
No-Code  Queries  Can
Accelerate  AI  and  Data
Analytics
By Dr. Jans Aasman, CEO

The low-code, no-code methodology is becoming highly sought-
after throughout the modern IT ecosystem—and with good reason.
Options that minimize manually writing code capitalize on the
self-service, automation idiom that’s imperative in a world in
which  working  remotely  and  doing  more  with  less  keeps
organizations  in  business.

Most  codeless  or  low-code  approaches  avoid  the  need  for
writing language-specific code and replace it with a visual
approach in which users simply manipulate on-screen objects
via  a  drag-and-drop,  point-and-click  interface  to  automate
code generation. The intuitive ease of this approach — which
is  responsible  for  new  standards  of  efficiency  and
democratization of no-code development — has now extended to
no-code query writing.

No-code querying provides two unassailable advantages to the
enterprise. First, it considerably expedites what is otherwise
a time-consuming ordeal, thereby accelerating data analytics
and  AI-driven  applications  and  second,  it  can  help
organizations overcome the talent shortage of developers and
knowledge engineers. Moreover, it does so by furnishing all
the above benefits that make codeless and low-code options
mandatory for success.

Read the full article at DZone.
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Data-Centric  Architecture
Forum – DCAF 2021
Data and the subsequent knowledge derived from information are
the most valuable strategic asset an organization possesses.
Despite  the  abundance  of  sophisticated  technology
developments, most organizations don’t have disciplines or a
plan to enable data-centric principles.

DCAF 2021 will help provide clarity.
Our overarching theme for this conference is to make it REAL.
Real in the sense that others are becoming data-centric, it is
achievable, and you are not alone in your efforts.

Join us in understanding how data as an open, centralized
resource outlives any application. Once globally integrated by
sharing a common meaning, internal and external data can be
readily  integrated,  unlike  the  traditional  “application-
centric” mindset predominantly used in systems development.

The compounding problem is these application systems each have
their own completely idiosyncratic data models. The net result
is  that  after  a  few  decades,  hundreds  or  thousands  of
applications implemented have given origin to a segregated
family of disparate data silos. Integration debt rises and
unsustainable  architectural  complexity  abounds  with  every
application bought, developed, or rented (SaaS).

Becoming  data-centric  will  improve  data  characteristics  of
findability, accessibility, interoperability, and re-usability
(FAIR principles), thereby allowing data to be exported into
any needed format with virtually free integration.\

https://allegrograph.com/data-centric-architecture-forum-dcaf-2021/
https://allegrograph.com/data-centric-architecture-forum-dcaf-2021/


Dr.  Jans  Aasman  to  present  –
Franz’s  approach  to  Entity  Event
Data  Modeling  for  Enterprise
Knowledge  Fabrics

 

Text Analytics Forum 2020 –
KMWorld Connect
Join us November 17, 2020 – Text Analytics has the ability to
add depth, meaning, and intelligence to any organization’s
most under-utilized resource – text. Through text analytics,
enterprises can unlock a wealth of information that would not
otherwise be available. Join us as we explore the power of
text analytics to provide relevant, valuable, and actionable
data for enterprises of all kinds.

Jans Aasman to present – Analyzing Spoken Conversations for
Real-Time Decision Support in Mission-Critical Applications

November 17, 2020 at 2PM Eastern
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AllegroGraph  Named  to  100
Companies That Matter Most in
Data
Franz  Inc.  Acknowledged  as  a  Leader  for  Knowledge  Graph
Solutions

Lafayette,  Calif.,  June  23,  2020  —  Franz  Inc.,  an  early
innovator in Artificial Intelligence (AI) and leading supplier
of  Semantic  Graph  Database  technology  for  Knowledge  Graph
Solutions, today announced that it has been named to The 100
Companies  That  Matter  in  Data  by  Database  Trends  and
Applications.  The annual list reflects the urgency felt among
many  organizations  to  provide  a  timely  flow  of  targeted
information. Among the more prominent initiatives is the use
of AI and cognitive computing, as well as related capabilities
such as machine learning, natural language processing, and
text analytics.   This list recognizes companies based on
their presence, execution, vision and innovation in delivering
products and services to the marketplace.

“We’re excited to announce our eighth annual list, as the
industry continues to grow and evolve,” remarked Thomas Hogan,
Group Publisher at Database Trends and Applications. “Now,
more than ever, businesses are looking for ways transform how
they  operate  and  deliver  value  to  customers  with  greater
agility,  efficiency  and  innovation.  This  list  seeks  to
highlight  those  companies  that  have  been  successful  in
establishing  themselves  as  unique  resources  for  data
professionals  and  stakeholders.”

“We  are  honored  to  receive  this  acknowledgement  for  our
efforts in delivering Enterprise Knowledge Graph Solutions,”
said Dr. Jans Aasman, CEO, Franz Inc. “In the past year, we
have seen demand for Enterprise Knowledge Graphs take off
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across industries along with recognition from top technology
analyst  firms  that  Knowledge  Graphs  provide  the  critical
foundation  for  artificial  intelligence  applications  and
predictive analytics.

Our  recent  launch  of  AllegroGraph  7  with  FedShard,  a
breakthrough that allows infinite data integration to unify
all data and siloed knowledge into an Entity-Event Knowledge
Graph  solution  will  catalyze  Knowledge  Graph  deployments
across the Enterprise.”

Gartner recently released a report “How to Build Knowledge
Graphs That Enable AI-Driven Enterprise Applications” and have
previously stated, “The application of graph processing and
graph databases will grow at 100 percent annually through 2022
to continuously accelerate data preparation and enable more
complex and adaptive data science.” To that end, Gartner named
graph analytics as a “Top 10 Data and Analytics Trend” to
solve critical business priorities. (Source: Gartner, Top 10
Data and Analytics Trends, November 5, 2019).

“Graph databases and knowledge graphs are now viewed as a
must-have  by  enterprises  serious  about  leveraging  AI  and
predictive  analytics  within  their  organization,”  said  Dr.
Aasman “We are working with organizations across a broad range
of industries to deploy large-scale, high-performance Entity-
Event Knowledge Graphs that serve as the foundation for AI-
driven applications for personalized medicine, predictive call
centers,  digital  twins  for  IoT,  predictive  supply  chain
management and domain-specific Q&A applications – just to name
a few.”

Forrester Shortlists AllegroGraph

AllegroGraph was shortlisted in the February 3, 2020 Forrester
Now  Tech:  Graph  Data  Platforms,  Q1  2020  report,  which
recommends that organizations “Use graph data platforms to
accelerate connected-data initiatives.” Forrester states, “You
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can use graph data platforms to become significantly more
productive,  deliver  accurate  customer  recommendations,  and
quickly make connections to related data.”

Bloor Research covers AllegroGraph with FedShard

Bloor Research Analyst, Daniel Howard noted “With the 7.0
release  of  AllegroGraph,  arguably  the  most  compelling  new
capability is its ability to create what Franz refers to as
“Entity-Event Knowledge Graphs” (or EEKGs) via its patented
FedShard  technology.”  Mr.  Howard  goes  on  to  state  “Franz
clearly  considers  this  a  major  release  for  AllegroGraph.
Certainly, the introduction of an explicit entity-event graph
is not something I’ve seen before. The newly introduced text
to speech capabilities also seem highly promising.”

AllegroGraph Named to KMWorld’s 100 Companies That Matter in
Knowledge Management

AllegroGraph  was  also  recently  named  to  KMWorld’s  100
Companies That Matter in Knowledge Management.  The KMWorld
100 showcases organizations that are advancing their products
and capabilities to meet changing requirements in Knowledge
Management.

Franz Knowledge Graph Technology and Services

Franz’s Knowledge Graph Solution includes both technology and
services  for  building  industrial  strength  Entity-Event
Knowledge  Graphs  based  on  best-of-class  tools,  products,
knowledge, skills and experience. At the core of the solution
is  Franz’s  graph  database  technology,  AllegroGraph  with
FedShard,  which  is  utilized  by  dozens  of  the  top  F500
companies  worldwide  and  enables  businesses  to  extract
sophisticated decision insights and predictive analytics from
highly complex, distributed data that cannot be uncovered with
conventional databases.

Franz  delivers  the  expertise  for  designing  ontology  and
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taxonomy-based  solutions  by  utilizing  standards-based
development  processes  and  tools.  Franz  also  offers  data
integration  services  from  siloed  data  using  W3C  industry
standard semantics, which can then be continually integrated
with  information  that  comes  from  other  data  sources.  In
addition, the Franz data science team provides expertise in
custom  algorithms  to  maximize  data  analytics  and  uncover
hidden knowledge.

 

Ubiquitous AI Demands A New
Type Of Database Sharding
Forbes published the following article by Dr. Jans Aasman,
Franz Inc.’s CEO.

The  notion  of  sharding  has  become
increasingly crucial for selecting and
optimizing database architectures. In
many cases, sharding is a means of
horizontally  distributing  data;  if
properly  implemented,  it  results  in
near-infinite scalability. This option
enables  database  availability  for

business  continuity,  allowing  organizations  to  replicate
databases among geographic locations. It’s equally useful for
load  balancing,  in  which  computational  necessities  (like
processing)  shift  between  machines  to  improve  IT  resource
allocation.

However, these use cases fail to actualize sharding’s full
potential to maximize database performance in today’s post-big
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data  landscape.  There’s  an  even  more  powerful  form  of
sharding, called “hybrid sharding,” that drastically improves
the speed of query results and duly expands the complexity of
the questions that can be asked and answered. Hybrid sharding
is the ability to combine data that can be partitioned into
shards with data that represents knowledge that is usually un-
shardable.

This  hybrid  sharding  works  particularly  well  with  the
knowledge graph phenomenon leveraged by the world’s top data-
driven companies. Hybrid sharding also creates the enterprise
scalability to query scores of internal and external sources
for  nuanced,  detailed  results,  with  responsiveness
commensurate  to  that  of  the  contemporary  AI  age.

 

Read the full article at Forbes.

Natural  Language  Processing
and  Machine  Learning  in
AllegroGraph
The majority of our customers build Knowledge Graphs with
Natural Language and Machine learning components. Because of
this trend AllegroGraph now offers strong support for the use
of Natural Language Processing and Machine learning.

Franz Inc has a team of NLP engineers and Taxonomy experts
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that can help with building turn-key solutions. In general
however, our customers already have some expertise in house.
In those cases we train customers in how to take the output of
NLP  and  ML  processing  and  turn  that  into  an  efficient
Knowledge Graph based on best practices in the industry.

This  document  primarily  describes  the  NLP  and  ML  plug-in
AllegroGraph.

Note that many enterprises already have a data science team
with NLP experts that use modern open source NLP tools like
Spacy, Gensim or Polyglot, or Machine Learning based NLP tools
like BERT and Scikit-Learn. In another blog about Document
Handling we describe a pipeline of how to deal with NLP in
Document Knowledge Graphs by using our NLP and ML plugin and
mix that with open source tools.

PlugIn features for Natural Language Processing and Machine
Learning in AllegroGraph.

Here is the outline of the plugin features that we are going
to describe in more detail.

Machine learning

data acquisition
classifier training
feature extraction support
performance analysis
model persistence

NLP

handling languages
handling dictionaries
tokenization
entity extraction
Sentiment analysis
basic pattern matching

https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/
https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/
https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/


SPARQL Access

Future development

 

Machine Learning

ML: Data Acquisition
Given  that  the  NLP  and  ML  functions  operate  within
AllegroGraph, after loading the plugins, data acquisition can
be performed directly from the triple-store, which drastically
simplifies the data scientist workflow. However, if the data
is not in AllegroGraph yet we can also import it directly from
ten  formats  of  triples  or  we  can  use  our  additional
capabilities  to  import  from  CSV/JSON/JSON-LD.

Part of the Data Acquisition is also that we need to pre-
process  the  data  for  training  so  we  provide  these  three
functions:

prepare-training-data
split-dev-test
equalize (for resampling)

Machine Learning: Classifiers

Currently we provide simple linear classifiers. In case
there’s  a  need  for  neural  net  or  other  advanced
classifiers,  those  can  be  integrated  on-demand.
We  also  provide  support  for  online  learning  (online
machine learning is an ML method in which data becomes
available in a sequential order and is used to update
the best predictor for future data at each step, as
opposed to batch learning techniques which generate the
best predictor by learning on the entire training data
set at once). This feature is useful for many real-world
data sets that are constantly updated.
The  default  classifiers  available  are  Averaged



Perceptron and AROW

Machine Learning: Feature Extraction

Each classifier is expecting a vector of features: either
feature  indices  (indicative  features)  or  pairs  of  numbers
(index – value). These are obtained in a two-step process:

1. A classifier-specific extract-features method should be
defined that will return raw feature vector with features
identified  by  strings  of  the  following  form:
prefix|feature.

The prefix should be provided as a keyword argument to the
collect-features method call, and it is used to distinguish
similar features from different sources (for instance, for
distinct predicates).

2. Those features will be automatically transformed to
unique  integer  ids.  The  resulting  feature  vector  of
indicator features may look like the following: #(1 123
2999 …)

Note that these features may be persisted to AllegroGraph for
repeated  re-use  (e.g.  for  experimenting  with  classifier
hyperparameter tuning or different classification models).

Many possible features may be extracted from data, but there
is a set of common ones, such as:

1. individual tokens of the text field
2. ngrams (of a specified order) of the text field
3. presence of a token in a specific dictionary (like, the
dictionary of slang words)
4. presence/value of a certain predicate for the subject of
the current triple
5. length of the text

And in case the user has a need for special types of tokens we
can write specific token methods, here is an example (in Lisp)



that produces an indicator feature of a presence of emojis in
the text:

(defmethod collect-features ((method (eql :emoji)) toks &key
pred)
(dolist (tok toks)
(when (some #'(lambda (code)
  (or (<= #x1F600 code #x1F64F)
      (<= #x1F650 code #x1F67F)
      (<= #x1F680 code #x1F6FF)))
   (map 'vector #'char-code tok))
(return (list "emoji")))))

 

Machine Learning: Integration with Spacy

The NLP and ML community invents new features and capabilities
at an incredible speed. Way faster than any database company
can keep up with. So why not embrace that? Whenever we need
something that we don’t have in AllegroGraph yet we can call
out to Spacy or any other external NLP tool. Here is an
example of using feature extraction from Spacy to collect
indicator features of the text dependency parse relations:

(defmethod  collect-features  ((method  (eql  :dep))  deps  &key
pred dep-type dep-labels)
 (loop :for ds :in deps :nconc
  (loop :for dep :in ds
   :when (and (member (dep-tag dep) dep-labels)
              (dep-head dep)
              (dep-tok dep))
    :collect (format nil "dep|~a|~a_~a"
              dep-type
              (tok-word (dep-head dep)
              (tok-word (dep-tok dep))))))

The demonstrated integration uses Spacy Docker instance and
its HTTP API.

Machine Learning: Classifier Analysis



We provide all the basic tools and metrics for classifier
quality analysis:

accuracy
f1, precision, recall
confusion matrix
and an aggregated classification report

 

Machine Learning: Model Persistence

The idea behind model persistence is that all the data can be
stored  in  AllegroGraph,  including  features  and  classifier
models. AllegroGraph stores classifiers directly as triples.
This is a far more robust and language-independent approach
than  currently  popular  among  data  scientists  reliance  on
Python  pickle  files.  For  the  storage  we  provide  a  basic
triple-based format, so it is also possible to interchange the
models using standard RDF data formats.

The biggest advantage of this approach is that when adding
text to AllegroGraph we don’t have to move the data externally
to perform the classification but can keep the whole pipeline
entirely internal.

 

Natural Language Procession (NLP)

NLP: Language Packs

Most of the NLP tools are language-dependent: i.e. there’s a
general function that uses language-specific model/rules/etc.
In AllegroGraph, support for particular languages is provided
on-demand and all the language-specific is grouped in the so
called “language pack” or langpack, for short – a directory
with a number of text and binary files with predefined names.

Currently,  the  langpack  for  English  is  provided  at



nlp/langs/en.zip,  with  the  following  files:

contractions.txt – a dictionary of contractions
abbrs.txt – a dictionary of abbreviations
stopwords.txt – a dictionary of stopwords
pos-dict.txt – positive sentiment words
neg-dict.txt – negative sentiment words
word-tok.txt – a list of word tokenization rules

Additionally,  we  use  a  general  dictionary,  a  word-form
dictionary (obtained from Wiktionary), and custom lexicons.

Loading a langpack for a particular language is performed
using load-langpack.

Creating a langpack is just a matter of adding the properly
named files to the directory and can be done manually. The
names of the files should correspond to the names of the
dictionary variables that will be filled by the pack. The
dictionaries that don’t have a corresponding file will be just
skipped.We have just finished creating a langpack for Spanish
and  it  will  be  published  soon.  In  case  you  need  other
dictionaries  we  use  our  AG/Spacy  infrastructure.  Spacy
recently added a comprehensive list of new languages:

 

NLP: Dictionaries

Dictionaries are read from the language packs or other sources
and  are  kept  in  memory  as  language-specific  hash-tables.
Alongside support for storing the dictionaries as text files,



there are also utilities for working with them as triples and
putting them into the triple store.

Note that we at Franz Inc specialize in Taxonomy Building
using various commercial taxonomy building tools. All these
tools  can  now  export  these  taxonomies  as  a  mix  of  SKOS
taxonomies and OWL. We have several functions to read directly
from these SKOS taxonomies and turn them into dictionaries
that support efficient phrase-level lookup.

NLP: Tokenization

Tokenization  is  performed  using  a  time-proven  rule-based
approach. There are 3 levels of tokenization that have both a
corresponding specific utility function and an :output format
of the tokenize function:

:parags – splits the text into a list of lists of tokens
for paragraphs and sentences in each paragraph
:sents – splits the text into a list of tokens for each
sentence
:words – splits the text into a plain list of tokens

Paragraph-level tokenization considers newlines as paragraph
delimiters.  Sentence-level  tokenization  is  geared  towards
western-style  writing  that  uses  dot  and  other  punctuation
marks to delimit sentences. It is, currently, hard-coded, but
if the need arises, additional handling may be added for other
writing systems. Word-level tokenization is performed using a
language-specific set of rules.

NLP: Entity Extraction

Entity extraction is performed by efficient matching (exactly
or fuzzy) of the token sequences to the existing dictionary
structure.

It is expected that the entities come from the triple store
and there’s a special utility function that builds lookup



dictionaries from all the triples of the repository identified
by certain graphs that have a skos:prefLabel or skos:altLabel
property.  The  lookup  may  be  case-insensitive  with  the
exception of abbreviations (default) or case-sensitive.

Similar  to  entity  extraction,  there’s  also  support  for
spotting  sentiment  words.  It  is  performed  using  the
positive/negative words dictionaries from the langpack.

One feature that we needed to develop for our customers is
‘heuristic entity extraction’ . In case you want to extract
complicated  product  names  from  text  or  call-center
conversations between customers and agents you run into the
problem that it becomes very expensive to develop altLabels in
a taxonomy tool. We created special software to facilitate the
automatic creation of altlabels.

NLP:  Basic  Pattern  Matching  for  relationship  and  event
detection

Getting  entities  out  of  text  is  now  well  understood  and
supported by the software community. However, to find complex
concepts or relationships between entities or even events is
way harder and requires a flexible rule-based pattern matcher.
Given our long time background in Lisp and Prolog one can
imagine we created a very powerful pattern matcher.

SPARQL Access

Currently all the features above can be controlled as stored
procedures or using Lisp as the command language. We have a
new (beta) version that uses SPARQL for most of the control.
Here are some examples. Note that fai is a magic-property
namespace for “AI”-related stuff and inc is a custom namespace
of an imaginary client:

1. Entity extraction

select ?ent {



   ?subj fai:entityTaxonomy inc:products .
   ?subj fai:entityTaxonomy inc:salesTerms .
   ?subj fai:textPredicate inc:text .
   ?subj  fai:entity(fai:language  "en",  fai:taxonomy
inc:products)  ?ent  .
}

The expressions ?subj fai:entityTaxonomy inc:poducts and ?subj
fai:entityTaxonomy inc:salesTerms specify which taxonomies to
use (the appropriate matchers are cached).
The expression ?subj fai:entity ?ent will either return the
already  extracted  entities  with  the  specified  predicate
(fai:entity) or extract the new entities according to the
taxonomies in the texts accessible by fai:textPredicate.

2. fai:sentiment will return a single triple with sentiment
score:

select ?sentiment {
   ?subj fai:textPredicate inc:text .
   ?subj fai:sentiment ?sentiment .
   ?subj fai:language "en" .
   ?subj fai:sentimentTaxonomy franz:sentiwords .
}

 

3. Text classification:
Provided inc:customClassifier was already trained previously,
this query will return labels for all texts as a result of
classification.

select ?label {
?subj fai:textPredicate inc:text .
?subj fai:classifier inc:customClassifier .
?subj fai:classify ?label .
?label fai:storeResultPredicate inc:label .
}

 

Further Development



Our team is currently working on these new features:

A more accessible UI (python client & web) to facilitate
NLP and ML pipelines
Addition of various classifier models
Sequence classification support (already implemented for
a customer project)
Pre-trained  models  shipped  with  AllegroGraph  (e.g.
English NER)
Graph ML algorithms (deepwalk, Google Expander)
Clustering algorithms (k-means, OPTICS)

 

 

 

Document  Knowledge  Graphs
with NLP and ML
A core competency for Franz Inc is turning text and documents
into Knowledge Graphs (KG) using Natural Language Processing
(NLP) and Machine Learning (ML) techniques in combination with
AllegroGraph. In this document we discuss how the techniques
described in [NLP and ML components of AllegroGraph] can be
combined  with  popular  software  tools  to  create  a  robust
Document Knowledge Graph pipeline.

We have applied these techniques for several Knowledge Graphs
but  in  this  document  we  will   primarily  focus  on  three
completely different examples that we summarize below. First
is the Chomsky Legacy Project where we have a large set of
very dense documents and very different knowledge sources,
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Second is a knowledge graph for an intelligent call center
where we have to deal with high volume dynamic data and real-
time  decision  support  and  finally,   a  large  government
organization where it is very important that people can do a
semantic search against documents and policies that steadily
change over time and where it is important that you can see
the history of documents and policies.

Example [1] Chomsky Knowledge Graph
The Chomsky Legacy Project is a project run by a group of
admirers of Noam Chomsky with the primary goal to preserve all
his  written  work,  including  all  his  books,  papers  and
interviews but also everything written about him. Ultimately
students, researchers, journalists, lobbyists, people from the
AI community, and linguists can all use this knowledge graph
for their particular goals and questions.

The biggest challenges for this project are finding causal
relationships  in  his  work  using  event  and  relationship
extraction.  A  simple  example  we  extracted  from  an  author
quoting  Chomsky  is  that  neoliberalism  ultimately  causes
childhood death.

Example 2: N3 Results and the Intelligent Call Center
This is a completely different use case (See a recent KMWorld
Articlehttps://allegrograph.com/knowledge-graphs-enhance-custo
mer-experience-through-speed-and-accuracy/).  Whereas  the



previous use case was very static, this one is highly dynamic.
We  analyze  in  real-time  the  text  chats  and  spoken
conversations between call center agents and customers. Our
knowledge graph software provides real-time decision support
to make the call center agents more efficient. N3 Results
helps big tech companies to sell their high tech solutions,
mostly cloud-based products and services but also helps their
clients sell many other technologies and services.

The main challenge we tackle is to really deeply understand
what the customer and agent are talking about. None of this
can be solved by only simple entity extraction but requires
elaborate rule-based and machine learning techniques. Just to
give a few examples. We want to know if the agent talked about
their most important talking points: that is, did the agent
ask if the customer has a budget, or the authority to make a
decision or a timeline about when they need the new technology
or whether they actually have expressed their need. But also
whether the agent reached the right person, and whether the
agent talked about the follow-up. In addition, if the customer
talks about competing technology we need to recognize that and
provide the agent in real-time with a battle card specific to
the competing technology. And in order to be able to do the
latter, we also analyzed the complicated marketing materials
of the clients of N3.

Example 3: Complex Government Documents
Imagine a regulatory body with tens of thousands of documents.
Where nearly every paragraph has reference to other paragraphs
in the same document or other documents and the documents
change over time. The goal here is to provide the end-users in
the government with the right document given their current
task at hand. The second goal is to keep track of all the
changes  in  the  documents  (and  the  relationship  between
documents) over time.

The Document to Knowledge Graph Pipeline





Let us first give a quick summary in words of how we turn
documents into a Knowledge Graph.

[1] Taxonomy Creation

Taxonomy of all the concepts important to the business using
open  source  or  commercial  taxonomy  builders.  An  available
industry taxonomy is a good starting point for additional
customizations.

[2] Document Preparation

We then take a document and turn it into an intermediate XML
using  Apache  Tika.  Apache  Tika  supports  more  than  1000
document types and although Apache Tika is a fantastic tool,
the output is still usually not clean enough to create a graph
from, so we use Spacy rules to clean up the XML to make it as
uniform as possible.

[3] Extract Document MetaData

Most documents also contain document metadata (author, date,
version, title, etc) and Apache Tika will also deliver the
metadata for a document as a JSON object.

[4] XML to Triples

Our tools ingest the XML and metadata and transform that into
a graph-based document tree. The document is the root and from
that, it branches out into chapters, optionally sections, all
the way down to paragraphs. The ultimate text content is in
the  paragraphs.  In  the  following  example  we  took  the  XML
version of Noam Chomsky’s book Media Control and turned that
into a tree. The following shows a tiny part of that tree. We
start with the Media Control node, then we show three (of the
11)  chapters,  for  one  chapter  we  show  three  (of  the  6)
paragraphs,  and  then  we  show  the  actual  text  in  that
paragraph. We sometimes can go even deeper to the level of
sentences and tokens but for most projects that is overkill.



[5] Entity Extractor

AllegroGraph’s entity extractor takes as input the text of
each paragraph in the document tree and one or more of the
taxonomies  and  returns  recognized  SKOS  concepts  based  on
prefLabels and altLabels. AllegroGraph’s entity extractor is
state of the art and especially powerful when it comes to
complex terms like product names. We find that in our call
center a technical product name can sometimes have up to six
synonyms  or  very  specific  jargon.  For  example  the  Cisco
product Catalyst 9000 will also be abbreviated as the cat 9k.
Instead of developing altLabels for every possible permutation
that human beings *will* use, we have specialized heuristics
to optimize the yield from the entity extractor. The following
picture shows 4 (of the 14) concepts discovered in paragraph
16. Plus one person that was extracted by IBM’s NLU.



[6] Linked Data Enrichment



In many use cases, AllegroGraph can link extracted entities to
concepts in the linked data cloud. The most prominent being
DBpedia, wikidata, the census database, GeoNames, but also
many Linked Open Data repositories. One tool that is very
useful  for  this  is  IBM’s  Natural  Language  Understanding
program but there are others available. In the following image
we see that the Nelson Mandela entity (Red) is linked to the
dbpedia entity for Nelson Mandela and that then links to the
DBpedia itself. We extracted some of his spouses and a child
with their pictures.

[7] Complex Relationship and Event Extraction

Entity extraction is a first good step to ‘see’ what is in
your documents but it is just the first step. For example: how
do you find in a text whether company C1 merged with company
C2. There are many different ways to express the fact that a
company fired a CEO. For example: Uber got rid of Kalanick,
Uber and Kalanick parted ways, the board of Uber kicked out
the CEO, etc. We need to write explicit symbolic rules for
this or we need a lot of training data to feed a machine
learning algorithm.

[8] NLP and Machine Learning



There are many many AI algorithms that can be applied in
Document  Knowledge  Graphs.  We  provide  best  practices  for
topics like:

[a]  Sentiment  Analysis,  using  good/bad  word  lists  or
training data.
[b]  Paragraph  or  Chapter  similarity  using  statistical
techniques like Gensim similarity or symbolic techniques
where we just the overlap of recognized entities as a
function of the size of a text.
[c]  Query  answering  using  word2vec  or  more  advanced
techniques like BERT
[d] Semantic search using the hierarchy in SKOS taxonomies.
[e] Summarization techniques for Abstractive or Extractive
abstracts using Gensim or Spacy.

[9] Versioning and Document tracking

Several of our customers with Document Knowledge Graphs have
noted the one constant in all of these KGs is that documents
change over time. As part of our solution, we have created
best practices where we deal with these changes. A crucial
first step is to put each document in its own graph (i.e. the
fourth element of every triple in the document tree is the
document id itself). When we get a new version of a document
the document ID changes but the new document will point back
to the old version. We then compute which paragraphs stayed
the same within a certain margin (there are always changes in
whitespace) and we materialize what paragraphs disappeared in
the new version and what new paragraphs appeared compared to
the previous version. Part of the best practice is to put the
old version of a document in a historical database that at all
times can be federated with the ‘current’ set of documents.

Note that in the following picture we see the progression of a
document. On the right hand side we have a newer version of a
document 1100.161 with a chapter -> section -> paragraph ->
contents where the content is almost the same as the one in



the  older  version.  But  note  that  the  newer  one  spells
‘decision making’ as one word whereas the older version said
‘decision-making’. Note that also the chapter titles and the
section titles are almost the same but not entirely. Also,
note that the new version has a back-pointer (changed-from) to
the older version.

[10] Statistical Relationships

One important analytic one can do on documents is to look at
the co-occurrence of terms. Although, given that certain words
might occur more frequently in text, we have to correct the
co-occurrence between words for the frequency of the two terms
in  a  co-occurrence  to  get  a  better  idea  of  the
‘surprisingness’  of  a  co-occurrence.  The  platform  offers
several techniques in Python and Lisp to compute these co-
occurrences. Note that in the following picture we computed
the odds ratios between recognized entities and so we see in



the following gruff picture that if Noam Chomsky talks about
South Africa then the chances are very high he will also talk
about Nelson Mandela.

The Knowledge Graph Cookbook
Recipes for Knowledge Graphs that Work:

Learn why and how to build knowledge graphs that help
enterprises  use  data  to  innovate,  create  value  and
increase  revenue.  This  practical  manual  is  full  of
recipes and knowledge on the subject.
Learn more about the variety of applications based on
knowledge graphs.
Learn how to build working knowledge graphs and which
technologies to use.
See how knowledge graphs can benefit different parts of
your organization.

https://allegrograph.com/the-knowledge-graph-cookbook/


Get ready for the next generation of enterprise data
management tools.

 

Dr. Jans Aasman, CEO, Franz Inc. is interviewed in the Expert
Opinion Section.

“KNOWLEDGE GRAPHS AREN’T WORTH THEIR NAME IF THEY DON’T
ALSO LEARN AND BECOME SMARTER DAY BY DAY” – Dr. Aasman

 

Click here to get the book as free PDF or Kindle version.

 

https://www.poolparty.biz/resources/the-knowledge-graph-cookbook-resource/


Franz Inc. to Present at The
Global Graph Summit and Data
Day Texas
Dr.  Jans  Aasman,  CEO,  Franz  Inc.,  will  be  presenting,
“Creating  Explainable  AI  with  Rules”  at  the  Global  Graph

Summit, a part of Data Day Texas.
The  abstract  for  Dr.  Aasman’s
presentation:

“There’s a fascinating dichotomy in artificial intelligence
between statistics and rules, machine learning and expert
systems. Newcomers to artificial intelligence (AI) regard
machine learning as innately superior to brittle rules-
based systems, while the history of this field reveals both
rules and probabilistic learning are integral components of
AI.   This  fact  is  perhaps  nowhere  truer  than  in
establishing explainable AI, which is central to the long-
term business value of AI front-office use cases.”

“The  fundamental  necessity  for  explainable  AI  spans
regulatory compliance, fairness, transparency, ethics and
lack of bias — although this is not a complete list. For
example,  the  effectiveness  of  counteracting  financial
crimes  and  increasing  revenues  from  advanced  machine
learning predictions in financial services could be greatly
enhanced by deploying more accurate deep learning models.
But all of this would be arduous to explain to regulators.
Translating those results into explainable rules is the
basis for more widespread AI deployments producing a more

https://allegrograph.com/franz-inc-to-present-at-the-global-graph-summit-and-data-day-texas/
https://allegrograph.com/franz-inc-to-present-at-the-global-graph-summit-and-data-day-texas/
https://allegrograph.com/franz-inc-to-present-at-the-global-graph-summit-and-data-day-texas/
http://datadaytexas.com/2020-graph-summit/sessions#aasman
http://datadaytexas.com/
http://datadaytexas.com/
https://www.forbes.com/sites/cognitiveworld/2018/12/20/geoff-hinton-dismissed-the-need-for-explainable-ai-8-experts-explain-why-hes-wrong/#7e5b5d7b756d


meaningful impact on society.”

The Global Graph Summit is an independently organized vendor-
neutral conference,  bringing leaders from every corner of the
graph and linked-data community for sessions, workshops, and
its well-known before and after parties.  Originally launched
in  January  2011  as  one  of  the  first  NoSQL  /  Big  Data
conferences, Data Day Texas each year highlights the latest
tools, techniques, and projects in the data space, bringing
speakers and attendees from around the world to enjoy the
hospitality that is uniquely Austin. Since its inception, Data
Day Texas has continually been the largest independent data-
centric event held within 1000 miles of Texas.

Multi-Master  Replication
Clusters  in  Kubernetes  and
Docker Swarm
For  more  examples  visit  –
https://github.com/franzinc/agraph-examples

Introduction

In this document we primarily discuss running a Multi-Master
Replication cluster (MMR) inside Kubernetes. We will also show
a Docker Swarm implementation.

This directory and subdirectories contain code you can use to
run  an  MMR  cluster.  The  second  half  of  this  document  is
entitled Setting up and running MMR under Kubernetes and that
is where you’ll see the steps needed to run the MMR cluster in
Kubernetes.

https://allegrograph.com/multi-master-replication-clusters-in-kubernetes-and-docker-swarm/
https://allegrograph.com/multi-master-replication-clusters-in-kubernetes-and-docker-swarm/
https://allegrograph.com/multi-master-replication-clusters-in-kubernetes-and-docker-swarm/
https://github.com/franzinc/agraph-examples
https://franz.com/agraph/support/documentation/current/multi-master.html
https://franz.com/agraph/support/documentation/current/multi-master.html


MMR  replication  clusters  are  different  from  distributed
AllegroGraph clusters in these important ways:

Each member of the cluster needs to be able to make a1.
TCP connection to each other member of the cluster. The
connection is to a port computed at run time. The range
of port numbers to which a connection is made can be
constrained by the agraph.cfg file but typically this
will be a large range to ensure that at least one port
in that range is not in used.
All members of the cluster hold the complete database2.
(although for brief periods of time they can be out of
sync and catching up with one another).

MMR replication clusters don’t quite fit the Kubernetes model
in these ways

When the cluster is running normally each instance knows1.
the DNS name or IP address of each other instance. In
Kubernetes you don’t want to depend on the IP address of
another cluster’s pod as those pods can go away and a
replacement started at a different IP address. We’ll
describe below our solution to this.
Services are a way to hide the actual location of a pod2.
however  they  are  designed  to  handle  a  set  of  known
ports.. In our case we need to connect from one pod to a
known-at-runtime port of another pod and this isn’t what
services are designed for.
A key feature of Kubernetes is the ability to scale up3.
and down the number of processes in order to handle the
load appropriately. Processes are usually single purpose
and stateless. An MMR process is a full database server
with a complete copy of the repository. Scaling up is
not a quick and simple operation – the database must be
copied from another node. Thus scaling up is a more
deliberate process rather than something automatically
done when the load on the system changes during the day.



The Design

We have a headless service for our controlling instance1.
StatefulSet and that causes there to be a DNS entry for
the  name  controlling  that  points  to  the  current  IP
address of the node in which the controlling instance
runs. Thus we don’t need to hardwire the IP address of
the  controlling  instance  (as  we  do  in  our  AWS  load
balancer implementation).
The controlling instance uses two PersistentVolumes to2.
store: 1. The repo we’re replicating and 2. The token
that other nodes can use to connect to this node. Should
the controlling instance AllegroGraph server die (or the
pod in which it runs dies) then when the pod is started
again it will have access to the data on those two
persistent volumes.
We  call  the  other  instances  in  the  cluster  Copy3.
instances. These are full read-write instances of the
repository  but  we  don’t  back  up  their  data  in  a
persistent volume. This is because we want to scale up
and down the number of Copy instances. When we scale
down we don’t want to save the old data since when we
scale down we remove that instance from the cluster thus
the  repo  in  the  cluster  can  never  join  the  cluster
again.  We  denote  the  Copy  instances  by  their  IP
addresses. The Copy instances can find the address of
the  controlling  instance  via  DNS.  The  controlling
instance will pass the cluster configuration to the Copy
instance and that configuration information will have
the IP addresses of the other Copy instances. This is
how the Copy instances find each other.
We have a load balancer that allows one to access a4.
random Copy instance from an external IP address. This
load  balancer  doesn’t  support  sessions  so  it’s  only
useful for doing queries and quick inserts that don’t
need a session.
We  have  a  load  balancer  that  allows  access  to  the5.

https://github.com/franzinc/agraph-examples/blob/master/clustering/terraform-elb/using-terraform.md
https://github.com/franzinc/agraph-examples/blob/master/clustering/terraform-elb/using-terraform.md


Controlling instance via HTTP. While this load balancer
also doesn’t have session support, because there is only
one controlling instance it’s not a problem if you start
an AllegroGraph session because all sessions will live
on the single controlling instance.

We’ve had the most experience with Kubernetes on the Google
Cloud Platform. There is no requirement that the load balancer
support sessions and the GCP version does not at this time,
but that doesn’t mean that session support isn’t present in
the load balancer in other cloud platforms. Also there is a
large community of Kubernetes developers and one may find a
load balancer with session support available from a third
party.

Implementation

We build and deploy in three subdirectories. We’ll describe
the contents of the directories first and then give step by
step  instructions  on  how  to  use  the  contents  of  the
directories.

Directory ag/

In this directory we build a Docker image holding an installed
AllegroGraph. The Dockerfile is

FROM centos:7

#
# AllegroGraph root is /app/agraph
#

RUN yum -y install net-tools iputils bind-utils wget hostname

ARG agversion=agraph-6.6.0
ARG agdistfile=${agversion}-linuxamd64.64.tar.gz

# This ADD command will automatically extract the contents
# of the tar.gz file



ADD ${agdistfile} .

# needed for agraph 6.7.0 and can't hurt for others
# change to 11 if you only have OpenSSL 1.1 installed
ENV ACL_OPENSSL_VERSION=10

# so prompts are readable in an emacs window
ENV PROMPT_COMMAND=

RUN  groupadd  agraph  &&  useradd  -d  /home/agraph  -g  agraph
agraph
RUN mkdir /app

# declare ARGs as late as possible to allow previous lines to
be cached
# regardless of ARG values

ARG user
ARG password

RUN (cd ${agversion} ;  ./install-agraph /app/agraph -- --non-
interactive \
                --runas-user agraph \
                --super-user $user \
                --super-password $password )

# remove files we don't need
RUN rm -fr /app/agraph/lib/doc /app/agraph/lib/demos

# we will attach persistent storage to this directory
VOLUME ["/app/agraph/data/rootcatalog"]

# patch to reduce cache time so we’ll see when the controlling
instance moves.
#  ag  6.7.0  has  config  parameter  StaleDNSRetainTime  which
allows this to be
# done in the configuration.
COPY dnspatch.cl /app/agraph/lib/patches/dnspatch.cl

RUN chown -R agraph.agraph /app/agraph

The  Dockerfile  installs  AllegroGraph  in  /app/agraph  and



creates an AllegroGraph super user with the name and password
passed in as arguments. It creates a user agraph so that the
AllegroGraph server will run as the user agraph rather than
as root.

We have to worry about the controlling instance process dying
and  being  restarted  in  another  pod  with  a  different  IP
address.  Thus  if  we’ve  cached  the  DNS  mapping
of controlling we need to notice as soon as possible that the
mapping as changed. The dnspatch.cl file changes a parameter
in the AllegroGraph DNS code to reduce the time we trust our
DNS cache to be accurate so that we’ll quickly notice if the
IP address of controlling changes.

We also install a number of networking tools. AllegroGraph
doesn’t need these but if we want to do debugging inside the
container they are useful to have installed.

The image created by this Dockerfile is pushed to the Docker
Hub using an account you’ve specified (see the Makefile in
this directory for details).

Directory agrepl/

Next we take the image created above and add the specific code
to support replication clusters.

The Dockerfile is

ARG DockerAccount=specifyaccount

FROM ${DockerAccount}/ag:latest

#
# AllegroGraph root is /app/agraph

RUN mkdir /app/agraph/scripts
COPY . /app/agraph/scripts

# since we only map one port from the outside into our cluster



# we need any sessions created to continue to use that one
port.
RUN  echo  "UseMainPortForSessions  true"  >>
/app/agraph/lib/agraph.cfg

# settings/user will be overwritten with a persistent mount so
copy
# the data to another location so it can be restored.
RUN  cp  -rp  /app/agraph/data/settings/user
/app/agraph/data/user

ENTRYPOINT ["/app/agraph/scripts/repl.sh"]

When building an image using this Dockerfile you must specify

--build-arg DockerAccount=MyDockerAccount

where MyDockerAccount is a Docker account you’re authorized to
push images to.

The  Dockerfile  installs  the
scripts repl.sh, vars.sh and accounts.sh. These are run when
this container starts.

We modify the agraph.cfg with a line that ensures that even if
we create a session that we’ll continue to access it via port
10035 since the load balancer we’ll use to access AllegroGraph
only forwards 10035 to AllegroGraph.

Also we know that we’ll be installing a persistent volume
at /app/agraph/data/user so we make a copy of that directory
in  another  location  since  the  current  contents  will  be
invisible when a volume is mounted on top of it. We need the
contents as that is where the credentials for the user we
created when AllegroGraph was installed.

Initially  the  file  settings/user/username  will  contain  the
credentials we specified when we installed AllegroGraph in
first Dockerfile. When we create a cluster instance a new
token is created and this is used in place of the password for



the  test  account.  This  token  is  stored
in settings/user/username which is why we need this to be an
instance-specific  and  persistent  filesystem  for  the
controlling  instance.

When  this  container  starts  it  runs  repl.sh  which  first
runs accounts.sh and vars.sh.

accounts.sh is a file created by the top level Makefile to
store the account information for the user account we created
when we installed AllegroGraph.

vars.sh is

# constants need by scripts
port=10035
reponame=myrepl

# compute our ip address, the first one printed by hostname
myip=$(hostname -I | sed -e 's/ .*$//')

In vars.sh we specify the information about the repository
we’ll create and our IP address.

The script repl.sh is this:

#!/bin/bash
#
## to start ag and then create or join a cluster
##

cd /app/agraph/scripts

set -x
. ./accounts.sh
. ./vars.sh

agtool=/app/agraph/bin/agtool

echo ip is $myip



# move the copy of user with our login to the newly mounted
volume
# if this is the first time we've run agraph on this volume
if [ ! -e /app/agraph/data/rootcatalog/$reponame ] ; then

    cp  -rp  /app/agraph/data/user/*
/app/agraph/data/settings/user
fi

# due to volume mounts /app/agraph/data could be owned by root
# so we have to take back ownership
chown -R agraph.agraph /app/agraph/data

## start agraph
/app/agraph/bin/agraph-control  --config
/app/agraph/lib/agraph.cfg  start

term_handler() {
    # this signal is delivered when the pod is
    # about to be killed.  We remove ourselves
    # from the cluster.
   echo got term signal
   /bin/bash ./remove-instance.sh
   exit
}

sleepforever() {
    # This unusual way of sleeping allows
    # a TERM signal sent when the pod is to
    # die to then cause the shell to invoke
    # the term_handler function above.
    date
    while true
    do
        sleep 99999 & wait ${!}
    done
}

if [ -e /app/agraph/data/rootcatalog/$reponame ] ; then
    echo  repository  $reponame  already  exists  in  this
persistent  volume



    sleepforever
fi

controllinghost=controlling

controllingspec=$authuser:$authpassword@$controllinghost:$port
/$reponame

if [ x$Controlling == "xyes" ] ;
then
   # It may take a little time for the dns record for
'controlling' to be present
   # and we need that record because the agtool program below
will use it
   until host controlling ; do  echo controlling not in DNS
yet; sleep 5 ; done
   ## create first and controlling cluster instance
   $agtool repl create-cluster $controllingspec controlling

else
    # wait for the controlling ag server to be running

    until  curl  -s
http://$authuser:$authpassword@$controllinghost:$port/version
; do echo wait for controlling ; sleep 5; done

    # wait for server in this container to be running
    until  curl  -s

http://$authuser:$authpassword@$myip:$port/version  ;  do  echo
wait for local server ; sleep 5; done

   # wait for cluster repo on the controlling instance to be
present
   until $agtool repl status $controllingspec > /dev/null ; do
echo wait for repo ; sleep 5; done
   myiname=i-$myip
   echo $myiname > instance-name.txt

   # construct the remove-instance.sh shell script to remove
this instance
   # from the cluster when the instance is terminated.
   echo  $agtool  repl  remove  $controllingspec  $myiname  >



remove-instance.sh
   chmod 755 remove-instance.sh
   #

   # note that
   #  % docker kill container
   # will send a SIGKILL signal by default  we can't trap on
SIGKILL.
   # so
   #  % docker kill -s TERM container
   # in order to test this handler
   trap term_handler SIGTERM SIGHUP SIGUSR1
   trap -p
   echo this pid is $$

   # join the cluster
   echo joining the cluster
   $agtool  repl  grow-cluster  $controllingspec

$authuser:$authpassword@$myip:$port/$reponame  $myiname
fi
sleepforever

This script can be run under three different conditions

Run when the Controlling instance is starting for the1.
first time
Run when the Controlling instance is restarting having2.
run before and died (perhaps the machine on which it was
running crashed or the AllegroGraph process had some
error)
Run when a Copy instance is starting for the first time.3.
Copy instances are not restarted when they die. Instead
a new instance is created to take the place of the dead
instance. Therefore we don’t need to handle the case of
a Copy instance restarting.

In cases 1 and 2 the environment variable Controlling will
have the value “yes”.

In  case  2  there  will  be  a  directory



at  /app/agraph/data/rootcatalog/$reponame.

In all cases we start an AllegroGraph server.

In case 1 we create a new cluster. In case 2 we just sleep and
let the AllegroGraph server recover the replication repository
and reconnect to the other members of the cluster.

In case 3 we wait for the controlling instance’s AllegroGraph
to be running. Then we wait for our AllegroGraph server to be
running. Then we wait for the replication repository we want
to copy to be up and running. At that point we can grow the
cluster by copying the cluster repository.

We also create a script which will remove this instance from
the cluster should this pod be terminated. When the pod is
killed (likely due to us scaling down the number of Copy
instances) a termination signal will be sent first to the
process allowing it to run this remove script before the pod
completely disappears.

Directory kube/

This directory contains the yaml files that create kubernetes
resources which then create pods and start the containers that
create the AllegroGraph replication cluster.

controlling-service.yaml

We begin by defining the services. It may seem logical to
define the applications before defining the service to expose
the application but it’s the service we create that puts the
application’s address in DNS and we want the DNS information
to  be  present  as  soon  as  possible  after  the  application
starts. In the repl.sh script above we include a test to check
when  the  DNS  information  is  present  before  allowing  the
application to proceed.

apiVersion: v1
kind: Service



metadata:
 name: controlling
spec:
 clusterIP:  None
 selector:
   app: controlling
 ports:
 - name: http
   port: 10035
   targetPort: 10035

This selector defines a service for any container with a label
with a key app and a value controlling. There aren’t any such
containers yet but there will be. You create this service with

% kubectl create -f controlling-service.yaml

In fact for all the yaml files shown below you create the
object they define by running

% kubectl create -f  filename.yaml

copy-service.yaml

We do a similar service for all the copy applications.

apiVersion: v1
kind: Service
metadata:
 name: copy
spec:
 clusterIP: None
 selector:
   app: copy
 ports:
 - name: main
   port: 10035
   targetPort: 10035

controlling.yaml

This is the most complex resource description for the cluster.
We use a StatefulSet so we have a predictable name for the



single pod we create. We define two persistent volumes. A
StatefulSet is designed to control more than one pod so rather
than a VolumeClaim we have a VolumeClaimTemplate so that each
Pod can have its own persistent volume… but as it turns out we
have only one pod in this set and we never scale up. There
must be exactly one controlling instance.

We setup a liveness check so that if the AllegroGraph server
dies Kubernetes will restart the pod and thus the AllegroGraph
server.  Because  we’ve  used  a  persistent  volume  for  the
AllegroGraph  repositories  when  the  AllegroGraph  server
restarts  it  will  find  that  there  is  an  existing  MMR
replication repository that was in use when the AllegroGraph
server  was  last  running.  AllegroGraph  will  restart  that
replication  repository  which  will  cause  that  replication
instance to reconnect to all the copy instances and become
part of the cluster again.

We set the environment variable Controlling to yes and this
causes this container to start up as a controlling instance
(you’ll  find  the  check  for  the  Controlling  environment
variable in the repl.sh script above).

We  have  a  volume  mount  for  /dev/shm,  the  shared  memory
filesystem,  because  the  default  amount  of  shared  memory
allocated to a container by Kubernetes is too small to support
AllegroGraph.

#
# stateful set of controlling instance
#

apiVersion: apps/v1beta1
kind: StatefulSet
metadata:
  name: controlling
spec:
  serviceName: controlling
  replicas: 1



  template:
    metadata:
      labels:
        app: controlling
    spec:
        containers:
        - name: controlling
          image: dockeraccount/agrepl:latest
          imagePullPolicy: Always
          livenessProbe:
            httpGet:
              path: /hostname
              port: 10035
            initialDelaySeconds: 30
          volumeMounts:
          - name: shm
            mountPath: /dev/shm
          - name: data
            mountPath: /app/agraph/data/rootcatalog
          - name: user
            mountPath: /app/agraph/data/settings/user
          env:
          - name: Controlling
            value: "yes"
        volumes:
         - name: shm
           emptyDir:
             medium: Memory
  volumeClaimTemplates:
         - metadata:
            name: data
           spec:
            resources:
              requests:
                storage: 20Gi
            accessModes:
            - ReadWriteOnce
         - metadata:
            name: user
           spec:
            resources:



              requests:
                storage: 10Mi
            accessModes:
            - ReadWriteOnce

copy.yaml

This StatefulSet is responsible for starting all the other
instances. It’s much simpler as it doesn’t use Persistent
Volumes

#
# stateful set of copies of the controlling instance
#

apiVersion: apps/v1beta1
kind: StatefulSet
metadata:
  name: copy
spec:
  serviceName: copy
  replicas: 2
  template:
    metadata:
      labels:
        app: copy
    spec:
        volumes:
         - name: shm
           emptyDir:
             medium: Memory
        containers:
        - name: controlling
          image: dockeraccount/agrepl:latest
          imagePullPolicy: Always
          livenessProbe:
            httpGet:
              path: /hostname
              port: 10035
            initialDelaySeconds: 30
          volumeMounts:
          - name: shm



            mountPath: /dev/shm

controlling-lb.yaml

We define a load balancer so applications on the internet
outside of our cluster can communicate with the controlling
instance. The IP address of the load balancer isn’t specified
here. The cloud service provider (i.e. Google Cloud Platform
or AWS) will determine an address after a minute or so and
will make that value visible if you run

% kubectl get svc controlling-loadbalancer

The file is

apiVersion: v1
kind: Service
metadata:
  name: controlling-loadbalancer
spec:
  type: LoadBalancer
  ports:
  - port: 10035
    targetPort: 10035
  selector:
    app: controlling

copy-lb.yaml

As noted earlier the load balancer for the copy instances does
not support sessions. However you can use the load balancer to
issue queries or simple inserts that don’t require a session.

apiVersion: v1
kind: Service
metadata:
  name: copy-loadbalancer
spec:
  type: LoadBalancer
  ports:
  - port: 10035
    targetPort: 10035



  selector:
    app: copy

copy-0-lb.yaml

If you wish to access one of the copy instances explicitly so
that you can create sessions you can create a load balancer
which links to just one instance, in this case the first copy
instance which is named “copy-0”.

apiVersion: v1
kind: Service
metadata:
  name: copy-0-loadbalancer
spec:
  type: LoadBalancer
  ports:
  - port: 10035
    targetPort: 10035
  selector:
    app: copy
    statefulset.kubernetes.io/pod-name: copy-0

Setting up and running MMR under Kubernetes

The code will build and deploy an AllegroGraph MMR cluster in
Kubernetes. We’ve tested this in Google Cloud Platform and
Amazon Web Service. This code requires Persistent Volumes and
load balancers and thus requires a sophisticated platform to
run (such as GCP or AWS).

Prerequisites

In order to use the code supplied you’ll need two additional
things

A Docker Hub account (https://hub.docker.com). A free1.
account will work. You’ll want to make sure you can push
to the hub without needing a password (use the docker
login command to set that up).
An  AllegroGraph  distribution  in  tar.gz  format.  We’ve2.

https://hub.docker.com/


been  using  agraph-6.6.0-linuxamd64.64.tar.gz  in  our
testing. You can find the current set of server files
at  https://franz.com/agraph/downloads/server  This  file
should be put in the ag subdirectory. Note that the
Dockerfile  in  that  directory  has  the  line  ARG
agversion=agraph-6.6.0  which  specifies  the  version  of
agraph  to  install.  This  must  match  the  version  of
the ...tar.gz file you put in that directory.

Steps

Do Prerequisites

Fullfill the prerequisites above

Set parameters

There are 5 parameters

Docker account – Must Specify1.
AllegroGraph user – May want to specify2.
AllegroGraph password – May want to specify3.
AllegroGraph  repository  name  –  Unlikely  to  want  to4.
change
AllegroGraph port – Very unlikely to want to change5.

The first three parameters can be set using the Makefile in
the top level directory. The last two parameters are found
in agrepl/vars.sh if you wish to change them. Note that the
port  number  of  10035  is  found  in  the  yaml  files  in
the kube subdirectory. If you change the port number you’ll
have edit the yaml files as well.

The first three parameters are set via

%  make  account=DockerHubAccount  user=username
password=password

The account must be specified but the last two can be omitted
and default to an AllegroGraph account name of test and a



password of xyzzy.

If you choose to specify a password make it a simple one
consisting of letters and numbers. The password will appear in
shell commands and URLs and our simple scripts don’t escape
characters that have a special meaning to the shell or URLs.

Install AllegroGraph

Change  to  the  ag  directory  and  build  an  image  with
AllegroGraph  installed.  Then  push  it  to  the  Docker  Hub

% cd ag
% make build
% make push
% cd ..

Create cluster-aware AllegroGraph image

Add scripts to create an image that will either create an
AllegroGraph MMR cluster or join a cluster when started.

% cd agrepl
% make build
% make push
% cd ..

Setup a Kubernetes cluster

Now everything is ready to run in a Kubernetes cluster. You
may already have a Kubernetes cluster running or you may need
to create one. Both Google Cloud Platform and AWS have ways of
creating a cluster using a web UI or a shell command. When
you’ve got your cluster running you can do

% kubectl get nodes

and you’ll see your nodes listed. Once this works you can move
into the next step.

Run an AllegroGraph MMR cluster



Starting  the  MMR  cluster  involves  setting  up  a  number  of
services and deploying pods. The Makefile will do that for
you.

% cd kube
% make doall

You’ll see when it displays the services that there isn’t an
external IP address allocated for the load balancers It can
take a few minutes for an external IP address to be allocated
and the load balancers setup so keep running

% kubectl  get svc

until you see an IP address given, and even then it may not
work for a minute or two after that for the connection to be
made.

Verify that the MMR cluster is running

You can use AllegroGraph Webview to see if the MMR cluster is
running.  Once  you  have  an  external  IP  address  for  the
controlling-load-balancer go to this address in a web browser

http://external-ip-address:10035

Login  with  the  credentials  you  used  when  you  created  the
Docker images (the default is user test and password xyzzy).
You’ll see a repository myrepl listed. Click on that. Midway
down you’ll see a link titled

Manage Replication Instances as controller

Click on that link and you’ll see a table of three instances
which now serve the same repository. This verifies that three
pods started up and all linked to each other.

Namespaces

All objects created in Kubernetes have a name that is chosen
either by the user or Kubernetes based on a name given by the
user. Most names have an associated namespace. The combination



of namespace and name must be unique among all objects in a
Kubernetes cluster. The reason for having a namespace is that
it prevents name clashes between multiple projects running in
the same cluster that both choose to use the same name for an
object.

The default namespace is named default.

Another big advantage using namespaces is that if you delete a
namespace  you  delete  all  objects  whose  name  is  in  that
namespace. This is useful because a project in Kubernetes uses
a lot of different types of objects and if you want to delete
all the objects you’ve added to a Kubernetes cluster it can
take a while to find all the objects by type and then delete
them. However if you put all the objects in one namespace then
you need only delete the namespace and you’re done.

In the Makefile we have this line

Namespace=testns

which is used by this rule

reset:
        -kubectl delete namespace ${Namespace}
        kubectl create namespace ${Namespace}
        kubectl config set-context `kubectl config current-
context` --namespace ${Namespace}

The reset rule deletes all members of the Namespace named at
the top of the Makefile (here testns) and then recreates the
namespace and switches to it as the active namespace. After
doing  the  reset  all  objects  created  will  be  created  in
the testns namespace.

We  include  this  in  the  Makefile  because  you  may  find  it
useful.

Docker Swarm

The focus of this document is Kubernetes but we also have a



Docker Swarm implementation of an AllegroGraph MMR cluster.
Docker Swarm is significantly simpler to setup and manage than
Kubernetes but has far fewer bells and whistles. Once you’ve
gotten the ag and agrepl images built and pushed to the Docker
Hub  you  need  only  link  a  set  of  machines  running  Docker
together into a Docker Swarm and then

% cd swarm ; make controlling copy

and the AllegroGraph MMR cluster is running Once it is running
you can access the cluster using Webview at

http://localhost:10035/


