
No-Code  Queries  Can
Accelerate  AI  and  Data
Analytics
By Dr. Jans Aasman, CEO

The low-code, no-code methodology is becoming highly sought-
after throughout the modern IT ecosystem—and with good reason.
Options that minimize manually writing code capitalize on the
self-service, automation idiom that’s imperative in a world in
which  working  remotely  and  doing  more  with  less  keeps
organizations  in  business.

Most  codeless  or  low-code  approaches  avoid  the  need  for
writing language-specific code and replace it with a visual
approach in which users simply manipulate on-screen objects
via  a  drag-and-drop,  point-and-click  interface  to  automate
code generation. The intuitive ease of this approach — which
is  responsible  for  new  standards  of  efficiency  and
democratization of no-code development — has now extended to
no-code query writing.

No-code querying provides two unassailable advantages to the
enterprise. First, it considerably expedites what is otherwise
a time-consuming ordeal, thereby accelerating data analytics
and  AI-driven  applications  and  second,  it  can  help
organizations overcome the talent shortage of developers and
knowledge engineers. Moreover, it does so by furnishing all
the above benefits that make codeless and low-code options
mandatory for success.

Read the full article at DZone.
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Natural  Language  Processing
and  Machine  Learning  in
AllegroGraph
The majority of our customers build Knowledge Graphs with
Natural Language and Machine learning components. Because of
this trend AllegroGraph now offers strong support for the use
of Natural Language Processing and Machine learning.

Franz Inc has a team of NLP engineers and Taxonomy experts
that can help with building turn-key solutions. In general
however, our customers already have some expertise in house.
In those cases we train customers in how to take the output of
NLP  and  ML  processing  and  turn  that  into  an  efficient
Knowledge Graph based on best practices in the industry.

This  document  primarily  describes  the  NLP  and  ML  plug-in
AllegroGraph.

Note that many enterprises already have a data science team
with NLP experts that use modern open source NLP tools like
Spacy, Gensim or Polyglot, or Machine Learning based NLP tools
like BERT and Scikit-Learn. In another blog about Document
Handling we describe a pipeline of how to deal with NLP in
Document Knowledge Graphs by using our NLP and ML plugin and
mix that with open source tools.

PlugIn features for Natural Language Processing and Machine
Learning in AllegroGraph.

Here is the outline of the plugin features that we are going
to describe in more detail.
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Machine learning

data acquisition
classifier training
feature extraction support
performance analysis
model persistence

NLP

handling languages
handling dictionaries
tokenization
entity extraction
Sentiment analysis
basic pattern matching

SPARQL Access

Future development

 

Machine Learning

ML: Data Acquisition
Given  that  the  NLP  and  ML  functions  operate  within
AllegroGraph, after loading the plugins, data acquisition can
be performed directly from the triple-store, which drastically
simplifies the data scientist workflow. However, if the data
is not in AllegroGraph yet we can also import it directly from
ten  formats  of  triples  or  we  can  use  our  additional
capabilities  to  import  from  CSV/JSON/JSON-LD.

Part of the Data Acquisition is also that we need to pre-
process  the  data  for  training  so  we  provide  these  three
functions:

prepare-training-data
split-dev-test



equalize (for resampling)

Machine Learning: Classifiers

Currently we provide simple linear classifiers. In case
there’s  a  need  for  neural  net  or  other  advanced
classifiers,  those  can  be  integrated  on-demand.
We  also  provide  support  for  online  learning  (online
machine learning is an ML method in which data becomes
available in a sequential order and is used to update
the best predictor for future data at each step, as
opposed to batch learning techniques which generate the
best predictor by learning on the entire training data
set at once). This feature is useful for many real-world
data sets that are constantly updated.
The  default  classifiers  available  are  Averaged
Perceptron and AROW

Machine Learning: Feature Extraction

Each classifier is expecting a vector of features: either
feature  indices  (indicative  features)  or  pairs  of  numbers
(index – value). These are obtained in a two-step process:

1. A classifier-specific extract-features method should be
defined that will return raw feature vector with features
identified  by  strings  of  the  following  form:
prefix|feature.

The prefix should be provided as a keyword argument to the
collect-features method call, and it is used to distinguish
similar features from different sources (for instance, for
distinct predicates).

2. Those features will be automatically transformed to
unique  integer  ids.  The  resulting  feature  vector  of
indicator features may look like the following: #(1 123
2999 …)



Note that these features may be persisted to AllegroGraph for
repeated  re-use  (e.g.  for  experimenting  with  classifier
hyperparameter tuning or different classification models).

Many possible features may be extracted from data, but there
is a set of common ones, such as:

1. individual tokens of the text field
2. ngrams (of a specified order) of the text field
3. presence of a token in a specific dictionary (like, the
dictionary of slang words)
4. presence/value of a certain predicate for the subject of
the current triple
5. length of the text

And in case the user has a need for special types of tokens we
can write specific token methods, here is an example (in Lisp)
that produces an indicator feature of a presence of emojis in
the text:

(defmethod collect-features ((method (eql :emoji)) toks &key
pred)
(dolist (tok toks)
(when (some #'(lambda (code)
  (or (<= #x1F600 code #x1F64F)
      (<= #x1F650 code #x1F67F)
      (<= #x1F680 code #x1F6FF)))
   (map 'vector #'char-code tok))
(return (list "emoji")))))

 

Machine Learning: Integration with Spacy

The NLP and ML community invents new features and capabilities
at an incredible speed. Way faster than any database company
can keep up with. So why not embrace that? Whenever we need
something that we don’t have in AllegroGraph yet we can call
out to Spacy or any other external NLP tool. Here is an
example of using feature extraction from Spacy to collect



indicator features of the text dependency parse relations:

(defmethod  collect-features  ((method  (eql  :dep))  deps  &key
pred dep-type dep-labels)
 (loop :for ds :in deps :nconc
  (loop :for dep :in ds
   :when (and (member (dep-tag dep) dep-labels)
              (dep-head dep)
              (dep-tok dep))
    :collect (format nil "dep|~a|~a_~a"
              dep-type
              (tok-word (dep-head dep)
              (tok-word (dep-tok dep))))))

The demonstrated integration uses Spacy Docker instance and
its HTTP API.

Machine Learning: Classifier Analysis

We provide all the basic tools and metrics for classifier
quality analysis:

accuracy
f1, precision, recall
confusion matrix
and an aggregated classification report

 

Machine Learning: Model Persistence

The idea behind model persistence is that all the data can be
stored  in  AllegroGraph,  including  features  and  classifier
models. AllegroGraph stores classifiers directly as triples.
This is a far more robust and language-independent approach
than  currently  popular  among  data  scientists  reliance  on
Python  pickle  files.  For  the  storage  we  provide  a  basic
triple-based format, so it is also possible to interchange the
models using standard RDF data formats.

The biggest advantage of this approach is that when adding



text to AllegroGraph we don’t have to move the data externally
to perform the classification but can keep the whole pipeline
entirely internal.

 

Natural Language Procession (NLP)

NLP: Language Packs

Most of the NLP tools are language-dependent: i.e. there’s a
general function that uses language-specific model/rules/etc.
In AllegroGraph, support for particular languages is provided
on-demand and all the language-specific is grouped in the so
called “language pack” or langpack, for short – a directory
with a number of text and binary files with predefined names.

Currently,  the  langpack  for  English  is  provided  at
nlp/langs/en.zip,  with  the  following  files:

contractions.txt – a dictionary of contractions
abbrs.txt – a dictionary of abbreviations
stopwords.txt – a dictionary of stopwords
pos-dict.txt – positive sentiment words
neg-dict.txt – negative sentiment words
word-tok.txt – a list of word tokenization rules

Additionally,  we  use  a  general  dictionary,  a  word-form
dictionary (obtained from Wiktionary), and custom lexicons.

Loading a langpack for a particular language is performed
using load-langpack.

Creating a langpack is just a matter of adding the properly
named files to the directory and can be done manually. The
names of the files should correspond to the names of the
dictionary variables that will be filled by the pack. The
dictionaries that don’t have a corresponding file will be just
skipped.We have just finished creating a langpack for Spanish
and  it  will  be  published  soon.  In  case  you  need  other



dictionaries  we  use  our  AG/Spacy  infrastructure.  Spacy
recently added a comprehensive list of new languages:

 

NLP: Dictionaries

Dictionaries are read from the language packs or other sources
and  are  kept  in  memory  as  language-specific  hash-tables.
Alongside support for storing the dictionaries as text files,
there are also utilities for working with them as triples and
putting them into the triple store.

Note that we at Franz Inc specialize in Taxonomy Building
using various commercial taxonomy building tools. All these
tools  can  now  export  these  taxonomies  as  a  mix  of  SKOS
taxonomies and OWL. We have several functions to read directly
from these SKOS taxonomies and turn them into dictionaries
that support efficient phrase-level lookup.

NLP: Tokenization

Tokenization  is  performed  using  a  time-proven  rule-based
approach. There are 3 levels of tokenization that have both a
corresponding specific utility function and an :output format
of the tokenize function:

:parags – splits the text into a list of lists of tokens
for paragraphs and sentences in each paragraph
:sents – splits the text into a list of tokens for each
sentence
:words – splits the text into a plain list of tokens



Paragraph-level tokenization considers newlines as paragraph
delimiters.  Sentence-level  tokenization  is  geared  towards
western-style  writing  that  uses  dot  and  other  punctuation
marks to delimit sentences. It is, currently, hard-coded, but
if the need arises, additional handling may be added for other
writing systems. Word-level tokenization is performed using a
language-specific set of rules.

NLP: Entity Extraction

Entity extraction is performed by efficient matching (exactly
or fuzzy) of the token sequences to the existing dictionary
structure.

It is expected that the entities come from the triple store
and there’s a special utility function that builds lookup
dictionaries from all the triples of the repository identified
by certain graphs that have a skos:prefLabel or skos:altLabel
property.  The  lookup  may  be  case-insensitive  with  the
exception of abbreviations (default) or case-sensitive.

Similar  to  entity  extraction,  there’s  also  support  for
spotting  sentiment  words.  It  is  performed  using  the
positive/negative words dictionaries from the langpack.

One feature that we needed to develop for our customers is
‘heuristic entity extraction’ . In case you want to extract
complicated  product  names  from  text  or  call-center
conversations between customers and agents you run into the
problem that it becomes very expensive to develop altLabels in
a taxonomy tool. We created special software to facilitate the
automatic creation of altlabels.

NLP:  Basic  Pattern  Matching  for  relationship  and  event
detection

Getting  entities  out  of  text  is  now  well  understood  and
supported by the software community. However, to find complex
concepts or relationships between entities or even events is



way harder and requires a flexible rule-based pattern matcher.
Given our long time background in Lisp and Prolog one can
imagine we created a very powerful pattern matcher.

SPARQL Access

Currently all the features above can be controlled as stored
procedures or using Lisp as the command language. We have a
new (beta) version that uses SPARQL for most of the control.
Here are some examples. Note that fai is a magic-property
namespace for “AI”-related stuff and inc is a custom namespace
of an imaginary client:

1. Entity extraction

select ?ent {
   ?subj fai:entityTaxonomy inc:products .
   ?subj fai:entityTaxonomy inc:salesTerms .
   ?subj fai:textPredicate inc:text .
   ?subj  fai:entity(fai:language  "en",  fai:taxonomy
inc:products)  ?ent  .
}

The expressions ?subj fai:entityTaxonomy inc:poducts and ?subj
fai:entityTaxonomy inc:salesTerms specify which taxonomies to
use (the appropriate matchers are cached).
The expression ?subj fai:entity ?ent will either return the
already  extracted  entities  with  the  specified  predicate
(fai:entity) or extract the new entities according to the
taxonomies in the texts accessible by fai:textPredicate.

2. fai:sentiment will return a single triple with sentiment
score:

select ?sentiment {
   ?subj fai:textPredicate inc:text .
   ?subj fai:sentiment ?sentiment .
   ?subj fai:language "en" .
   ?subj fai:sentimentTaxonomy franz:sentiwords .
}



 

3. Text classification:
Provided inc:customClassifier was already trained previously,
this query will return labels for all texts as a result of
classification.

select ?label {
?subj fai:textPredicate inc:text .
?subj fai:classifier inc:customClassifier .
?subj fai:classify ?label .
?label fai:storeResultPredicate inc:label .
}

 

Further Development
Our team is currently working on these new features:

A more accessible UI (python client & web) to facilitate
NLP and ML pipelines
Addition of various classifier models
Sequence classification support (already implemented for
a customer project)
Pre-trained  models  shipped  with  AllegroGraph  (e.g.
English NER)
Graph ML algorithms (deepwalk, Google Expander)
Clustering algorithms (k-means, OPTICS)

 

 

 



The Knowledge Graph Cookbook
Recipes for Knowledge Graphs that Work:

Learn why and how to build knowledge graphs that help
enterprises  use  data  to  innovate,  create  value  and
increase  revenue.  This  practical  manual  is  full  of
recipes and knowledge on the subject.
Learn more about the variety of applications based on
knowledge graphs.
Learn how to build working knowledge graphs and which
technologies to use.
See how knowledge graphs can benefit different parts of
your organization.
Get ready for the next generation of enterprise data
management tools.

 

Dr. Jans Aasman, CEO, Franz Inc. is interviewed in the Expert
Opinion Section.

“KNOWLEDGE GRAPHS AREN’T WORTH THEIR NAME IF THEY DON’T
ALSO LEARN AND BECOME SMARTER DAY BY DAY” – Dr. Aasman

https://allegrograph.com/the-knowledge-graph-cookbook/


 

Click here to get the book as free PDF or Kindle version.

 

Bitcoin  RDF  Model  in
AllegroGraph
For  more  examples  visit
–  https://github.com/franzinc/agraph-examples

Introduction
This example demonstrates an RDF model for Bitcoin chain data
as well as a Python tool to pull the data from a Bitcoin node
into an instance of an AllegroGraph graph database. The model
description itself can be found in the Turtle file model.ttl.

https://www.poolparty.biz/resources/the-knowledge-graph-cookbook-resource/
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The following Turtle example demonstrates how this RDF model
can  be  used  to  represent  complete  chain  entities  (given
example is a genesis block – the first block in the mainnet
Bitcoin chain; script strings omitted for brevity):

@prefix  :
<https://raw.githubusercontent.com/franzinc/agraph-examples
/master/data/bitcoin/model.ttl#>
@prefix btc: <bitcoin://>

btc:blk0
:height 0;
:hash
“000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a
8ce26f”;
:time 1231006505;
:version 1;
:transaction
btc:4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7
afdeda33b.

btc:4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7
afdeda33b
:lockTime 0;
:input [:unlockScript “…”.];
:output [:amount 5000000000; :lockScript “…”.].

Setup
The following examples assume AllegroGraph triple store and
assume  it  is  already  installed  and  running  on  the  target
machine.  The  following  AG  instance  settings  settings  are
assumed as well:

host: localhost (default);
port: 10035 (default);
username: aguser;
password: agpassword.

We also assume the following bitcoind settings:



host: localhost (default);
port: 8332 (default);
username: btcuser;
password: btcpassword.

First, install the tool by cloning this repository, setting up
virtual environment and installing the dependencies:

git clone http://github.com/franzinc/agraph-examples
cd agraph-examples/data/bitcoin
python3 -m venv .
source ./bin/activate
pip3 install -r requirements.txt

The following command starts the process of loading bitcoin
chain data into an AG repository named bitcoin using 4 loader
processes:

./convert.py \
–source=http://btcuser:btcpassword@localhost:8332 \
–destination=http://aguser:agpassword@localhost:10035 \
–name=bitcoin \
–workers=4 \
–clear

Example queries
Following  are  the  examples  of  using  SPARQL  to  extract
different  information  about  block  data:

number of known blocks:

PREFIX  :
<https://raw.githubusercontent.com/franzinc/agraph-examples
/master/data/bitcoin/model.ttl#>
SELECT (COUNT(*) AS ?count) WHERE { ?b a btcm:Block. }

total number of transactions:

PREFIX  :
<https://raw.githubusercontent.com/franzinc/agraph-examples



/master/data/bitcoin/model.ttl#>
SELECT (COUNT(*) AS ?count) WHERE { ?tx a btcm:Transaction.
}

transaction in block 400:

PREFIX  :
<https://raw.githubusercontent.com/franzinc/agraph-examples
/master/data/bitcoin/model.ttl#>
SELECT ?txid
WHERE {
?b a :Block.
?b :height “570001”^^xsd:int.
?b :transaction ?tx.
?tx :txid ?txid.
}

transactions sending more than 1000 BTC:

PREFIX  :
<https://raw.githubusercontent.com/franzinc/agraph-examples
/master/data/bitcoin/model.ttl#>
SELECT ?tx
WHERE {
?b a :Block.
?b :transaction ?tx.
?tx :output ?out.
?out :amount ?amt.
}
GROUP BY ?tx
HAVING (SUM(?amt) > 100000000000)

transactions sending BTC to Pirate Bay’s address:

PREFIX  :
<https://raw.githubusercontent.com/franzinc/agraph-examples
/master/data/bitcoin/model.ttl#>
SELECT ?tx
WHERE {



?tx :output ?out.
?out :lockScript ?s.
FILTER REGEX (?s, “<tpb address>”).
}

 


