-
object — “John has tuberculosis,” for example — which PALM
builds dynamically, as needed. Along the way, the system uses
a frame data language, or FDL, to resolve ambiguities, like
when some electronic records refer to medication by its brand
instead of by its scientific name (e.g., “Advil” or “Motrin”
instead of ibuprofen).

Read the full article over at Venture Beat.

Navigating time 1in knowledge
graphs

Franz’s CEO, Jans Aasman, recently wrote the following article
for InfoWorld.

InfoWorld

FROM DG

The temporal benefits of cognitive knowledge graphs can
affect almost any business problem, including basic issues of
data management such as data quality, data cleansing, and

https://venturebeat.com/2018/08/02/how-intel-and-montefiore-medical-center-use-ai-to-improve-patient-outcomes/
https://allegrograph.com/navigating-time-in-knowledge-graphs/
https://allegrograph.com/navigating-time-in-knowledge-graphs/
https://en.wikipedia.org/wiki/Jans_Aasman

integration

The concept of time presents several distinct challenges for
data management, particularly as it applies to databases or
stores. Those difficulties are related to the nature of time,
which is ongoing, and 1its expressions 1in repositories. The
former means data are relevant both at state (a point 1in
time) and over periods of time, which increases the
complexity.

Read the Full Article

Optimizing Fraud Management
with AI Knowledge Graphs

From Global Banking and Finance Review — July 12, 2018

This article discusses Knowledge Graphs for Anti-Money
Laundering (AML), Suspicious Activity Reports (SAR),
counterfeiting and social engineering falsities, as well as
synthetic, first-party, and card-not-present fraud.

By compiling fraud-related data into an AI knowledge graph,
risk management personnel can also triage those alerts for
the right action at the right time. They also get the
additive benefit of reusing this graph to decrease other
risks for security, loans, or additional financial purposes.

Dr. Aasman goes on to note:

By incorporating AI, these threat maps yields a plethora of
information for actually preventing fraud. Supervised

https://www.infoworld.com/article/3265069/machine-learning/navigating-time-in-knowledge-graphs.html
https://allegrograph.com/optimizing-fraud-management-with-ai-knowledge-graphs/
https://allegrograph.com/optimizing-fraud-management-with-ai-knowledge-graphs/

learning methods can readily identify what events constitute
fraud and which don’t; many of these involve classic machine
learning. Unsupervised learning capabilities are influential
in determining normal user behavior then pinpointing
anomalies contributing to fraud. Perhaps the most effective
way AI underpins risk management knowledge graphs 1s 1in
predicting the likelihood—-and when—a specific fraud instance
will take place. Once organizations have data for customers,
events, and fraud types over a length of time (which could be
in as little as a month in the rapidly evolving financial
crimes space), they can compute the co-occurrence between
events and fraud types.

Read the full article over at Global Banking and Finance
Review.

https://www.globalbankingandfinance.com/optimizing-fraud-management-with-ai-knowledge-graphs/
https://www.globalbankingandfinance.com/optimizing-fraud-management-with-ai-knowledge-graphs/

The Most Secure Graph
Database Available

Triples offer a way of describing model elements and relationships
between them. In come cases, however, it is also convenient to be
able to store data that is associated with a triple as a whole
rather than with a particular element. For instance one might wish
to record the source from which a triple has been imported or
access level necessary to include it in query results. Traditional
solutions of this problem include using graphs, RDF reification or
triple IDs. All of these approaches suffer from various
flexibility and performance issues. For this reason AllegroGraph
offers an alternative: triple attributes.

Attributes are key-value pairs associated with a triple. Keys
refer to attribute definitions that must be added to the store
before they are used. Values are strings. The set of legal values
of an attribute can be constrained by the definition of that
attribute. It is possible to associate multiple values of a given
attribute with a single triple.

Possible uses for triple attributes include:

» Access control: It is possible to instruct AllegroGraph to
prevent an user from accessing triples with certain
attributes.

» Sharding: Attributes can be used to ensure that related
triples are always placed in the same shard when
AllegroGraph acts as a distributed triple store.

Like all other triple components, attribute values are immutable.
They must be provided when the triple is added to the store and
cannot be changed or removed later.

To illustrate the use of triple attributes we will construct an
artificial data set containing a log of information about contacts
detected by a submarine at a single moment in time.

https://allegrograph.com/the-most-secure-graph-database-available/
https://allegrograph.com/the-most-secure-graph-database-available/

Managing attribute definitions

Before we can add triples with attributes to the store we must
create appropriate attribute definitions.
First let’s open a connection

from franz.openrdf.connect import ag connect

conn = ag connect('python-tutorial', create=True, clear=True)

Attribute definitions are represented
by AttributeDefinition objects. Each definition has a name, which
must be unique, and a few optional properties (that can also be
passed as constructor arguments):

 allowed values: a list of strings. If this property 1is set
then only the values from this list can be used for the
defined attribute.

» ordered: a boolean. If true then attribute value comparisons
will use the ordering defined by allowed values. The default
is false.

 minimum_number, maximum_number: 1integers that can be used to
constrain the cardinality of an attribute. By default there
are no limits.

Let’'s define a few attributes that we will later use to
demonstrate wvarious attribute-related capabilities of
AllegroGraph. To do this, we will use
the setAttributeDefinition() method of the connection object.

from franz.openrdf.repository.attributes import AttributeDefinition

A simple attribute with no constraints governing the set
of legal values or the number of values that can be

associated with a triple.

tag = AttributeDefinition(name="'tag"')

An attribute with a limited set of legal values.
Every bit of data can come from multiple sources.

We encode this information in triple attributes,
since it refers to the tripe as a whole. Another

way of achieving this would be to use triple ids

or RDF reification.

source = AttributeDefinition(

name='source',

allowed values=['sonar', 'radar', ‘'esm', ‘'visual'])

H R R H H R

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.setAttributeDefinition

Security level - notice that the values are ordered
and each triple *must* have exactly one value for
this attribute. We will use this to prevent some
users from accessing classified data.
level = AttributeDefinition(
name="'level',
allowed values=['low', 'medium', 'high'],
ordered=True,
minimum number=1,
maximum_number=1)

An attribute like this could be used for sharding.
That would ensure that data related to a particular
contact is never partitioned across multiple shards.
Note that this attribute is required, since without
it an attribute-sharded triple store would not know
what to do with a triple.
contact = AttributeDefinition(

name='contact’,

minimum number=1,

maximum number=1)

So far we have created definition objects, but we
have not yet sent those definitions to the server.
Let's do this now.
conn.setAttributeDefinition(tag)
conn.setAttributeDefinition(source)
conn.setAttributeDefinition(level)
conn.setAttributeDefinition(contact)

This line 1is not strictly necessary, because our
connection operates in autocommit mode.

However, it is important to note that attribute
definitions have to be committed before they can
be used by other sessions.

conn.commit ()

It is possible to retrieve the list of attribute definitions from
a repository by using the getAttributeDefinitions() method:

for attr in conn.getAttributeDefinitions():
print('Name: {0}'.format(attr.name))
if attr.allowed values:
print('Allowed values: {0}'.format(
', '.join(attr.allowed values)))
print('Ordered: {0}'.format(
'Y' if attr.ordered else 'N'))
print('Min count: {0}'.format(attr.minimum number)
print('Max count: {0}'.format(attr.maximum number)

)
)

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.getAttributeDefinitions

print()

Notice that in cases where the maximum cardinality has not been
explicitly defined, the server replaced it with a default value.
In practice this value is high enough to be interpreted as ‘no
limit’.

Name: tag
Min count: 0
Max count: 1152921504606846975

Name: source

Allowed values: sonar, radar, esm, visual
Min count: ©

Max count: 1152921504606846975

Ordered: N

Name: level

Allowed values: low, medium, high
Ordered: Y

Min count: 1

Max count: 1

Name: contact
Min count: 1
Max count: 1

Attribute definitions can be removed (provided that the attribute
is not used by the static attribute filter, which will be
discussed later) by calling deleteAttributeDefinition():

conn.deleteAttributeDefinition('tag"')
defs = conn.getAttributeDefinitions()
print(', '.join(sorted(a.name for a in defs)))

contact, level, source

Adding triples with attributes

Now that the attribute definitions have been established we can
demonstrate the process of adding triples with attributes. This
can be achieved using various methods. A common element of all
these methods 1is the way in which triple attributes are
represented. In all cases dictionaries with attribute names as

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.deleteAttributeDefinition

keys and strings or lists of strings as values are used.
When addTriple() is used it is possible to pass attributes in a
keyword parameter, as shown below:

ex = conn.namespace('ex://")
conn.addTriple(ex.S1, ex.cls, ex.Udaloy, attributes={

'source': 'sonar',
'level': 'low',
‘contact': 'S1'

})

The addStatement() method works in similar way. Note that it is not
possible to include attributes in the Statement object itself.

from franz.openrdf.model import Statement

s = Statement(ex.M1l, ex.cls, ex.Zumwalt)
conn.addStatement(s, attributes={
'source': ['sonar', 'esm'],
'level': 'medium',
‘contact': 'M1°

})

When adding multiple triples with addTriples() one can add a fifth
element to each tuple to represent attributes. Let us illustrate
this by adding an aircraft to our dataset.

conn.addTriples(
[(ex.R1l, ex.cls, ex['Ka-27"'], None,
{'source': 'radar',
'level': 'low',
‘contact': 'R1'}),
(ex.R1, ex.altitude, 200, None,
{'source': 'radar',
'level': 'medium',
‘contact': 'R1'})1)

When all or most of the added triples share the same attribute set
it might be convenient to use the attributes keyword parameter.
This provides default values, but is completely ignored for all
tuples that already contain attributes (the dictionaries are not
merged). In the example below we add a triple representing an
aircraft carrier and a few more triples that specify its position.
Notice that the first triple has a lower security level and
multiple sources. The common ‘contact’ attribute could be used to
ensure that all this data will remain on a single shard.

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.addTriple
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.addStatement
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.model.html#franz.openrdf.model.Statement
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.addTriples

conn.addTriples (
[(ex.M2, ex.cls, ex.Kuznetsov, None, {

'source': ['sonar', 'radar', 'visual'l],
‘contact': 'M2',
'level': 'low',

}),

(ex.M2, ex.position, ex.pos343),
(ex.pos343, ex.x, 430.0),
(ex.pos343, ex.y, 240.0)],
attributes={
‘contact': 'M2',
'source': 'radar',
'level': 'medium'

})

Another method of adding triples with attributes is to use the NQX
file format. This works both
with addFile() and addData() (illustrated below):

from franz.openrdf.rio.rdfformat import RDFFormat

conn.addData("'""'
<ex://S2> <ex://cls> <ex://Alpha> |\

{"source": "sonar", "level": "medium", "contact": "S2"} .
<ex://S2> <ex://depth> "300"

{"source": "sonar", "level": "medium", "contact": "S2"} .
<ex://S2> <ex://speed kn> "15.0" |\

{"source": "sonar", "level": "medium", "contact": "S2"} .

‘"', rdf format=RDFFormat.NQX)

When importing from a format that does not support attributes, it
is possible to provide a common set of attribute values with a
keyword parameter:

from franz.openrdf.rio.rdfformat import RDFFormat

conn.addData("'""'

<ex://V1> <ex://cls> <ex://Walrus> ;
<ex://altitude> 100 ;
<ex://speed kn> 12.0e+8 .

<ex://NV2> <ex://cls> <ex://Walrus> ;
<ex://altitude> 200 ;
<ex://speed kn> 12.0e+8 .

<ex://V3> <ex://cls> <ex://Walrus> ;
<ex://altitude> 300;
<ex://speed kn> 12.0e+8 .

<ex://V4> <ex://cls> <ex://Walrus> ;
<ex://altitude> 400 ;

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.addFile
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.addData

<ex://speed kn> 12.0e+8 .
<ex://V5> <ex://cls> <ex://Walrus> ;

<ex://altitude> 500 ;

<ex://speed kn> 12.0e+8 .
<ex://V6> <ex://cls> <ex://Walrus> ;

<ex://altitude> 600 ;

<ex://speed kn> 12.0e+8 .

"', attributes={

'source': ‘'visual',
'level': 'high',
‘contact': 'a therapist'})

The data above represents six visually observed Walrus-class
submarines, flying at different altitudes and well above the speed
of light. It has been highly classified to conceal the fact that
someone has clearly been drinking while on duty — after all there
are only four Walrus-class submarines currently in service, so the
observation is obviously incorrect.

Retrieving attribute values

We will now print all the data we have added to the store,
including attributes, to verify that everything worked as
expected. The only way to do that is through a SPARQL query using
the appropriate magic property to access the attributes. The query

below binds a literal containing a JSON representation of triple
attributes to the ?a variable:

import json

r = conn.executeTupleQuery('""'
PREFIX attr: <http://franz.com/ns/allegrograph/6.2.0/>
SELECT ?s ?p 70 ?7a {
?7s ?7p 70 .
?a attr:attributes (7?s ?p ?0)
} ORDER BY 7s 7?p 70''")
with r:
for row in r:
print(row['s'], row['p'], row['0'])
print(json.dumps(json.loads(row['a'].label),
sort keys=True,
indent=4))

The result contains all the expected triples with pretty-printed
attributes.

https://franz.com/ns/allegrograph/6.2.0/attributes

<eX

<ex:

<ex:

<ex:

<ex:

<ex:

<eXx:

<eXx:

://M1> <ex://cls> <ex://Zumwalt>

"contact": "M1",

"level”: "medium",
"source": [

"esm",

"sonar"

]
//M2> <ex://cls> <ex://Kuznetsov>

"contact": "M2",

"level": "low",

"source": [
"visual",
"radar",
"sonar"

]

//M2> <ex://position> <ex://pos343>

"contact": "M2",
"level”: "medium",
"source": "radar"

//R1> <ex://altitude> "200""". ..

"contact": "R1",
"level”: "medium",
"source": "radar"

//R1> <ex://cls> <ex://Ka-27>

"contact": "R1",
"level": "low",
"source": "radar"

//S1> <ex://cls> <ex://Udaloy>

"contact": "S1",
"level": "low",
"source": "sonar"

//S2> <ex://cls> <ex://Alpha>
"contact": "S2",
"level": "medium",

"source": "sonar"

//S2> <ex://depth> "300"

"contact": "S2",

"level": "medium",
"source": "sonar"
}
<ex://S2> <ex://speed kn> "15.0"
{
"contact": "S2",
"level": "medium",
"source": "sonar"
}
<ex://V1> <ex://altitude> "100""". ..
{
"contact": "a therapist",
"level": "high",
"source": "visual"
}
<ex://V1> <ex://cls> <ex://Walrus>
{
"contact": "a therapist",
"level": "high",
"source": "visual"
}
<ex://V1> <ex://speed kn> "1.2E9"""...
{
"contact": "a therapist",
"level": "high",
"source": "visual"
}
<ex://pos343> <ex://x> "4.3E2""". ..
{
"contact": "M2",
"level": "medium",
"source": "radar"
}
<ex://pos343> <ex://y> "2.4E2""". ..
{
"contact": "M2",
"level": "medium",
"source": "radar"
}

Attribute filters

Triple attributes can be used to provide fine-grained access
control. This can be achieved by using static attribute filters.

https://franz.com/agraph/support/documentation/current/triple-attributes.html#static-filters

Static attribute filters are simple expressions that control which
triples are visible to a query based on triple attributes. Each
repository has a single, global attribute filter that can be
modified using setAttributeFilter(). The values passed to this
method must be either strings (the syntax is described in the
documentation of static attribute filters) or filter objects.
Filter objects are created by applying set operators to ‘attribute
sets’. These can then be combined using filter operators.

An attribute set can be one of the following:

»a string or a list of strings: represents a constant set of

values.

»TripleAttribute.name: represents the value of
the name attribute associated with the currently inspected
triple.

»UserAttribute.name: represents the value of

the name attribute associated with current query. User
attributes will be discussed in more detail later.

Available set operators are shown in the table below. All classes
and functions mentioned here can be imported from
the franz.openrdf.repository.attributes package:

Syntax Meaning

True if the specified attribute set

SIS is empty

True if there is at least one
Overlap(x, V) matching value between the two
attribute sets.

True if every element of x can be

Subset(x, y), X <<y found in y

True if every element of y can be

Superset(x, y), x >y found in x

True if x and y have exactly the same

Equal(x, y), x ==y contents

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.setAttributeFilter
https://franz.com/agraph/support/documentation/current/triple-attributes.html#static-filters

Syntax Meaning

True if both sets are singletons, at
least one of the sets refers to a
triple or user attribute, the
Lt(x, y), X <Yy attribute is ordered and the value of
the single element of x occurs before
the single value of y in
the lowed values list of the attribute.

Le(x, y), X <=y True if y < x is false.

True if both x < y and y < x are
Eq(x, vy) false. Note that using the == Python
operator translates toEqauls, not Egq.

Ge(x, y), x >=y True if x < y is false.

Gt(x, y), x>y True if y < x.

Note that the overloaded operators only work if at least one of
the attribute sets is a UserAttribute or TripleAttribute reference —
if both arguments are strings or lists of strings the default
Python semantics for each operator are used. The prefix syntax
always produces filters.

Filters can be combined using the following operators:

Syntax Meaning
Not(x), ~x Negates the meaning of the filter.
And(x, vy, ...), x &y True if all subfilters are true.

True if at least one subfilter is

or(x, y, ...), X |y true

Filter operators also work with raw strings, but overloaded
operators will only be recognized if at least one argument is a
filter object.

Using filters and user attributes

The example below displays all classes of vessels from the dataset
after establishing a static attribute filter which ensures that
only sonar contacts are visible:

from franz.openrdf.repository.attributes import *

conn.setAttributeFilter(TripleAttribute.source >> 'sonar')
conn.executeTupleQuery (
‘select 7class { ?s <ex://cls> 7class } order by 7class’,
output=True)

The output contains neither the visually observed Walruses nor the
radar detected ASW helicopter.

| ex://Alpha |
| ex://Kuznetsov |
| ex://Udaloy |
| ex://Zumwalt |

To avoid having to set a static filter before each query (which
would be inefficient and cause concurrency issues) we can employ
user attributes. User attributes are specific to a particular
connection and are sent to the server with each query. The static
attribute filter can refer to these and compare them with triple
attributes. Thus we can use code presented below to create a
filter which ensures that a connection only accesses data at or
below the chosen clearance level.

conn.setUserAttributes({'level': 'low'})
conn.setAttributeFilter(

TripleAttribute.level <= UserAttribute.level)
conn.executeTupleQuery (

‘select 7class { ?s <ex://cls> 7class } order by 7class’,

output=True)

We can see that the output here contains only contacts with the
access level of low. It omits the destroyer and Alpha submarine
(these require medium level) as well as the top-secret Walruses.

| ex://Ka-27 |
| ex://Kuznetsov |
| ex://Udaloy |

The main advantage of the code presented above is that the filter
can be set globally during the application setup and access
control can then be achieved by varying user attributes on
connection objects.

Let us now remove the attribute filter to prevent it from
interfering with other examples. We will use
the clearAttributeFilter() method.

conn.clearAttributeFilter()

It might be useful to change connection’s attributes temporarily
for the duration of a single code block and restore prior
attributes after that. This <can be achieved wusing
the temporaryUserAttributes() method, which returns a context
manager. The example below illustrates its use. It also shows how
to use getUserAttributes() to inspect user attributes.

with conn.temporaryUserAttributes({'level': 'high'}):
print('User attributes inside the block:')
for k, v in conn.getUserAttributes().items():

print('{0}: {1}'.format(k, v))

print()

print('User attributes outside the block:')

for k, v in conn.getUserAttributes().items():
print('{0}: {1}'.format(k, v))

User attributes inside the block:
level: high

User attributes outside the block:
level: low »

Semantic Graph Analytics Can

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.clearAttributeFilter
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.temporaryUserAttributes
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.getUserAttributes
https://allegrograph.com/semantic-graph-analytics-can-propel-the-advent-of-personalized-medicine/

Propel The Advent of
‘Personalized Medicine’

From Health IT Qutcomes:

Analyzing massive stores of medical data can be overwhelming.
Still, it’'s an important mission: data analysis could provide
new, more tailored treatments. Terms like “personalized
medicine, precision medicine,” and “individualized medicine”
all refer to a data-driven approach toward to goal of
customizing medical treatment for every patient’s unique
genetic and molecular composition. However noble, that goal is
somewhat limited.

n i

Personalized medicine, often described as a way to provide
“the right patient with the right drug at the right dose at
the right time,” in fact goes beyond custom treatment — it
encompasses the entire healthcare process, from prevention, to
treatment, to disease management, and considers each patient
as an individual.

Read the full article:

Franz Inc. and The Wroclaw
Institute of Spatial
Information and Artificial
Intelligence (The Wroclaw

https://allegrograph.com/semantic-graph-analytics-can-propel-the-advent-of-personalized-medicine/
https://allegrograph.com/semantic-graph-analytics-can-propel-the-advent-of-personalized-medicine/
http://www.fda.gov/scienceresearch/specialtopics/personalizedmedicine/default.htm
https://www.healthitoutcomes.com/doc/semantic-graph-analytics-can-propel-the-advent-of-personalized-medicine-0001
https://allegrograph.com/franz-inc-and-the-wroclaw-institute-of-spatial-information-and-artificial-intelligence-the-wroclaw-institute-team-up-to-deliver-graph-and-a-i-solutions-in-poland/
https://allegrograph.com/franz-inc-and-the-wroclaw-institute-of-spatial-information-and-artificial-intelligence-the-wroclaw-institute-team-up-to-deliver-graph-and-a-i-solutions-in-poland/
https://allegrograph.com/franz-inc-and-the-wroclaw-institute-of-spatial-information-and-artificial-intelligence-the-wroclaw-institute-team-up-to-deliver-graph-and-a-i-solutions-in-poland/
https://allegrograph.com/franz-inc-and-the-wroclaw-institute-of-spatial-information-and-artificial-intelligence-the-wroclaw-institute-team-up-to-deliver-graph-and-a-i-solutions-in-poland/

Institute) team up to deliver
graph and A.I. solutions 1in
Poland

A Wroclaw Institute News Release

OAKLAND, Calif. — March 15, 2016 — We are pleased to inform
that Wroclaw Institute has been appointed as a partner
by Franz Inc.— world’s leading producer of semantic graph
technologies. The agreement grants to Wroclaw Institute
exclusive right to sell Franz’'s — AllegroGraph family of
products for territory of Poland. AllegroGraph is best 1in
class graph database, fully supporting W3C standards adopted
by start-up’s as well as vast number of Fortune 100 companies.
AllegroGraph is a part of Big Data ecosystem as it could be
integrated with Apache Hadoop and Amazon EC2.

The Wroclaw Institute CEO — Dr. Adam Iwaniak said “Partnership
with Franz Inc. is a turning point for our company as semantic
graph technology is gaining a lot of market attention in ‘data
tsunami’ era. We are happy that we will be able to provide our
customers with award winning solution to help them manage
their complex data resources. Moreover I'd like to emphasize
that as a company we made a big progress in leveraging RDF
graphs technologies also on our basic market -
geoinformatics”.

“We are excited about the opportunity to work with Dr. Iwaniak
and the Wroclaw Institute team to demonstrate why Graph
Databases deliver new, real time decision making capabilities
for the Enterprise.” said Dr. Jans Aasman, CEO, Franz Inc.,
“Organizations across Poland will benefit from AllegroGraph’s
ability to link highly complex data, generating new knowledge
and insight for a significant competitive advantage.”

AllegroGraph is a database technology that enables businesses

https://allegrograph.com/franz-inc-and-the-wroclaw-institute-of-spatial-information-and-artificial-intelligence-the-wroclaw-institute-team-up-to-deliver-graph-and-a-i-solutions-in-poland/
https://allegrograph.com/franz-inc-and-the-wroclaw-institute-of-spatial-information-and-artificial-intelligence-the-wroclaw-institute-team-up-to-deliver-graph-and-a-i-solutions-in-poland/
https://allegrograph.com/franz-inc-and-the-wroclaw-institute-of-spatial-information-and-artificial-intelligence-the-wroclaw-institute-team-up-to-deliver-graph-and-a-i-solutions-in-poland/
https://franz.com/
https://allegrograph.com/

to extract sophisticated decision insights and predictive
analytics from their highly complex, distributed data that
can’'t be answered with conventional databases. Unlike
traditional relational databases, Franz’s product AllegroGraph
employs a combination of semantic, graph and spatial
technologies that process data with contextual and conceptual
intelligence. AllegroGraph is able to run queries of
unprecedented complexity to support predictive analytics that
help companies make better, real-time decisions.

AllegroGraph 1is commonly used in defense and intelligence,
banking, and insurance, pharmaceutical, and healthcare, Linked
Data publishing, as well as by organization dealing with
complex, constantly changing knowledge bases.

About Franz Inc.

Franz Inc. is a leading vendor of semantic technology tools
featuring AllegroGraph — high-performance, scalable, disk-
based graph database, provides the solid storage layer for
powerful GeoTemporal Reasoning, Social Network Analytics and
Ontology Modeling. Based in Oakland, California, Franz Inc. 1is
an American owned company that delivers leading-edge
development products that enable software developers to build
flexible, scalable, semantic applications quickly and cost-
effectively.

About The Wroclaw Institute

The Wroclaw Institute of Spatial Information and Artificial
Intelligence is Wroclaw, Poland based technology company
focused on knowledge engineering, data exploration and
intelligent GIS providing products, services and solutions
based on cutting-edge scientific and technological
achievements.

Related Links

= WIZIPISI dystrybutorem oprogramowania AllegroGraph

 Oprogramowanie bazodanowe AllegroGraph dostepne w Polsce

»Wroclaw Institute of Spatial Information and Artificial
Intelligence

All trademarks and registered trademarks in this document are
the properties of their respective owners.

http://geoforum.pl/?page=news&id=21456&link=wizpisi-dystrybutorem-oprogramowania-allegrograph&menu=46814,46836
http://www.gisplay.pl/gis/5963-oprogramowanie-allegrograph-w-polsce.html
https://www.linkedin.com/company/wroclaw-institute-of-spatial-information-and-artificial-intelligence?trk=company_logo
https://www.linkedin.com/company/wroclaw-institute-of-spatial-information-and-artificial-intelligence?trk=company_logo

