
No-Code Queries Can
Accelerate AI and Data
Analytics
By Dr. Jans Aasman, CEO

The low-code, no-code methodology is becoming highly sought-
after throughout the modern IT ecosystem—and with good reason.
Options that minimize manually writing code capitalize on the
self-service, automation idiom that’s imperative in a world in
which working remotely and doing more with less keeps
organizations in business.

Most codeless or low-code approaches avoid the need for
writing language-specific code and replace it with a visual
approach in which users simply manipulate on-screen objects
via a drag-and-drop, point-and-click interface to automate
code generation. The intuitive ease of this approach — which
is responsible for new standards of efficiency and
democratization of no-code development — has now extended to
no-code query writing.

No-code querying provides two unassailable advantages to the
enterprise. First, it considerably expedites what is otherwise
a time-consuming ordeal, thereby accelerating data analytics
and AI-driven applications and second, it can help
organizations overcome the talent shortage of developers and
knowledge engineers. Moreover, it does so by furnishing all
the above benefits that make codeless and low-code options
mandatory for success.

Read the full article at DZone.

https://allegrograph.com/no-code-queries-can-accelerate-ai-and-data-analytics/
https://allegrograph.com/no-code-queries-can-accelerate-ai-and-data-analytics/
https://allegrograph.com/no-code-queries-can-accelerate-ai-and-data-analytics/
https://dzone.com/articles/no-code-queries-can-accelerate-ai-and-data-analyti

NLP: Unlock the Hidden
Business Value in Voice
Communications

By Dr. Jans Aasman, CEO, Franz Inc.

Today organizations capture an enormous amount of information
in spoken conversations, from routine customer service calls
to sophisticated claims processing interactions in finance and
healthcare. But most of this information remains hidden and
unused due to the difficulty of turning these conversations
into meaningful data that can be effectively analyzed through
Natural Language Processing (NLP).

Simply applying speech recognition software to voice
conversations often results in unreliable data. State-of-the-
art speech recognition systems still have trouble
distinguishing between homophones (words with the same
pronunciation, but different meanings), as well as the
difference between proper names (i.e. people, products) and
separate words. In addition, there is also the challenge of
identifying domain-specific words accurately. Thus, in most
cases, using speech recognition software alone doesn’t produce
accurate enough data for reliable NLP.

Domain-specific taxonomies are key to understanding
conversations via speech recognition systems. With them, we

https://allegrograph.com/nlp-unlock-the-hidden-business-value-in-voice-communications/
https://allegrograph.com/nlp-unlock-the-hidden-business-value-in-voice-communications/
https://allegrograph.com/nlp-unlock-the-hidden-business-value-in-voice-communications/

can feed conversations to knowledge graphs that understand the
conversation and make connections in the data. Knowledge
graphs provide the ability to extract the correct meaning of
text from conversations and connect concepts in order to add
business value.

Knowledge graphs fed with NLP provide two prime opportunities
for monetization. First, organizations can better understand
their customers to improve products and services more to their
liking, which in turn boosts marketing, sales and customer
retention rates. Secondly, this analysis gives contact center
agents real-time support for optimizing customer interactions
to produce faster resolutions, better conversion rates, and
cross-selling and up-selling opportunities. These approaches
enable companies to capitalize on speech recognition knowledge
graphs, accelerate their ROI, and expand their bottom lines.

Taxonomy Driven Speech Recognition
The story of taxonomy-driven speech recognition closely
relates to knowledge graphs. The first wave of knowledge
graphs was built from taking structured data and turning it
into semantic graphs that support the linked open data
movement. The next wave is all about unstructured data. People
started doing Natural Language Processing on documents and
textual conversations like emails and chats. Doing so
accurately for a given domain requires a taxonomy to
understand the words and concepts. Otherwise, downstream
processes like entity extraction and event detection won’t
work.

Read the full article at DZone.

https://www.w3.org/egov/wiki/Linked_Open_Data
https://www.w3.org/egov/wiki/Linked_Open_Data
https://blogs.gartner.com/anthony_bradley/2020/10/07/announcing-gartners-new-emergence-cycle-research-for-ai/
https://dzone.com/articles/how-to-unlock-the-hidden-business-value-in-voice-c

Data-Centric Architecture
Forum – DCAF 2021
Data and the subsequent knowledge derived from information are
the most valuable strategic asset an organization possesses.
Despite the abundance of sophisticated technology
developments, most organizations don’t have disciplines or a
plan to enable data-centric principles.

DCAF 2021 will help provide clarity.
Our overarching theme for this conference is to make it REAL.
Real in the sense that others are becoming data-centric, it is
achievable, and you are not alone in your efforts.

Join us in understanding how data as an open, centralized
resource outlives any application. Once globally integrated by
sharing a common meaning, internal and external data can be
readily integrated, unlike the traditional “application-
centric” mindset predominantly used in systems development.

The compounding problem is these application systems each have
their own completely idiosyncratic data models. The net result
is that after a few decades, hundreds or thousands of
applications implemented have given origin to a segregated
family of disparate data silos. Integration debt rises and
unsustainable architectural complexity abounds with every
application bought, developed, or rented (SaaS).

Becoming data-centric will improve data characteristics of
findability, accessibility, interoperability, and re-usability
(FAIR principles), thereby allowing data to be exported into
any needed format with virtually free integration.\

https://allegrograph.com/data-centric-architecture-forum-dcaf-2021/
https://allegrograph.com/data-centric-architecture-forum-dcaf-2021/

Dr. Jans Aasman to present –
Franz’s approach to Entity Event
Data Modeling for Enterprise
Knowledge Fabrics

Text Analytics Forum 2020 –
KMWorld Connect
Join us November 17, 2020 – Text Analytics has the ability to
add depth, meaning, and intelligence to any organization’s
most under-utilized resource – text. Through text analytics,
enterprises can unlock a wealth of information that would not
otherwise be available. Join us as we explore the power of
text analytics to provide relevant, valuable, and actionable
data for enterprises of all kinds.

Jans Aasman to present – Analyzing Spoken Conversations for
Real-Time Decision Support in Mission-Critical Applications

November 17, 2020 at 2PM Eastern

https://www.dcaforum.com/presenters/
https://www.dcaforum.com/presenters/
https://www.dcaforum.com/presenters/
https://allegrograph.com/text-analytics-forum-2020-kmworld-connect/
https://allegrograph.com/text-analytics-forum-2020-kmworld-connect/
https://pheedloop.com/kmwconnect/site/sessions/?id=SESD7IZ1KCQJ3Q7EQ
https://pheedloop.com/kmwconnect/site/sessions/?id=SESD7IZ1KCQJ3Q7EQ

Knowledge Graphs: A Single
Source of Truth for the
Enterprise

The notion of a “single source of
truth” for the enterprise has been
the proverbial moving goalpost for
generations of CIOs, only to be
waylaid by brittle technology and
unending legacy systems. Truth-
seeking visions rebuffed by
technological trends have
continuously confounded business

units trying to achieve growth and market penetration. But
technology innovation has finally led us to a point where CIOs
can now deliver that truth.

Graphing the Truth

Knowledge graphs possess the power to deliver a single source
of truth by linking together any assortment of data sources
required, standardizing their diversity of data elements, and
eliminating silos. They support the most advanced analytics
options and decentralized transactions, which is why they’re
now deployed as systems of records for some of the most
significant, mission-critical use cases affecting our
population.

Because they scale to include almost any number of
applications — and link to other knowledge graphs as well —
these repositories are the ideal solution for real-time
information necessary to inform business users’ performances
with concrete, data-supported facts. Most importantly, users
can get an exhaustive array of touchpoints pertaining to any
customer, product, or interaction with an organization from

https://allegrograph.com/knowledge-graphs-a-single-source-of-truth-for-the-enterprise/
https://allegrograph.com/knowledge-graphs-a-single-source-of-truth-for-the-enterprise/
https://allegrograph.com/knowledge-graphs-a-single-source-of-truth-for-the-enterprise/
https://www.dataversity.net/solving-knowledge-graph-data-prep-standards/

the knowledge graph, making it a single source of truth.

Read the full article at Dataversity.

Using Microsoft Power BI with
AllegroGraph
There are multiple methods to integrate AllegroGraph SPARQL
results into Microsoft Power BI. In this document we describe
two best practices to automate queries and refresh results if
you have a production AllegroGraph database with new streaming
data:

The first method uses Python scripts to feed Power BI. The
second method issues SPARQL queries directly from Power BI
using POST requests.

Method 1: Python Script:

Assuming you know Python and have it installed locally, this
is definitely the easiest way to incorporate SPARQL results
into Power BI. The basic idea of the method is as follows:
First, the Python script enables a connection to your desired
AllegroGraph repository. Then we utilize AllegroGraph’s
Python API within our script to run a SPARQL query and return
it as a Pandas dataframe. When running this script within
Power BI Desktop, the Python scripting service recognizes all
unique dataframes created, and allows you to import the
dataframe into Power BI as a table, which can then be used to
create visualizations.

Requirements:

You must have the AllegroGraph Python API installed. If1.

https://www.dataversity.net/knowledge-graphs-a-single-source-of-truth-for-the-enterprise/
https://allegrograph.com/using-microsoft-power-bi-with-allegrograph/
https://allegrograph.com/using-microsoft-power-bi-with-allegrograph/

you do not, installation instructions are here:
https://franz.com/agraph/support/documentation/current/p
ython/install.html
Python scripting must be enabled in Power BI Desktop.2.
Instructions to do so are here:
https://docs.microsoft.com/en-us/power-bi/connect-data/d
esktop-python-scripts

a) As mentioned in the article, pandas and matplotlib
must be installed. This can be done with ‘pip install
pandas’ and ‘pip install matplotlib’ in your terminal.

The Process:

Once these requirements have been met, create a Python file
with whatever script editor you usually use. The following
code will create a connection to your desired repository. For
this example, we will be using the Kennedy dataset that is
available with the AllegroGraph distribution (See the
‘Tutorial’ directory). Load the Kennedy.ntriples file into
your running AllegroGraph. (Replace the ‘****’ in the code
with your corresponding username and password.)

#the necessary imports

import os

from franz.openrdf.connect import ag_connect

from franz.openrdf.query.query import QueryLanguage

import pandas as pd

#connect to your agraph repository

def setup_env_var(var_name, value, description):

os.environ[var_name] = value

https://franz.com/agraph/support/documentation/current/python/install.html
https://franz.com/agraph/support/documentation/current/python/install.html
https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-python-scripts
https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-python-scripts

print("{}: {}".format(description, value))

setup_env_var('AGRAPH_HOST', 'localhost', 'Hostname')

setup_env_var('AGRAPH_PORT', '10035', 'Port')

setup_env_var('AGRAPH_USER', '****', 'Username')

setup_env_var('AGRAPH_PASSWORD', '****', 'Password')

conn = ag_connect('kennedy', create=False, clear=False)

2. We then want to create a query. For this example, we will
first show what our data looks like, what the visual query of
the information is, and what the written query looks like.
With the following query we want every person’s first and last
names, as well as their birth years. Here is a small portion
of the data visualized in Gruff, and then the visualization of
the query:

3. Then add the written query to the python script as a
variable string (we added an additional line to the query to
sort on birth year). Next use the API functionality to simply
execute the query and turn the results into a pandas
dataframe.

query = """select ?person ?first_name ?last_name ?birth_year
where
{ ?person <http://www.franz.com/simple#first-name> ?first_name
;
 <http://www.franz.com/simple#birth-year> ?birth_year
;
 rdf:type <http://www.franz.com/simple#person> ;
 <http://www.franz.com/simple#last-name> ?last_name .
}
order by desc(?birth_year)"""

with conn.executeTupleQuery(query) as result:
 df = result.toPandas()

When looking at the result, we see that we have a DataFrame!

4. Now we will use this script in Power BI. When in Power BI
Desktop, go to ‘Get Data’ and look for the python script
option. Then simply copy and paste your entire script into the
text box, and run the script. In this case, our output looks
like this:

5. Next simply ‘Load’ the data, and then you can use the
Power BI Desktop interface to create whatever visualizations
you want! If you do have a lot of additional operations to
perform on your dataframe, we recommend doing these in your
python script.

Method 2: POST Request:

For the SPARQL query via POST requests to work you need to
url-encode the query. Every modern programming language will
support that, but in our example we will be using Python

again. This method is better for when you do not have python
locally installed or prefer a different programming language.

It is possible to send a GET request from Power BI, but once
the results from the query reach a certain size, a POST
request is required, which is confusing to do within the Power
BI Desktop interface. The following steps will show you how to
do SPARQL Queries using POST requests. It looks a bit odd but
it works well.

The Process:

1. In your AG WebView create an ‘anonymous’ user. (Go to
admin -> Users -> [add a user] -> and add ‘anonymous’ as
username without adding a password). You can use these
settings:

2. Go to your desired repository in WebView and Click on
‘Queries’ -> ‘New’

3. Write a simple SPARQL query, and run it to make sure you
get the correct response back.

4. In python create the following script: (Assuming your
AllegroGraph is on your localhost port 10035 and your repo is
called ‘kennedy’)

import urllib

def CreatePOSTquery(query):
 start =

"http://anonymous:@localhost:10035/repositories/kennedy?queryL
n=SPARQL&limit=1000&infer=false&returnQueryMetadata=false&chec
kVariables=false&query="
 response = start + urllib.parse.quote(query)
 return response

This function url-encodes the query and attaches it to the
POST request. Replace the ‘localhost:10035’ and ‘kennedy’
strings in the start variable with your corresponding data.
Then, using the same query as our previous example, we create
our url-encoded POST query:

query = """select ?person ?first_name ?last_name ?birth_year
where
{ ?person <http://www.franz.com/simple#first-name> ?first_name
;
 <http://www.franz.com/simple#birth-year> ?birth_year
;
 rdf:type <http://www.franz.com/simple#person> ;
 <http://www.franz.com/simple#last-name> ?last_name .
}
order by desc(?birth_year)"""

result = CreatePOSTquery(query)
print(result)

This gives us the following result:

5. Within Power BI Desktop we go to ‘Get data’ and create a
‘Blank query’ and go into the ‘Advanced Editor’ window. Using
the following format we will get our desired results (please
note that due to the length of the url-encoded request, it did
not all fit in the image. Copy and pasting into the url field
works fine. The ‘url’ variable needs to be in quotes and have
a comma at the end):

We see the following results:

6. One last step is to turn the top row into the column
names, which can be achieved by pressing the ‘Use first row as
headers’:

The best part about both of these methods is that once the
query has been created, Power BI can refresh the visuals using
the same queries if your data changed. This can be achieved by
scheduling refreshes within the Power BI Desktop interface
(https://docs.microsoft.com/en-us/power-bi/connect-data/refres
h-data#configure-scheduled-refresh)

Please send any questions or issues to: support@franz.com

Knowledge graphs enhance
customer experience through
speed and accuracy
KMWorld’s recent article covers AllegroGraph and Franz’s
customer N3 Solutions.

The Full Article – KMWorld

Knowledge graphs are a way to model enterprise knowledge and

https://docs.microsoft.com/en-us/power-bi/connect-data/refresh-data#configure-scheduled-refresh
https://docs.microsoft.com/en-us/power-bi/connect-data/refresh-data#configure-scheduled-refresh
mailto:support@franz.com
https://allegrograph.com/knowledge-graphs-enhance-customer-experience-through-speed-and-accuracy/
https://allegrograph.com/knowledge-graphs-enhance-customer-experience-through-speed-and-accuracy/
https://allegrograph.com/knowledge-graphs-enhance-customer-experience-through-speed-and-accuracy/
https://www.kmworld.com/Articles/Editorial/Features/Knowledge-graphs-enhance-customer-experience-through-speed-and-accuracy-141623.aspx

represent complex interrelationships in data. Information
stored in a graph database can enable rapid retrieval of well-
targeted results and provide insights into customers’
interests and needs. Gartner predicts a 100% per-year growth
in applications for graph analytics and databases for the next
several years. Although knowledge graphs have been deployed by
major companies such as Google, Amazon, and LinkedIn due to
their ability to incorporate relationships in their analyses
as well as their speed, only in the last 5 years has their use
become more widespread.

N3 is an outsourced sales company for major organizations that
sell complex B2B software, hardware, and tech solutions. It
supports businesses in 92 countries, provides services in 25
languages, and holds thousands of hours of conversations every
month with customers and prospects. “In today’s world of
complex products, it takes a well-educated team to tell the
story about how this technology can help a company become more
competitive,” said Shannon Copeland, COO of N3. “The sales
team needs to be able to instantly access the information they
need to do their job.”

Faster insights

The company has been operating for 16 years, and in the last
few years began an initiative to manage its knowledge in a
more intentional way. “We generate a great deal of data,”
noted Copeland, “and we wanted to make more effective use of
it to understand our customers. And because of the speed at
which business is transacted now, we needed to get insights
right away, not a month later in a report.”

N3 built a data model to reflect the essential data elements
and the associations among them and decided that a knowledge
graph was the best way to represent the information. After
looking into partner options, N3 chose to work with Franz,
Inc., which provides a semantic graph database called
AllegroGraph. “We decided to work with Franz because of its

extensive experience and the fact that it had worked with a
variety of industries,” Copeland said.

The system built by N3 allows sales teams to organize signals
from the market in a way that allows them to better explain
the products to prospective buyers. “We build relationships
with tech buyers on behalf of our clients,” continued
Copeland. “Our employees are typically college graduates who
would like to begin their careers in sales and marketing in
tech solutions. They take ownership of their territory and we
help them be as sophisticated as a future CMO would be.” The
resources supplied by the knowledge graph provide the support
the sales team needs to tailor information to each prospective
customer.

The specific expertise required by the team varies depending
on the products being sold, the geographic region, and other
factors, and the knowledge graph supports these needs. For
example, if a team in southern Portugal needs to know the
preferences of that market, the associations built into the
graph database can provide the information that is essential
for them. “The information we can access helps customers
understand the answers to their questions very quickly,”
Copeland commented. “We believe the experience that the
customers have helps them scope out what they need and what
the road map might be.”

The strength of graph databases

A graph databases is a type of NoSQL database that stores data
according to associations among data elements rather than in
the rows and columns of a relational database. Because graph
databases use a dynamic schema rather than a fixed, table-
based one, adding new data types and categories is much
easier. And because they are semantics-based, graph databases
have strengths in inferring intent, producing answers to
questions, and making recommendations. They can also make
inferences about possible associations from existing

associations.

A graph database also provides much more context than a
relational database and therefore can return more relevant
results when a user is searching; they also integrate data
from multiple sources. “At one telecom company we worked with,
customer service reps might have [had] to open 15 databases to
find out what went wrong and what the solution was,” said Jans
Aasman, CEO of Franz. “We took their core customer data,
billing information, every CRM call, and every action and put
them into AllegroGraph, and the customer service reps were
finally able to respond in a meaningful way, whether that was
to make an offer to the customer or provide appropriate
technical support.” The capability of graph databases to
overcome silos and provide an integrated view of the customer
is one of its strengths.

In order to create the graph database on which the knowledge
graph is built, the relationships among entities need to be
mapped. In the case of a hospital patient, the patient is the
core entity, and the events are medical encounters or lab
results, which may come out of different databases or a data
warehouse. “The mapping is a major project, but it only needs
to be done once,” Aasman pointed out. “After that, the
relationships do not need to be regenerated during the search
because they are indexed in AllegroGraph, which makes
retrieval very rapid.”

Document Knowledge Graphs
with NLP and ML
A core competency for Franz Inc is turning text and documents

https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/
https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/

into Knowledge Graphs (KG) using Natural Language Processing
(NLP) and Machine Learning (ML) techniques in combination with
AllegroGraph. In this document we discuss how the techniques
described in [NLP and ML components of AllegroGraph] can be
combined with popular software tools to create a robust
Document Knowledge Graph pipeline.

We have applied these techniques for several Knowledge Graphs
but in this document we will primarily focus on three
completely different examples that we summarize below. First
is the Chomsky Legacy Project where we have a large set of
very dense documents and very different knowledge sources,
Second is a knowledge graph for an intelligent call center
where we have to deal with high volume dynamic data and real-
time decision support and finally, a large government
organization where it is very important that people can do a
semantic search against documents and policies that steadily
change over time and where it is important that you can see
the history of documents and policies.

Example [1] Chomsky Knowledge Graph
The Chomsky Legacy Project is a project run by a group of
admirers of Noam Chomsky with the primary goal to preserve all
his written work, including all his books, papers and
interviews but also everything written about him. Ultimately
students, researchers, journalists, lobbyists, people from the
AI community, and linguists can all use this knowledge graph
for their particular goals and questions.

The biggest challenges for this project are finding causal
relationships in his work using event and relationship
extraction. A simple example we extracted from an author
quoting Chomsky is that neoliberalism ultimately causes
childhood death.

https://allegrograph.com/natural-language-processing-and-machine-learning-in-allegrograph/

Example 2: N3 Results and the Intelligent Call Center
This is a completely different use case (See a recent KMWorld
Articlehttps://allegrograph.com/knowledge-graphs-enhance-custo
mer-experience-through-speed-and-accuracy/). Whereas the
previous use case was very static, this one is highly dynamic.
We analyze in real-time the text chats and spoken
conversations between call center agents and customers. Our
knowledge graph software provides real-time decision support
to make the call center agents more efficient. N3 Results
helps big tech companies to sell their high tech solutions,
mostly cloud-based products and services but also helps their
clients sell many other technologies and services.

The main challenge we tackle is to really deeply understand
what the customer and agent are talking about. None of this
can be solved by only simple entity extraction but requires
elaborate rule-based and machine learning techniques. Just to
give a few examples. We want to know if the agent talked about
their most important talking points: that is, did the agent
ask if the customer has a budget, or the authority to make a
decision or a timeline about when they need the new technology
or whether they actually have expressed their need. But also
whether the agent reached the right person, and whether the
agent talked about the follow-up. In addition, if the customer
talks about competing technology we need to recognize that and
provide the agent in real-time with a battle card specific to
the competing technology. And in order to be able to do the

latter, we also analyzed the complicated marketing materials
of the clients of N3.

Example 3: Complex Government Documents
Imagine a regulatory body with tens of thousands of documents.
Where nearly every paragraph has reference to other paragraphs
in the same document or other documents and the documents
change over time. The goal here is to provide the end-users in
the government with the right document given their current
task at hand. The second goal is to keep track of all the
changes in the documents (and the relationship between
documents) over time.

The Document to Knowledge Graph Pipeline

Let us first give a quick summary in words of how we turn
documents into a Knowledge Graph.

[1] Taxonomy Creation

Taxonomy of all the concepts important to the business using
open source or commercial taxonomy builders. An available
industry taxonomy is a good starting point for additional
customizations.

[2] Document Preparation

We then take a document and turn it into an intermediate XML
using Apache Tika. Apache Tika supports more than 1000
document types and although Apache Tika is a fantastic tool,
the output is still usually not clean enough to create a graph
from, so we use Spacy rules to clean up the XML to make it as
uniform as possible.

[3] Extract Document MetaData

Most documents also contain document metadata (author, date,
version, title, etc) and Apache Tika will also deliver the
metadata for a document as a JSON object.

[4] XML to Triples

Our tools ingest the XML and metadata and transform that into
a graph-based document tree. The document is the root and from
that, it branches out into chapters, optionally sections, all
the way down to paragraphs. The ultimate text content is in
the paragraphs. In the following example we took the XML
version of Noam Chomsky’s book Media Control and turned that
into a tree. The following shows a tiny part of that tree. We
start with the Media Control node, then we show three (of the
11) chapters, for one chapter we show three (of the 6)
paragraphs, and then we show the actual text in that
paragraph. We sometimes can go even deeper to the level of
sentences and tokens but for most projects that is overkill.

[5] Entity Extractor

AllegroGraph’s entity extractor takes as input the text of
each paragraph in the document tree and one or more of the
taxonomies and returns recognized SKOS concepts based on
prefLabels and altLabels. AllegroGraph’s entity extractor is
state of the art and especially powerful when it comes to
complex terms like product names. We find that in our call
center a technical product name can sometimes have up to six
synonyms or very specific jargon. For example the Cisco
product Catalyst 9000 will also be abbreviated as the cat 9k.
Instead of developing altLabels for every possible permutation
that human beings *will* use, we have specialized heuristics
to optimize the yield from the entity extractor. The following
picture shows 4 (of the 14) concepts discovered in paragraph
16. Plus one person that was extracted by IBM’s NLU.

[6] Linked Data Enrichment

In many use cases, AllegroGraph can link extracted entities to
concepts in the linked data cloud. The most prominent being
DBpedia, wikidata, the census database, GeoNames, but also
many Linked Open Data repositories. One tool that is very
useful for this is IBM’s Natural Language Understanding
program but there are others available. In the following image
we see that the Nelson Mandela entity (Red) is linked to the
dbpedia entity for Nelson Mandela and that then links to the
DBpedia itself. We extracted some of his spouses and a child
with their pictures.

[7] Complex Relationship and Event Extraction

Entity extraction is a first good step to ‘see’ what is in
your documents but it is just the first step. For example: how
do you find in a text whether company C1 merged with company
C2. There are many different ways to express the fact that a
company fired a CEO. For example: Uber got rid of Kalanick,
Uber and Kalanick parted ways, the board of Uber kicked out
the CEO, etc. We need to write explicit symbolic rules for
this or we need a lot of training data to feed a machine
learning algorithm.

[8] NLP and Machine Learning

There are many many AI algorithms that can be applied in
Document Knowledge Graphs. We provide best practices for
topics like:

[a] Sentiment Analysis, using good/bad word lists or
training data.
[b] Paragraph or Chapter similarity using statistical
techniques like Gensim similarity or symbolic techniques
where we just the overlap of recognized entities as a
function of the size of a text.
[c] Query answering using word2vec or more advanced
techniques like BERT
[d] Semantic search using the hierarchy in SKOS taxonomies.
[e] Summarization techniques for Abstractive or Extractive
abstracts using Gensim or Spacy.

[9] Versioning and Document tracking

Several of our customers with Document Knowledge Graphs have
noted the one constant in all of these KGs is that documents
change over time. As part of our solution, we have created
best practices where we deal with these changes. A crucial
first step is to put each document in its own graph (i.e. the
fourth element of every triple in the document tree is the
document id itself). When we get a new version of a document
the document ID changes but the new document will point back
to the old version. We then compute which paragraphs stayed
the same within a certain margin (there are always changes in
whitespace) and we materialize what paragraphs disappeared in
the new version and what new paragraphs appeared compared to
the previous version. Part of the best practice is to put the
old version of a document in a historical database that at all
times can be federated with the ‘current’ set of documents.

Note that in the following picture we see the progression of a
document. On the right hand side we have a newer version of a
document 1100.161 with a chapter -> section -> paragraph ->
contents where the content is almost the same as the one in

the older version. But note that the newer one spells
‘decision making’ as one word whereas the older version said
‘decision-making’. Note that also the chapter titles and the
section titles are almost the same but not entirely. Also,
note that the new version has a back-pointer (changed-from) to
the older version.

[10] Statistical Relationships

One important analytic one can do on documents is to look at
the co-occurrence of terms. Although, given that certain words
might occur more frequently in text, we have to correct the
co-occurrence between words for the frequency of the two terms
in a co-occurrence to get a better idea of the
‘surprisingness’ of a co-occurrence. The platform offers
several techniques in Python and Lisp to compute these co-
occurrences. Note that in the following picture we computed
the odds ratios between recognized entities and so we see in

the following gruff picture that if Noam Chomsky talks about
South Africa then the chances are very high he will also talk
about Nelson Mandela.

