
No-Code  Queries  Can
Accelerate  AI  and  Data
Analytics
By Dr. Jans Aasman, CEO

The low-code, no-code methodology is becoming highly sought-
after throughout the modern IT ecosystem—and with good reason.
Options that minimize manually writing code capitalize on the
self-service, automation idiom that’s imperative in a world in
which  working  remotely  and  doing  more  with  less  keeps
organizations  in  business.

Most  codeless  or  low-code  approaches  avoid  the  need  for
writing language-specific code and replace it with a visual
approach in which users simply manipulate on-screen objects
via  a  drag-and-drop,  point-and-click  interface  to  automate
code generation. The intuitive ease of this approach — which
is  responsible  for  new  standards  of  efficiency  and
democratization of no-code development — has now extended to
no-code query writing.

No-code querying provides two unassailable advantages to the
enterprise. First, it considerably expedites what is otherwise
a time-consuming ordeal, thereby accelerating data analytics
and  AI-driven  applications  and  second,  it  can  help
organizations overcome the talent shortage of developers and
knowledge engineers. Moreover, it does so by furnishing all
the above benefits that make codeless and low-code options
mandatory for success.

Read the full article at DZone.
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NLP:  Unlock  the  Hidden
Business  Value  in  Voice
Communications

By Dr. Jans Aasman, CEO, Franz Inc.

Today organizations capture an enormous amount of information
in spoken conversations, from routine customer service calls
to sophisticated claims processing interactions in finance and
healthcare. But most of this information remains hidden and
unused due to the difficulty of turning these conversations
into meaningful data that can be effectively analyzed through
Natural Language Processing (NLP).

Simply  applying  speech  recognition  software  to  voice
conversations often results in unreliable data. State-of-the-
art  speech  recognition  systems  still  have  trouble
distinguishing  between  homophones  (words  with  the  same
pronunciation,  but  different  meanings),  as  well  as  the
difference between proper names (i.e. people, products) and
separate words. In addition, there is also the challenge of
identifying domain-specific words accurately. Thus, in most
cases, using speech recognition software alone doesn’t produce
accurate enough data for reliable NLP.

Domain-specific  taxonomies  are  key  to  understanding
conversations via speech recognition systems. With them, we
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can feed conversations to knowledge graphs that understand the
conversation  and  make  connections  in  the  data.  Knowledge
graphs provide the ability to extract the correct meaning of
text from conversations and connect concepts in order to add
business value.

Knowledge graphs fed with NLP provide two prime opportunities
for monetization. First, organizations can better understand
their customers to improve products and services more to their
liking, which in turn boosts marketing, sales and customer
retention rates. Secondly, this analysis gives contact center
agents real-time support for optimizing customer interactions
to produce faster resolutions, better conversion rates, and
cross-selling and up-selling opportunities. These approaches
enable companies to capitalize on speech recognition knowledge
graphs, accelerate their ROI, and expand their bottom lines.

Taxonomy Driven Speech Recognition
The  story  of  taxonomy-driven  speech  recognition  closely
relates  to  knowledge  graphs.  The  first  wave  of  knowledge
graphs was built from taking structured data and turning it
into  semantic  graphs  that  support  the  linked  open  data
movement. The next wave is all about unstructured data. People
started doing Natural Language Processing on documents and
textual  conversations  like  emails  and  chats.  Doing  so
accurately  for  a  given  domain  requires  a  taxonomy  to
understand  the  words  and  concepts.  Otherwise,  downstream
processes like entity extraction and event detection won’t
work.

Read the full article at DZone.
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Data-Centric  Architecture
Forum – DCAF 2021
Data and the subsequent knowledge derived from information are
the most valuable strategic asset an organization possesses.
Despite  the  abundance  of  sophisticated  technology
developments, most organizations don’t have disciplines or a
plan to enable data-centric principles.

DCAF 2021 will help provide clarity.
Our overarching theme for this conference is to make it REAL.
Real in the sense that others are becoming data-centric, it is
achievable, and you are not alone in your efforts.

Join us in understanding how data as an open, centralized
resource outlives any application. Once globally integrated by
sharing a common meaning, internal and external data can be
readily  integrated,  unlike  the  traditional  “application-
centric” mindset predominantly used in systems development.

The compounding problem is these application systems each have
their own completely idiosyncratic data models. The net result
is  that  after  a  few  decades,  hundreds  or  thousands  of
applications implemented have given origin to a segregated
family of disparate data silos. Integration debt rises and
unsustainable  architectural  complexity  abounds  with  every
application bought, developed, or rented (SaaS).

Becoming  data-centric  will  improve  data  characteristics  of
findability, accessibility, interoperability, and re-usability
(FAIR principles), thereby allowing data to be exported into
any needed format with virtually free integration.\
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Dr.  Jans  Aasman  to  present  –
Franz’s  approach  to  Entity  Event
Data  Modeling  for  Enterprise
Knowledge  Fabrics

 

Text Analytics Forum 2020 –
KMWorld Connect
Join us November 17, 2020 – Text Analytics has the ability to
add depth, meaning, and intelligence to any organization’s
most under-utilized resource – text. Through text analytics,
enterprises can unlock a wealth of information that would not
otherwise be available. Join us as we explore the power of
text analytics to provide relevant, valuable, and actionable
data for enterprises of all kinds.

Jans Aasman to present – Analyzing Spoken Conversations for
Real-Time Decision Support in Mission-Critical Applications

November 17, 2020 at 2PM Eastern
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Knowledge  Graphs:  A  Single
Source  of  Truth  for  the
Enterprise

The notion of a “single source of
truth” for the enterprise has been
the proverbial moving goalpost for
generations  of  CIOs,  only  to  be
waylaid by brittle technology and
unending  legacy  systems.  Truth-
seeking  visions  rebuffed  by
technological  trends  have
continuously  confounded  business

units trying to achieve growth and market penetration. But
technology innovation has finally led us to a point where CIOs
can now deliver that truth.

Graphing the Truth

Knowledge graphs possess the power to deliver a single source
of truth by linking together any assortment of data sources
required, standardizing their diversity of data elements, and
eliminating silos. They support the most advanced analytics
options and decentralized transactions, which is why they’re
now  deployed  as  systems  of  records  for  some  of  the  most
significant,  mission-critical  use  cases  affecting  our
population.

Because  they  scale  to  include  almost  any  number  of
applications — and link to other knowledge graphs as well —
these  repositories  are  the  ideal  solution  for  real-time
information necessary to inform business users’ performances
with concrete, data-supported facts. Most importantly, users
can get an exhaustive array of touchpoints pertaining to any
customer, product, or interaction with an organization from
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the knowledge graph, making it a single source of truth.

Read the full article at Dataversity.

Using Microsoft Power BI with
AllegroGraph
There are multiple methods to integrate AllegroGraph SPARQL
results into Microsoft Power BI. In this document we describe
two best practices to automate queries and refresh results if
you have a production AllegroGraph database with new streaming
data:

The first method uses Python scripts to feed Power BI. The
second method issues SPARQL queries directly from Power BI
using POST requests.

Method 1: Python Script:

Assuming you know Python and have it installed locally, this
is definitely the easiest way to incorporate SPARQL results
into Power BI. The basic idea of the method is as follows:
First, the Python script enables a connection to your desired
AllegroGraph  repository.  Then  we  utilize   AllegroGraph’s
Python API within our script to run a SPARQL query and return
it as a Pandas dataframe. When running this script within
Power BI Desktop, the Python scripting service recognizes all
unique  dataframes  created,  and  allows  you  to  import  the
dataframe into Power BI as a table, which can then be used to
create visualizations.

Requirements:

You must have the AllegroGraph Python API installed. If1.
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you  do  not,  installation  instructions  are  here:
https://franz.com/agraph/support/documentation/current/p
ython/install.html
Python scripting must be enabled in Power BI Desktop.2.
Instructions  to  do  so  are  here:
https://docs.microsoft.com/en-us/power-bi/connect-data/d
esktop-python-scripts

a) As mentioned in the article, pandas and matplotlib
must be installed. This can be done with ‘pip install
pandas’ and ‘pip install matplotlib’ in your terminal.

The Process:

Once these requirements have been met, create a Python file
with whatever script editor you usually use. The following
code will create a connection to your desired repository. For
this example, we will be using the Kennedy dataset that is
available  with  the  AllegroGraph  distribution  (See  the
‘Tutorial’ directory).  Load the Kennedy.ntriples file into
your running AllegroGraph. (Replace the ‘****’ in the code
with your corresponding username and password.)

#the necessary imports

import os

from franz.openrdf.connect import ag_connect

from franz.openrdf.query.query import QueryLanguage

import pandas as pd

 

#connect to your agraph repository

def setup_env_var(var_name, value, description):

os.environ[var_name] = value

https://franz.com/agraph/support/documentation/current/python/install.html
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print("{}: {}".format(description, value))

setup_env_var('AGRAPH_HOST', 'localhost', 'Hostname')

setup_env_var('AGRAPH_PORT', '10035', 'Port')

setup_env_var('AGRAPH_USER', '****', 'Username')

setup_env_var('AGRAPH_PASSWORD', '****', 'Password')

conn = ag_connect('kennedy', create=False, clear=False)

 

2. We then want to create a query. For this example, we will
first show what our data looks like, what the visual query of
the information is, and what the written query looks like.
With the following query we want every person’s first and last
names, as well as their birth years. Here is a small portion
of the data visualized in Gruff, and then the visualization of
the query:



 

3. Then add the written query to the python script as a
variable string (we added an additional line to the query to
sort on birth year). Next use the API functionality to simply
execute  the  query  and  turn  the  results  into  a  pandas
dataframe.

query = """select ?person ?first_name ?last_name ?birth_year
where
{ ?person <http://www.franz.com/simple#first-name> ?first_name
;
          <http://www.franz.com/simple#birth-year> ?birth_year
;
          rdf:type <http://www.franz.com/simple#person> ;
          <http://www.franz.com/simple#last-name> ?last_name .
}
order by desc(?birth_year)"""

with conn.executeTupleQuery(query) as result:
   df = result.toPandas()

 

When looking at the result, we see that we have a DataFrame!



4.  Now we will use this script in Power BI. When in Power BI
Desktop, go to ‘Get Data’ and look for the python script
option. Then simply copy and paste your entire script into the
text box, and run the script. In this case, our output looks
like this:

5.  Next simply ‘Load’ the data, and then you can use the
Power BI Desktop interface to create whatever visualizations
you want! If you do have a lot of additional operations to
perform on your dataframe, we recommend doing these in your
python script.

 

Method 2: POST Request:

For the SPARQL query via POST requests to work you need to
url-encode the query. Every modern programming language will
support that, but in our example we will be using Python



again. This method is better for when you do not have python
locally installed or prefer a different programming language.

It is possible to send a GET request from Power BI, but once
the  results  from  the  query  reach  a  certain  size,  a  POST
request is required, which is confusing to do within the Power
BI Desktop interface. The following steps will show you how to
do SPARQL Queries using POST requests. It looks a bit odd but
it works well.

The Process:

1.  In your AG WebView create an ‘anonymous’ user. (Go to
admin -> Users -> [add a user] -> and add ‘anonymous’ as
username  without  adding  a  password).  You  can  use  these
settings:

2.  Go to your desired repository in WebView and Click on
‘Queries’ -> ‘New’

3.  Write a simple SPARQL query, and run it to make sure you
get the correct response back.

4.  In python create the following script: (Assuming your
AllegroGraph is on your localhost port 10035 and your repo is
called ‘kennedy’)

import urllib



def CreatePOSTquery(query):
    start  =

"http://anonymous:@localhost:10035/repositories/kennedy?queryL
n=SPARQL&limit=1000&infer=false&returnQueryMetadata=false&chec
kVariables=false&query="
    response = start + urllib.parse.quote(query)
    return response

 

This function url-encodes the query and attaches it to the
POST  request.  Replace  the  ‘localhost:10035’  and  ‘kennedy’
strings in the start variable with your corresponding data.
Then, using the same query as our previous example, we create
our url-encoded POST query:

query = """select ?person ?first_name ?last_name ?birth_year
where
{ ?person <http://www.franz.com/simple#first-name> ?first_name
;
          <http://www.franz.com/simple#birth-year> ?birth_year
;
          rdf:type <http://www.franz.com/simple#person> ;
          <http://www.franz.com/simple#last-name> ?last_name .
}
order by desc(?birth_year)"""

result = CreatePOSTquery(query)
print(result)

 

This gives us the following result:



 

5.  Within Power BI Desktop we go to ‘Get data’ and create a
‘Blank query’ and go into the ‘Advanced Editor’ window. Using
the following format we will get our desired results (please
note that due to the length of the url-encoded request, it did
not all fit in the image. Copy and pasting into the url field
works fine. The ‘url’ variable needs to be in quotes and have
a comma at the end):

 

We see the following results:

6.  One last step is to turn the top row into the column
names, which can be achieved by pressing the ‘Use first row as
headers’:



The best part about both of these methods is that once the
query has been created, Power BI can refresh the visuals using
the same queries if your data changed. This can be achieved by
scheduling refreshes within the Power BI Desktop interface
(https://docs.microsoft.com/en-us/power-bi/connect-data/refres
h-data#configure-scheduled-refresh)

Please send any questions or issues to:  support@franz.com

 

Knowledge  graphs  enhance
customer  experience  through
speed and accuracy
KMWorld’s  recent  article  covers  AllegroGraph  and  Franz’s
customer N3 Solutions.

The Full Article – KMWorld

Knowledge graphs are a way to model enterprise knowledge and

https://docs.microsoft.com/en-us/power-bi/connect-data/refresh-data#configure-scheduled-refresh
https://docs.microsoft.com/en-us/power-bi/connect-data/refresh-data#configure-scheduled-refresh
mailto:support@franz.com
https://allegrograph.com/knowledge-graphs-enhance-customer-experience-through-speed-and-accuracy/
https://allegrograph.com/knowledge-graphs-enhance-customer-experience-through-speed-and-accuracy/
https://allegrograph.com/knowledge-graphs-enhance-customer-experience-through-speed-and-accuracy/
https://www.kmworld.com/Articles/Editorial/Features/Knowledge-graphs-enhance-customer-experience-through-speed-and-accuracy-141623.aspx


represent  complex  interrelationships  in  data.  Information
stored in a graph database can enable rapid retrieval of well-
targeted  results  and  provide  insights  into  customers’
interests and needs. Gartner predicts a 100% per-year growth
in applications for graph analytics and databases for the next
several years. Although knowledge graphs have been deployed by
major companies such as Google, Amazon, and LinkedIn due to
their ability to incorporate relationships in their analyses
as well as their speed, only in the last 5 years has their use
become more widespread.

N3 is an outsourced sales company for major organizations that
sell complex B2B software, hardware, and tech solutions. It
supports businesses in 92 countries, provides services in 25
languages, and holds thousands of hours of conversations every
month  with  customers  and  prospects.  “In  today’s  world  of
complex products, it takes a well-educated team to tell the
story about how this technology can help a company become more
competitive,” said Shannon Copeland, COO of N3. “The sales
team needs to be able to instantly access the information they
need to do their job.”

Faster insights

The company has been operating for 16 years, and in the last
few years began an initiative to manage its knowledge in a
more intentional way. “We generate a great deal of data,”
noted Copeland, “and we wanted to make more effective use of
it to understand our customers. And because of the speed at
which business is transacted now, we needed to get insights
right away, not a month later in a report.”

N3 built a data model to reflect the essential data elements
and the associations among them and decided that a knowledge
graph was the best way to represent the information. After
looking into partner options, N3 chose to work with Franz,
Inc.,  which  provides  a  semantic  graph  database  called
AllegroGraph. “We decided to work with Franz because of its



extensive experience and the fact that it had worked with a
variety of industries,” Copeland said.

The system built by N3 allows sales teams to organize signals
from the market in a way that allows them to better explain
the products to prospective buyers. “We build relationships
with  tech  buyers  on  behalf  of  our  clients,”  continued
Copeland. “Our employees are typically college graduates who
would like to begin their careers in sales and marketing in
tech solutions. They take ownership of their territory and we
help them be as sophisticated as a future CMO would be.” The
resources supplied by the knowledge graph provide the support
the sales team needs to tailor information to each prospective
customer.

The specific expertise required by the team varies depending
on the products being sold, the geographic region, and other
factors, and the knowledge graph supports these needs. For
example, if a team in southern Portugal needs to know the
preferences of that market, the associations built into the
graph database can provide the information that is essential
for  them.  “The  information  we  can  access  helps  customers
understand  the  answers  to  their  questions  very  quickly,”
Copeland  commented.  “We  believe  the  experience  that  the
customers have helps them scope out what they need and what
the road map might be.”

The strength of graph databases

A graph databases is a type of NoSQL database that stores data
according to associations among data elements rather than in
the rows and columns of a relational database. Because graph
databases use a dynamic schema rather than a fixed, table-
based  one,  adding  new  data  types  and  categories  is  much
easier. And because they are semantics-based, graph databases
have  strengths  in  inferring  intent,  producing  answers  to
questions,  and  making  recommendations.  They  can  also  make
inferences  about  possible  associations  from  existing



associations.

A  graph  database  also  provides  much  more  context  than  a
relational database and therefore can return more relevant
results when a user is searching; they also integrate data
from multiple sources. “At one telecom company we worked with,
customer service reps might have [had] to open 15 databases to
find out what went wrong and what the solution was,” said Jans
Aasman,  CEO  of  Franz.  “We  took  their  core  customer  data,
billing information, every CRM call, and every action and put
them into AllegroGraph, and the customer service reps were
finally able to respond in a meaningful way, whether that was
to  make  an  offer  to  the  customer  or  provide  appropriate
technical  support.”  The  capability  of  graph  databases  to
overcome silos and provide an integrated view of the customer
is one of its strengths.

In order to create the graph database on which the knowledge
graph is built, the relationships among entities need to be
mapped. In the case of a hospital patient, the patient is the
core entity, and the events are medical encounters or lab
results, which may come out of different databases or a data
warehouse. “The mapping is a major project, but it only needs
to  be  done  once,”  Aasman  pointed  out.  “After  that,  the
relationships do not need to be regenerated during the search
because  they  are  indexed  in  AllegroGraph,  which  makes
retrieval  very  rapid.”

Document  Knowledge  Graphs
with NLP and ML
A core competency for Franz Inc is turning text and documents
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into Knowledge Graphs (KG) using Natural Language Processing
(NLP) and Machine Learning (ML) techniques in combination with
AllegroGraph. In this document we discuss how the techniques
described in [NLP and ML components of AllegroGraph] can be
combined  with  popular  software  tools  to  create  a  robust
Document Knowledge Graph pipeline.

We have applied these techniques for several Knowledge Graphs
but  in  this  document  we  will   primarily  focus  on  three
completely different examples that we summarize below. First
is the Chomsky Legacy Project where we have a large set of
very dense documents and very different knowledge sources,
Second is a knowledge graph for an intelligent call center
where we have to deal with high volume dynamic data and real-
time  decision  support  and  finally,   a  large  government
organization where it is very important that people can do a
semantic search against documents and policies that steadily
change over time and where it is important that you can see
the history of documents and policies.

Example [1] Chomsky Knowledge Graph
The Chomsky Legacy Project is a project run by a group of
admirers of Noam Chomsky with the primary goal to preserve all
his  written  work,  including  all  his  books,  papers  and
interviews but also everything written about him. Ultimately
students, researchers, journalists, lobbyists, people from the
AI community, and linguists can all use this knowledge graph
for their particular goals and questions.

The biggest challenges for this project are finding causal
relationships  in  his  work  using  event  and  relationship
extraction.  A  simple  example  we  extracted  from  an  author
quoting  Chomsky  is  that  neoliberalism  ultimately  causes
childhood death.

https://allegrograph.com/natural-language-processing-and-machine-learning-in-allegrograph/


Example 2: N3 Results and the Intelligent Call Center
This is a completely different use case (See a recent KMWorld
Articlehttps://allegrograph.com/knowledge-graphs-enhance-custo
mer-experience-through-speed-and-accuracy/).  Whereas  the
previous use case was very static, this one is highly dynamic.
We  analyze  in  real-time  the  text  chats  and  spoken
conversations between call center agents and customers. Our
knowledge graph software provides real-time decision support
to make the call center agents more efficient. N3 Results
helps big tech companies to sell their high tech solutions,
mostly cloud-based products and services but also helps their
clients sell many other technologies and services.

The main challenge we tackle is to really deeply understand
what the customer and agent are talking about. None of this
can be solved by only simple entity extraction but requires
elaborate rule-based and machine learning techniques. Just to
give a few examples. We want to know if the agent talked about
their most important talking points: that is, did the agent
ask if the customer has a budget, or the authority to make a
decision or a timeline about when they need the new technology
or whether they actually have expressed their need. But also
whether the agent reached the right person, and whether the
agent talked about the follow-up. In addition, if the customer
talks about competing technology we need to recognize that and
provide the agent in real-time with a battle card specific to
the competing technology. And in order to be able to do the



latter, we also analyzed the complicated marketing materials
of the clients of N3.

Example 3: Complex Government Documents
Imagine a regulatory body with tens of thousands of documents.
Where nearly every paragraph has reference to other paragraphs
in the same document or other documents and the documents
change over time. The goal here is to provide the end-users in
the government with the right document given their current
task at hand. The second goal is to keep track of all the
changes  in  the  documents  (and  the  relationship  between
documents) over time.

The Document to Knowledge Graph Pipeline





Let us first give a quick summary in words of how we turn
documents into a Knowledge Graph.

[1] Taxonomy Creation

Taxonomy of all the concepts important to the business using
open  source  or  commercial  taxonomy  builders.  An  available
industry taxonomy is a good starting point for additional
customizations.

[2] Document Preparation

We then take a document and turn it into an intermediate XML
using  Apache  Tika.  Apache  Tika  supports  more  than  1000
document types and although Apache Tika is a fantastic tool,
the output is still usually not clean enough to create a graph
from, so we use Spacy rules to clean up the XML to make it as
uniform as possible.

[3] Extract Document MetaData

Most documents also contain document metadata (author, date,
version, title, etc) and Apache Tika will also deliver the
metadata for a document as a JSON object.

[4] XML to Triples

Our tools ingest the XML and metadata and transform that into
a graph-based document tree. The document is the root and from
that, it branches out into chapters, optionally sections, all
the way down to paragraphs. The ultimate text content is in
the  paragraphs.  In  the  following  example  we  took  the  XML
version of Noam Chomsky’s book Media Control and turned that
into a tree. The following shows a tiny part of that tree. We
start with the Media Control node, then we show three (of the
11)  chapters,  for  one  chapter  we  show  three  (of  the  6)
paragraphs,  and  then  we  show  the  actual  text  in  that
paragraph. We sometimes can go even deeper to the level of
sentences and tokens but for most projects that is overkill.



[5] Entity Extractor

AllegroGraph’s entity extractor takes as input the text of
each paragraph in the document tree and one or more of the
taxonomies  and  returns  recognized  SKOS  concepts  based  on
prefLabels and altLabels. AllegroGraph’s entity extractor is
state of the art and especially powerful when it comes to
complex terms like product names. We find that in our call
center a technical product name can sometimes have up to six
synonyms  or  very  specific  jargon.  For  example  the  Cisco
product Catalyst 9000 will also be abbreviated as the cat 9k.
Instead of developing altLabels for every possible permutation
that human beings *will* use, we have specialized heuristics
to optimize the yield from the entity extractor. The following
picture shows 4 (of the 14) concepts discovered in paragraph
16. Plus one person that was extracted by IBM’s NLU.



[6] Linked Data Enrichment



In many use cases, AllegroGraph can link extracted entities to
concepts in the linked data cloud. The most prominent being
DBpedia, wikidata, the census database, GeoNames, but also
many Linked Open Data repositories. One tool that is very
useful  for  this  is  IBM’s  Natural  Language  Understanding
program but there are others available. In the following image
we see that the Nelson Mandela entity (Red) is linked to the
dbpedia entity for Nelson Mandela and that then links to the
DBpedia itself. We extracted some of his spouses and a child
with their pictures.

[7] Complex Relationship and Event Extraction

Entity extraction is a first good step to ‘see’ what is in
your documents but it is just the first step. For example: how
do you find in a text whether company C1 merged with company
C2. There are many different ways to express the fact that a
company fired a CEO. For example: Uber got rid of Kalanick,
Uber and Kalanick parted ways, the board of Uber kicked out
the CEO, etc. We need to write explicit symbolic rules for
this or we need a lot of training data to feed a machine
learning algorithm.

[8] NLP and Machine Learning



There are many many AI algorithms that can be applied in
Document  Knowledge  Graphs.  We  provide  best  practices  for
topics like:

[a]  Sentiment  Analysis,  using  good/bad  word  lists  or
training data.
[b]  Paragraph  or  Chapter  similarity  using  statistical
techniques like Gensim similarity or symbolic techniques
where we just the overlap of recognized entities as a
function of the size of a text.
[c]  Query  answering  using  word2vec  or  more  advanced
techniques like BERT
[d] Semantic search using the hierarchy in SKOS taxonomies.
[e] Summarization techniques for Abstractive or Extractive
abstracts using Gensim or Spacy.

[9] Versioning and Document tracking

Several of our customers with Document Knowledge Graphs have
noted the one constant in all of these KGs is that documents
change over time. As part of our solution, we have created
best practices where we deal with these changes. A crucial
first step is to put each document in its own graph (i.e. the
fourth element of every triple in the document tree is the
document id itself). When we get a new version of a document
the document ID changes but the new document will point back
to the old version. We then compute which paragraphs stayed
the same within a certain margin (there are always changes in
whitespace) and we materialize what paragraphs disappeared in
the new version and what new paragraphs appeared compared to
the previous version. Part of the best practice is to put the
old version of a document in a historical database that at all
times can be federated with the ‘current’ set of documents.

Note that in the following picture we see the progression of a
document. On the right hand side we have a newer version of a
document 1100.161 with a chapter -> section -> paragraph ->
contents where the content is almost the same as the one in



the  older  version.  But  note  that  the  newer  one  spells
‘decision making’ as one word whereas the older version said
‘decision-making’. Note that also the chapter titles and the
section titles are almost the same but not entirely. Also,
note that the new version has a back-pointer (changed-from) to
the older version.

[10] Statistical Relationships

One important analytic one can do on documents is to look at
the co-occurrence of terms. Although, given that certain words
might occur more frequently in text, we have to correct the
co-occurrence between words for the frequency of the two terms
in  a  co-occurrence  to  get  a  better  idea  of  the
‘surprisingness’  of  a  co-occurrence.  The  platform  offers
several techniques in Python and Lisp to compute these co-
occurrences. Note that in the following picture we computed
the odds ratios between recognized entities and so we see in



the following gruff picture that if Noam Chomsky talks about
South Africa then the chances are very high he will also talk
about Nelson Mandela.


