
AllegroGraph named to 2019
Trend-Setting Products
Database Trends and Applications – December 2018

You can call it the new oil, or even the new electricity, but
however it is described, it’s clear that data is now
recognized as an essential fuel flowing through organizations
and enabling never before seen opportunities. However, data
cannot simply be collected; it must be handled with care in
order to fulfill the promise of faster, smarter decision
making.

More than ever, it is critical to have the right tools for the
job. Leading IT vendors are coming forward to help customers
address the data-driven possibilities by improving self-
service access, real-time insights, governance and security,
collaboration, high availability, and more.

To help showcase these innovative products and services each
year, Database Trends and Applications magazine looks for
offerings that promise to help organizations derive greater
benefit from their data, make decisions faster, and work
smarter and more securely.

This year our list includes newer approaches leveraging
artificial intelligence, machine learning, and automation as
well as products in more established categories such as
relational and NoSQL database management, MultiValue,
performance management, analytics, and data governance.

Read the AllegroGraph Spotlight

https://allegrograph.com/allegrograph-named-to-2019-trend-setting-products/
https://allegrograph.com/allegrograph-named-to-2019-trend-setting-products/
http://www.dbta.com/Editorial/Actions/Product-Spotlight-Franz-128871.aspx

Knowledge Graphs — The path
to true AI
Published in SD Times – December, 2018

Knowledge is the foundation of intelligence— whether
artificial intelligence or conventional human intellect. The
understanding implicit in intelligence, its application
towards business problems or personal ones, requires knowledge
of these problems (and potential solutions) to effectively
overcome them.

The knowledge underpinning AI has traditionally come from two
distinct methods: statistical reasoning, or machine learning,
and symbolic reasoning based on rules and logic. The former
approach learns by correlating inputs with outputs for
increasingly progressive pattern identification; the latter
approach uses expert, human-crafted rules to apply to
particular real-world domains.

https://allegrograph.com/knowledge-graphs-the-path-to-true-ai/
https://allegrograph.com/knowledge-graphs-the-path-to-true-ai/
https://sdtimes.com/tag/ai/

Read the full article at SD Times.

What is the most interesting
use of a graph database you
ever seen? PWC responds.
From a Quora post by Alan Morrison – Sr. Research Fellow at
PricewaterhouseCoopers – November 2018

The most interesting use is the most powerful: standard RDF
graphs for large-scale knowledge graph integration.

From my notes on a talk Parsa Mirhaji of Montefiore Health
System gave in 2017. Montefiore uses Franz AllegroGraph, a
distributed RDF graph database. He modeled a core patient-
centric hospital knowledge need using a simple standard
ontology with a 1,000 or so concepts total.

That model integrated data from lots of different kinds of
heterogeneous sources so that doctors could query the
knowledge graph from tablets or phones at a patient’s bedside
and get contextualized, patient-specific answers to questions
for diagnostic purposes.

Fast forward to 2018, and nine out of ten of the most value-
creating companies in the world are using standard knowledge
graphs in a comparable fashion, either as a base for multi-
domain intelligent assistants a la Siri or Alibot or Alexa,
or to integrate and contextualize business domains cross-
enterprise, or both. The method is preparatory to what John
Launchbury of DARPA described as the Third Wave of AI………….

https://sdtimes.com/ai/guest-view-knowledge-graphs-the-path-to-true-ai/
https://allegrograph.com/what-is-the-most-interesting-use-of-a-graph-database-you-ever-seen/
https://allegrograph.com/what-is-the-most-interesting-use-of-a-graph-database-you-ever-seen/
https://allegrograph.com/what-is-the-most-interesting-use-of-a-graph-database-you-ever-seen/

Read the full article over at Quora

.

AI Requires More Than Machine
Learning
From Forbes Technology Council – October 2018

This article discusses the facets of machine learning and AI:

Lauded primarily for its automation and decision support,
machine learning is undoubtedly a vital component of
artificial intelligence. However, a small but growing number
of thought leaders throughout the industry are acknowledging
that the breadth of AI’s upper cognitive capabilities
involves more than just machine learning.

Machine learning is all about sophisticated pattern
recognition. It’s virtually unsurpassable at determining
relevant, predictive outputs from a series of data-driven

https://www.quora.com/What-is-the-most-interesting-use-of-a-graph-database-you-ever-seen/answer/Alan-Morrison?ch=2&srid=Mru
https://allegrograph.com/ai-requires-more-than-machine-learning/
https://allegrograph.com/ai-requires-more-than-machine-learning/
https://aibusiness.com/semantic-reasoning-ai/
https://aibusiness.com/semantic-reasoning-ai/

inputs. Nevertheless, there is a plethora of everyday,
practical business problems that cannot be solved with
input/output reasoning alone. The problems also require the
multistep, symbolic reasoning of rules-based systems.

Whereas machine learning is rooted in a statistical approach,
symbolic reasoning is predicated on the symbolic
representation of a problem usually rooted in a knowledge
base. Most rules-based systems involve multistep reasoning,
including those powered by coding languages such as Prolog.

Read the full article over at Forbes

.

Optimizing Fraud Management
with AI Knowledge Graphs
From Global Banking and Finance Review – July 12, 2018

This article discusses Knowledge Graphs for Anti-Money
Laundering (AML), Suspicious Activity Reports (SAR),
counterfeiting and social engineering falsities, as well as
synthetic, first-party, and card-not-present fraud.

By compiling fraud-related data into an AI knowledge graph,
risk management personnel can also triage those alerts for
the right action at the right time. They also get the
additive benefit of reusing this graph to decrease other

https://dzone.com/articles/ai-programming-5-most-popular-ai-programming-langu
https://www.forbes.com/sites/forbestechcouncil/2018/10/16/ai-requires-more-than-machine-learning
https://allegrograph.com/optimizing-fraud-management-with-ai-knowledge-graphs/
https://allegrograph.com/optimizing-fraud-management-with-ai-knowledge-graphs/

risks for security, loans, or additional financial purposes.

Dr. Aasman goes on to note:

By incorporating AI, these threat maps yields a plethora of
information for actually preventing fraud. Supervised
learning methods can readily identify what events constitute
fraud and which don’t; many of these involve classic machine
learning. Unsupervised learning capabilities are influential
in determining normal user behavior then pinpointing
anomalies contributing to fraud. Perhaps the most effective
way AI underpins risk management knowledge graphs is in
predicting the likelihood—and when—a specific fraud instance
will take place. Once organizations have data for customers,
events, and fraud types over a length of time (which could be
in as little as a month in the rapidly evolving financial
crimes space), they can compute the co-occurrence between
events and fraud types.

Read the full article over at Global Banking and Finance
Review.

https://www.globalbankingandfinance.com/optimizing-fraud-management-with-ai-knowledge-graphs/
https://www.globalbankingandfinance.com/optimizing-fraud-management-with-ai-knowledge-graphs/

The Most Secure Graph
Database Available
Triples offer a way of describing model elements and relationships
between them. In come cases, however, it is also convenient to be
able to store data that is associated with a triple as a whole
rather than with a particular element. For instance one might wish
to record the source from which a triple has been imported or
access level necessary to include it in query results. Traditional
solutions of this problem include using graphs, RDF reification or
triple IDs. All of these approaches suffer from various
flexibility and performance issues. For this reason AllegroGraph
offers an alternative: triple attributes.
Attributes are key-value pairs associated with a triple. Keys
refer to attribute definitions that must be added to the store

https://allegrograph.com/the-most-secure-graph-database-available/
https://allegrograph.com/the-most-secure-graph-database-available/

before they are used. Values are strings. The set of legal values
of an attribute can be constrained by the definition of that
attribute. It is possible to associate multiple values of a given
attribute with a single triple.
Possible uses for triple attributes include:

Access control: It is possible to instruct AllegroGraph to
prevent an user from accessing triples with certain
attributes.
Sharding: Attributes can be used to ensure that related
triples are always placed in the same shard when
AllegroGraph acts as a distributed triple store.

Like all other triple components, attribute values are immutable.
They must be provided when the triple is added to the store and
cannot be changed or removed later.
To illustrate the use of triple attributes we will construct an
artificial data set containing a log of information about contacts
detected by a submarine at a single moment in time.

Managing attribute definitions
Before we can add triples with attributes to the store we must
create appropriate attribute definitions.
First let’s open a connection

from franz.openrdf.connect import ag_connect

conn = ag_connect('python-tutorial', create=True, clear=True)

Attribute definitions are represented
by AttributeDefinition objects. Each definition has a name, which
must be unique, and a few optional properties (that can also be
passed as constructor arguments):

allowed_values: a list of strings. If this property is set
then only the values from this list can be used for the
defined attribute.
ordered: a boolean. If true then attribute value comparisons
will use the ordering defined by allowed_values. The default
is false.
minimum_number, maximum_number: integers that can be used to
constrain the cardinality of an attribute. By default there
are no limits.

Let’s define a few attributes that we will later use to
demonstrate various attribute-related capabilities of
AllegroGraph. To do this, we will use
the setAttributeDefinition() method of the connection object.

from franz.openrdf.repository.attributes import AttributeDefinition

A simple attribute with no constraints governing the set
of legal values or the number of values that can be
associated with a triple.
tag = AttributeDefinition(name='tag')

An attribute with a limited set of legal values.
Every bit of data can come from multiple sources.
We encode this information in triple attributes,
since it refers to the tripe as a whole. Another
way of achieving this would be to use triple ids
or RDF reification.
source = AttributeDefinition(
 name='source',
 allowed_values=['sonar', 'radar', 'esm', 'visual'])

Security level - notice that the values are ordered
and each triple *must* have exactly one value for
this attribute. We will use this to prevent some
users from accessing classified data.
level = AttributeDefinition(
 name='level',
 allowed_values=['low', 'medium', 'high'],
 ordered=True,
 minimum_number=1,
 maximum_number=1)

An attribute like this could be used for sharding.
That would ensure that data related to a particular
contact is never partitioned across multiple shards.
Note that this attribute is required, since without
it an attribute-sharded triple store would not know
what to do with a triple.
contact = AttributeDefinition(
 name='contact',
 minimum_number=1,
 maximum_number=1)

So far we have created definition objects, but we
have not yet sent those definitions to the server.
Let's do this now.
conn.setAttributeDefinition(tag)
conn.setAttributeDefinition(source)

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.setAttributeDefinition

conn.setAttributeDefinition(level)
conn.setAttributeDefinition(contact)

This line is not strictly necessary, because our
connection operates in autocommit mode.
However, it is important to note that attribute
definitions have to be committed before they can
be used by other sessions.
conn.commit()

It is possible to retrieve the list of attribute definitions from
a repository by using the getAttributeDefinitions() method:

for attr in conn.getAttributeDefinitions():
 print('Name: {0}'.format(attr.name))
 if attr.allowed_values:
 print('Allowed values: {0}'.format(
 ', '.join(attr.allowed_values)))
 print('Ordered: {0}'.format(
 'Y' if attr.ordered else 'N'))
 print('Min count: {0}'.format(attr.minimum_number))
 print('Max count: {0}'.format(attr.maximum_number))
 print()

Notice that in cases where the maximum cardinality has not been
explicitly defined, the server replaced it with a default value.
In practice this value is high enough to be interpreted as ‘no
limit’.

 Name: tag
 Min count: 0
 Max count: 1152921504606846975

 Name: source
 Allowed values: sonar, radar, esm, visual
 Min count: 0
 Max count: 1152921504606846975
 Ordered: N

 Name: level
 Allowed values: low, medium, high
 Ordered: Y
 Min count: 1
 Max count: 1

 Name: contact
 Min count: 1
 Max count: 1

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.getAttributeDefinitions

Attribute definitions can be removed (provided that the attribute
is not used by the static attribute filter, which will be
discussed later) by calling deleteAttributeDefinition():

conn.deleteAttributeDefinition('tag')
defs = conn.getAttributeDefinitions()
print(', '.join(sorted(a.name for a in defs)))

contact, level, source

Adding triples with attributes
Now that the attribute definitions have been established we can
demonstrate the process of adding triples with attributes. This
can be achieved using various methods. A common element of all
these methods is the way in which triple attributes are
represented. In all cases dictionaries with attribute names as
keys and strings or lists of strings as values are used.
When addTriple() is used it is possible to pass attributes in a
keyword parameter, as shown below:

ex = conn.namespace('ex://')
conn.addTriple(ex.S1, ex.cls, ex.Udaloy, attributes={
 'source': 'sonar',
 'level': 'low',
 'contact': 'S1'
})

The addStatement() method works in similar way. Note that it is not
possible to include attributes in the Statement object itself.

from franz.openrdf.model import Statement

s = Statement(ex.M1, ex.cls, ex.Zumwalt)
conn.addStatement(s, attributes={
 'source': ['sonar', 'esm'],
 'level': 'medium',
 'contact': 'M1'
})

When adding multiple triples with addTriples() one can add a fifth
element to each tuple to represent attributes. Let us illustrate

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.deleteAttributeDefinition
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.addTriple
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.addStatement
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.model.html#franz.openrdf.model.Statement
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.addTriples

this by adding an aircraft to our dataset.

conn.addTriples(
 [(ex.R1, ex.cls, ex['Ka-27'], None,
 {'source': 'radar',
 'level': 'low',
 'contact': 'R1'}),
 (ex.R1, ex.altitude, 200, None,
 {'source': 'radar',
 'level': 'medium',
 'contact': 'R1'})])

When all or most of the added triples share the same attribute set
it might be convenient to use the attributes keyword parameter.
This provides default values, but is completely ignored for all
tuples that already contain attributes (the dictionaries are not
merged). In the example below we add a triple representing an
aircraft carrier and a few more triples that specify its position.
Notice that the first triple has a lower security level and
multiple sources. The common ‘contact’ attribute could be used to
ensure that all this data will remain on a single shard.

conn.addTriples(
 [(ex.M2, ex.cls, ex.Kuznetsov, None, {
 'source': ['sonar', 'radar', 'visual'],
 'contact': 'M2',
 'level': 'low',
 }),
 (ex.M2, ex.position, ex.pos343),
 (ex.pos343, ex.x, 430.0),
 (ex.pos343, ex.y, 240.0)],
 attributes={
 'contact': 'M2',
 'source': 'radar',
 'level': 'medium'
 })

Another method of adding triples with attributes is to use the NQX
file format. This works both
with addFile() and addData() (illustrated below):

from franz.openrdf.rio.rdfformat import RDFFormat

conn.addData('''
 <ex://S2> <ex://cls> <ex://Alpha> \
 {"source": "sonar", "level": "medium", "contact": "S2"} .
 <ex://S2> <ex://depth> "300" \

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.addFile
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.addData

 {"source": "sonar", "level": "medium", "contact": "S2"} .
 <ex://S2> <ex://speed_kn> "15.0" \
 {"source": "sonar", "level": "medium", "contact": "S2"} .
''', rdf_format=RDFFormat.NQX)

When importing from a format that does not support attributes, it
is possible to provide a common set of attribute values with a
keyword parameter:

from franz.openrdf.rio.rdfformat import RDFFormat

conn.addData('''
 <ex://V1> <ex://cls> <ex://Walrus> ;
 <ex://altitude> 100 ;
 <ex://speed_kn> 12.0e+8 .
 <ex://V2> <ex://cls> <ex://Walrus> ;
 <ex://altitude> 200 ;
 <ex://speed_kn> 12.0e+8 .
 <ex://V3> <ex://cls> <ex://Walrus> ;
 <ex://altitude> 300;
 <ex://speed_kn> 12.0e+8 .
 <ex://V4> <ex://cls> <ex://Walrus> ;
 <ex://altitude> 400 ;
 <ex://speed_kn> 12.0e+8 .
 <ex://V5> <ex://cls> <ex://Walrus> ;
 <ex://altitude> 500 ;
 <ex://speed_kn> 12.0e+8 .
 <ex://V6> <ex://cls> <ex://Walrus> ;
 <ex://altitude> 600 ;
 <ex://speed_kn> 12.0e+8 .
''', attributes={
 'source': 'visual',
 'level': 'high',
 'contact': 'a therapist'})

The data above represents six visually observed Walrus-class
submarines, flying at different altitudes and well above the speed
of light. It has been highly classified to conceal the fact that
someone has clearly been drinking while on duty – after all there
are only four Walrus-class submarines currently in service, so the
observation is obviously incorrect.

Retrieving attribute values
We will now print all the data we have added to the store,
including attributes, to verify that everything worked as

expected. The only way to do that is through a SPARQL query using
the appropriate magic property to access the attributes. The query
below binds a literal containing a JSON representation of triple
attributes to the ?a variable:

import json

r = conn.executeTupleQuery('''
 PREFIX attr: <http://franz.com/ns/allegrograph/6.2.0/>
 SELECT ?s ?p ?o ?a {
 ?s ?p ?o .
 ?a attr:attributes (?s ?p ?o) .
 } ORDER BY ?s ?p ?o''')
with r:
 for row in r:
 print(row['s'], row['p'], row['o'])
 print(json.dumps(json.loads(row['a'].label),
 sort_keys=True,
 indent=4))

The result contains all the expected triples with pretty-printed
attributes.

<ex://M1> <ex://cls> <ex://Zumwalt>
{
 "contact": "M1",
 "level": "medium",
 "source": [
 "esm",
 "sonar"
]
}
<ex://M2> <ex://cls> <ex://Kuznetsov>
{
 "contact": "M2",
 "level": "low",
 "source": [
 "visual",
 "radar",
 "sonar"
]
}
<ex://M2> <ex://position> <ex://pos343>
{
 "contact": "M2",
 "level": "medium",
 "source": "radar"
}

https://franz.com/ns/allegrograph/6.2.0/attributes

<ex://R1> <ex://altitude> "200"^^...
{
 "contact": "R1",
 "level": "medium",
 "source": "radar"
}
<ex://R1> <ex://cls> <ex://Ka-27>
{
 "contact": "R1",
 "level": "low",
 "source": "radar"
}
<ex://S1> <ex://cls> <ex://Udaloy>
{
 "contact": "S1",
 "level": "low",
 "source": "sonar"
}
<ex://S2> <ex://cls> <ex://Alpha>
{
 "contact": "S2",
 "level": "medium",
 "source": "sonar"
}
<ex://S2> <ex://depth> "300"
{
 "contact": "S2",
 "level": "medium",
 "source": "sonar"
}
<ex://S2> <ex://speed_kn> "15.0"
{
 "contact": "S2",
 "level": "medium",
 "source": "sonar"
}
<ex://V1> <ex://altitude> "100"^^...
{
 "contact": "a therapist",
 "level": "high",
 "source": "visual"
}
<ex://V1> <ex://cls> <ex://Walrus>
{
 "contact": "a therapist",
 "level": "high",
 "source": "visual"
}
<ex://V1> <ex://speed_kn> "1.2E9"^^...
{

 "contact": "a therapist",
 "level": "high",
 "source": "visual"
}
...
<ex://pos343> <ex://x> "4.3E2"^^...
{
 "contact": "M2",
 "level": "medium",
 "source": "radar"
}
<ex://pos343> <ex://y> "2.4E2"^^...
{
 "contact": "M2",
 "level": "medium",
 "source": "radar"
}

Attribute filters
Triple attributes can be used to provide fine-grained access
control. This can be achieved by using static attribute filters.
Static attribute filters are simple expressions that control which
triples are visible to a query based on triple attributes. Each
repository has a single, global attribute filter that can be
modified using setAttributeFilter(). The values passed to this
method must be either strings (the syntax is described in the
documentation of static attribute filters) or filter objects.
Filter objects are created by applying set operators to ‘attribute
sets’. These can then be combined using filter operators.
An attribute set can be one of the following:

a string or a list of strings: represents a constant set of
values.
TripleAttribute.name: represents the value of
the name attribute associated with the currently inspected
triple.
UserAttribute.name: represents the value of
the name attribute associated with current query. User
attributes will be discussed in more detail later.

Available set operators are shown in the table below. All classes
and functions mentioned here can be imported from
the franz.openrdf.repository.attributes package:

https://franz.com/agraph/support/documentation/current/triple-attributes.html#static-filters
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.setAttributeFilter
https://franz.com/agraph/support/documentation/current/triple-attributes.html#static-filters

Syntax Meaning

Empty(x)
True if the specified attribute set

is empty.

Overlap(x, y)
True if there is at least one
matching value between the two

attribute sets.

Subset(x, y), x << y
True if every element of x can be

found in y

Superset(x, y), x >> y
True if every element of y can be

found in x

Equal(x, y), x == y
True if x and y have exactly the same

contents.

Lt(x, y), x < y

True if both sets are singletons, at
least one of the sets refers to a
triple or user attribute, the

attribute is ordered and the value of
the single element of x occurs before

the single value of y in
the lowed_values list of the attribute.

Le(x, y), x <= y True if y < x is false.

Eq(x, y)
True if both x < y and y < x are

false. Note that using the == Python
operator translates toEqauls, not Eq.

Ge(x, y), x >= y True if x < y is false.

Gt(x, y), x > y True if y < x.
Note that the overloaded operators only work if at least one of
the attribute sets is a UserAttribute or TripleAttribute reference –
if both arguments are strings or lists of strings the default
Python semantics for each operator are used. The prefix syntax
always produces filters.
Filters can be combined using the following operators:

Syntax Meaning

Not(x), ~x Negates the meaning of the filter.

And(x, y, ...), x & y True if all subfilters are true.

Or(x, y, ...), x | y
True if at least one subfilter is

true.
Filter operators also work with raw strings, but overloaded
operators will only be recognized if at least one argument is a
filter object.

Using filters and user attributes
The example below displays all classes of vessels from the dataset
after establishing a static attribute filter which ensures that
only sonar contacts are visible:

from franz.openrdf.repository.attributes import *

conn.setAttributeFilter(TripleAttribute.source >> 'sonar')
conn.executeTupleQuery(
 'select ?class { ?s <ex://cls> ?class } order by ?class',
 output=True)

The output contains neither the visually observed Walruses nor the
radar detected ASW helicopter.

| class |
==================
| ex://Alpha |
| ex://Kuznetsov |
| ex://Udaloy |
ex://Zumwalt

To avoid having to set a static filter before each query (which
would be inefficient and cause concurrency issues) we can employ
user attributes. User attributes are specific to a particular
connection and are sent to the server with each query. The static
attribute filter can refer to these and compare them with triple
attributes. Thus we can use code presented below to create a
filter which ensures that a connection only accesses data at or

below the chosen clearance level.

conn.setUserAttributes({'level': 'low'})
conn.setAttributeFilter(
 TripleAttribute.level <= UserAttribute.level)
conn.executeTupleQuery(
 'select ?class { ?s <ex://cls> ?class } order by ?class',
 output=True)

We can see that the output here contains only contacts with the
access level of low. It omits the destroyer and Alpha submarine
(these require medium level) as well as the top-secret Walruses.

| class |
==================
| ex://Ka-27 |
| ex://Kuznetsov |
ex://Udaloy

The main advantage of the code presented above is that the filter
can be set globally during the application setup and access
control can then be achieved by varying user attributes on
connection objects.
Let us now remove the attribute filter to prevent it from
interfering with other examples. We will use
the clearAttributeFilter() method.

conn.clearAttributeFilter()

It might be useful to change connection’s attributes temporarily
for the duration of a single code block and restore prior
attributes after that. This can be achieved using
the temporaryUserAttributes() method, which returns a context
manager. The example below illustrates its use. It also shows how
to use getUserAttributes() to inspect user attributes.

with conn.temporaryUserAttributes({'level': 'high'}):
 print('User attributes inside the block:')
 for k, v in conn.getUserAttributes().items():
 print('{0}: {1}'.format(k, v))
 print()
print('User attributes outside the block:')
for k, v in conn.getUserAttributes().items():
 print('{0}: {1}'.format(k, v))

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.clearAttributeFilter
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.temporaryUserAttributes
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.getUserAttributes

User attributes inside the block:
level: high

User attributes outside the block:
level: low »

Making Big Data More
Meaningful through Data
Visualization
We’ve all heard the saying, “a picture says a thousand words.”
With today’s millisecond attention spans, communicating a
complex topic to any audience – business professional,
consumer, doctor, investor, policy-maker, voter — has become
more challenging than ever. Some industries are now taking
this seriously and investing in new data visualization
techniques.

Data visualization is a fundamental part of scientific
research. In a scientific journal, pictures certainly do seem
to be worth a thousand words, with graphs translating large
amounts of data into insightful, visual representations.

Read the full article at insideBIGDATA

https://allegrograph.com/making-big-data-more-meaningful-through-data-visualization/
https://allegrograph.com/making-big-data-more-meaningful-through-data-visualization/
https://allegrograph.com/making-big-data-more-meaningful-through-data-visualization/
https://insidebigdata.com/2015/12/22/making-big-data-more-meaningful-through-data-visualization/

AllegroGraph News
Franz periodically distributes newsletters to its Semantic
Technologies, and Common Lisp based Enterprise Development
Tools mailing lists, providing information on related upcoming
events and new software product developments.

Franz Inc. and The Wroclaw
Institute of Spatial
Information and Artificial
Intelligence (The Wroclaw
Institute) team up to deliver
graph and A.I. solutions in
Poland

A Wroclaw Institute News Release

OAKLAND, Calif. — March 15, 2016 — We are pleased to inform
that Wroclaw Institute has been appointed as a partner
by Franz Inc.– world’s leading producer of semantic graph
technologies. The agreement grants to Wroclaw Institute
exclusive right to sell Franz’s – AllegroGraph family of
products for territory of Poland. AllegroGraph is best in
class graph database, fully supporting W3C standards adopted
by start-up’s as well as vast number of Fortune 100 companies.
AllegroGraph is a part of Big Data ecosystem as it could be
integrated with Apache Hadoop and Amazon EC2.

https://allegrograph.com/allegrograph-news-september/
https://allegrograph.com/franz-inc-and-the-wroclaw-institute-of-spatial-information-and-artificial-intelligence-the-wroclaw-institute-team-up-to-deliver-graph-and-a-i-solutions-in-poland/
https://allegrograph.com/franz-inc-and-the-wroclaw-institute-of-spatial-information-and-artificial-intelligence-the-wroclaw-institute-team-up-to-deliver-graph-and-a-i-solutions-in-poland/
https://allegrograph.com/franz-inc-and-the-wroclaw-institute-of-spatial-information-and-artificial-intelligence-the-wroclaw-institute-team-up-to-deliver-graph-and-a-i-solutions-in-poland/
https://allegrograph.com/franz-inc-and-the-wroclaw-institute-of-spatial-information-and-artificial-intelligence-the-wroclaw-institute-team-up-to-deliver-graph-and-a-i-solutions-in-poland/
https://allegrograph.com/franz-inc-and-the-wroclaw-institute-of-spatial-information-and-artificial-intelligence-the-wroclaw-institute-team-up-to-deliver-graph-and-a-i-solutions-in-poland/
https://allegrograph.com/franz-inc-and-the-wroclaw-institute-of-spatial-information-and-artificial-intelligence-the-wroclaw-institute-team-up-to-deliver-graph-and-a-i-solutions-in-poland/
https://allegrograph.com/franz-inc-and-the-wroclaw-institute-of-spatial-information-and-artificial-intelligence-the-wroclaw-institute-team-up-to-deliver-graph-and-a-i-solutions-in-poland/
https://franz.com/
https://allegrograph.com/

The Wroclaw Institute CEO – Dr. Adam Iwaniak said “Partnership
with Franz Inc. is a turning point for our company as semantic
graph technology is gaining a lot of market attention in ‘data
tsunami’ era. We are happy that we will be able to provide our
customers with award winning solution to help them manage
their complex data resources. Moreover I’d like to emphasize
that as a company we made a big progress in leveraging RDF
graphs technologies also on our basic market –
geoinformatics”.

“We are excited about the opportunity to work with Dr. Iwaniak
and the Wroclaw Institute team to demonstrate why Graph
Databases deliver new, real time decision making capabilities
for the Enterprise.” said Dr. Jans Aasman, CEO, Franz Inc.,
“Organizations across Poland will benefit from AllegroGraph’s
ability to link highly complex data, generating new knowledge
and insight for a significant competitive advantage.”

AllegroGraph is a database technology that enables businesses
to extract sophisticated decision insights and predictive
analytics from their highly complex, distributed data that
can’t be answered with conventional databases. Unlike
traditional relational databases, Franz’s product AllegroGraph
employs a combination of semantic, graph and spatial
technologies that process data with contextual and conceptual
intelligence. AllegroGraph is able to run queries of
unprecedented complexity to support predictive analytics that
help companies make better, real-time decisions.

AllegroGraph is commonly used in defense and intelligence,
banking, and insurance, pharmaceutical, and healthcare, Linked
Data publishing, as well as by organization dealing with
complex, constantly changing knowledge bases.

About Franz Inc.
Franz Inc. is a leading vendor of semantic technology tools
featuring AllegroGraph – high-performance, scalable, disk-

based graph database, provides the solid storage layer for
powerful GeoTemporal Reasoning, Social Network Analytics and
Ontology Modeling. Based in Oakland, California, Franz Inc. is
an American owned company that delivers leading-edge
development products that enable software developers to build
flexible, scalable, semantic applications quickly and cost-
effectively.

About The Wroclaw Institute
The Wroclaw Institute of Spatial Information and Artificial
Intelligence is Wroclaw, Poland based technology company
focused on knowledge engineering, data exploration and
intelligent GIS providing products, services and solutions
based on cutting-edge scientific and technological
achievements.

Related Links

WIZIPISI dystrybutorem oprogramowania AllegroGraph
Oprogramowanie bazodanowe AllegroGraph dostepne w Polsce
Wroclaw Institute of Spatial Information and Artificial
Intelligence

All trademarks and registered trademarks in this document are
the properties of their respective owners.

Enriching Property Graphs
with Relationship
Suppose we are creating a large graph database that contains
information about payments between companies. A graph database

http://geoforum.pl/?page=news&id=21456&link=wizpisi-dystrybutorem-oprogramowania-allegrograph&menu=46814,46836
http://www.gisplay.pl/gis/5963-oprogramowanie-allegrograph-w-polsce.html
https://www.linkedin.com/company/wroclaw-institute-of-spatial-information-and-artificial-intelligence?trk=company_logo
https://www.linkedin.com/company/wroclaw-institute-of-spatial-information-and-artificial-intelligence?trk=company_logo
https://allegrograph.com/enriching-property-graphs-with-relationship/
https://allegrograph.com/enriching-property-graphs-with-relationship/

analyst might start off modeling the payments as shown in
Figure 1, which expresses who paid whom. (All graph figures in
this article were produced using Gruff, a tool for visualizing
graph databases, operating over the AllegroGraph graph
database system.)

This seems straightforward enough. Now suppose that we want to
record more information about payments, such as the amount of
the payment, the means of payment (direct debit, e-check,
wire, etc.), the date and time when the payment occurred, and
so forth. A traditional property graph approach places these
properties on the edge that connects the payor and payee
nodes, as shown in Figure 2.

Read the full blog post at DB-Engines

https://allegrograph.com/gruff/
https://db-engines.com/en/system/AllegroGraph
https://db-engines.com/en/blog_post/61

