
Graphorum – Dr. Aasman
Presenting
Graph-Driven Event Processing for Intelligent Customer
Operations

Wednesday, October 16, 2019
10:15 AM – 11:15 AM
Level: Case Study

In the typical organization, the
contents of the actual chat or
voice conversation between agent
and customer is a black hole. In
the modern Intelligent Customer
Operations center, the interactions
between agent and customer are a
source of rich information that
helps agents to improve the quality

of the interaction in real time, creates more sales, and
provides far better analytics for management. The Intelligent
Customer Operations center is enabled by a taxonomy of the
products and services sold, speech recognition to turn
conversations into text, a taxonomy-driven entity extractor to
take the important concepts out of conversations, and machine
learning to classify chats in various ways. All of this is
stored in a real-time Knowledge Graph that also knows (and
stores) everything about customers and agents and provides the
raw data for machine learning to improve the agent/customer
interaction.

In this presentation, we describe a real-world Intelligent
Customer Organization that uses graph-based technology for
taxonomy-driven entity extraction, speech recognition, machine
learning, and predictive analytics to improve quality of
conversations, increase sales, and improve business

https://allegrograph.com/graphorum-dr-aasman-presenting/
https://allegrograph.com/graphorum-dr-aasman-presenting/

visibility.

https://graphorum2019.dataversity.net/sessionPop.cfm?confid=13
2&proposalid=11010

Big Data 50 – Companies
Driving Innovation in 2019
Franz Inc. is proud to announce that it has been named to
Database Trends and Application (DBTA) – Big Data 50,
Companies Driving Innovation in 2019

Today, more than
ever, businesses
rely on data to
deliver a
competitive edge.
The urgency to
compete on
analytics has
spread across
industries, fueled

by the need for greater efficiency, agility and innovation,”
remarked Thomas Hogan, Group Publisher at Database Trends and
Applications. “This list seeks to highlight those companies
that are really driving innovation and serve as a guide to
businesses navigating the rapidly changing big data
landscape.”

A new generation of tools is making it possible to leverage
the wealth of data flowing into organizations from a

https://allegrograph.com/big-data-50-companies-driving-innovation-in-2019/
https://allegrograph.com/big-data-50-companies-driving-innovation-in-2019/

previously unimaginable range of data sources. Machine
learning, AI, Spark, and object storage are just some of the
next-generation approaches gaining traction, according to
recent surveys conducted by Unisphere Research, a division of
Information Today, Inc.

But, it is also increasingly clear that there is no single way
to approach data-driven innovation today. Open source-based
technologies have gained strong adoption in organizations
alongside proprietary offerings, data lakes are increasingly
being implemented but data warehouses continue in widespread
use, and hybrid deployments spanning cloud and on-premise are
commonly accepted.

Organizations are seeking to use data-driven innovation for
better reporting and analytics, real-time decision making,
enhanced customer experience and personalization, and reduced
costs. But with data coming in from more places than ever,
being stored in more systems, and accessed by more users for a
wider array of use cases, there is greater recognition that
security and governance must be addressed intelligently.

Evaluating new and disruptive technologies, and then
identifying how and where they can be useful, can be
challenging.

To contribute to the discussion each year, Big Data Quarterly
presents the “Big Data 50,” a list of forward-thinking
companies that are working to expand what’s possible in terms
of capturing, storing, protecting, and deriving value from
data.

“We are honored to receive this acknowledgement for our
efforts in delivering Enterprise Knowledge Graph Solutions,”
said Dr. Jans Aasman, CEO, Franz Inc. “In the past year, we
have seen demand for Enterprise Knowledge Graphs take off
across industries along with recognition from top technology
analyst firms that Knowledge Graphs provide the critical

foundation for artificial intelligence applications and
predictive analytics. Our AllegroGraph Knowledge Graph
Platform Solution offers a unique comprehensive approach for
helping companies accelerate the creation of Enterprise
Knowledge Graphs that deliver new value to their
organization.”

Harnessing the Internet of
Things with JSON-LD

Franz’s CEO, Jans Aasman’s recent
IoT Evolution Article:

Conceptually, the promise of the Internet of Things is almost
halcyon. Its billions of sensors are all connected,
continuously transmitting data to support tailored, cost-
saving measures maximizing revenues in applications as diverse
as smart cities, smart price tags, and predictive maintenance
in the Industrial Internet.

Practically, the data management necessities of capitalizing
on this promise by the outset of the next decade are daunting.
The vast majority of these datasets are unstructured or semi-
structured. The data modeling challenges of rectifying their
schema for integration are considerable. The low latency
action required to benefit from their data implies machine

https://allegrograph.com/harnessing-the-internet-of-things-with-json-ld/
https://allegrograph.com/harnessing-the-internet-of-things-with-json-ld/

intelligence largely elusive to today’s organizations.

…….
The self-describing, linked data approach upon which JSON-LD
is founded excels at the low latent action resulting from
machine to machine communication in the IoT. The nucleus of
the linked data methodology—semantic statements and their
unique Uniform Resource Identifiers (URIs)—are read and
understood by machines. This characteristic aids many of the
IoT use cases requiring machine intelligence; by transmitting
IoT data via the JSON-LD format organizations can maximize
this boon. Smart cities provide particularly compelling
examples of the machine intelligence fortified by this
expression of semantic technology.

Read the full article at IoT Evolution

AllegroGraph Replication on
Amazon’s AWS using Terraform

Introduction
In this document we describe how to setup an AllegroGraph
replication cluster on AWS using the terraform program. The
cluster will have one controlling instance and a set of
instances controlled by an Auto Scaling Group and reached via
a Load Balancer.

https://www.iotevolutionworld.com/iot/articles/443068-harnessing-internet-things-with-json-ld.htm
https://allegrograph.com/allegrograph-replication-on-amazons-aws-using-terraform/
https://allegrograph.com/allegrograph-replication-on-amazons-aws-using-terraform/
https://franz.com/agraph/support/documentation/current/multi-master.html
https://franz.com/agraph/support/documentation/current/multi-master.html
https://www.terraform.io/
https://docs.aws.amazon.com/autoscaling/
https://docs.aws.amazon.com/elasticloadbalancing/

Controlling instance

Replicas

Load Balancer

Application/Users

Creating such a system on AWS takes a long time if done
manually through their web interface. We have another document
that takes you through the steps. Describing the system in
terraform first takes a little time but once that’s done the
cluster can be started in less than five minutes.

Steps
Obtain an AMI with AllegroGraph and aws-repl (our1.
support code for aws) installed.
Edit the terraform file we supply to suit your needs2.
Run terraform to build the cluster3.

Obtain an AMI with AllegroGraph and
aws-repl
An AMI is an image of a virtual machine. You create an AMI by
launching an ec2 instance using an AMI, altering the root disk

https://github.com/franzinc/agraph-examples/blob/master/clustering/terraform-elb/agraph_mmr_elb.svg

of that instance and then telling AWS to create an AMI based
on your instance. You can repeat this process until you create
the AMI you need.

We have a prebuild AMI with all the code installed. It uses
AllegroGraph 6.5.0 and doesn’t contain a license code so it’s
limited to 5 million triples. You can use this AMI to test the
load balancer or you can use this image as the starting off
point for building your own image.

Alternatively you start from a fresh AMI and install
everything yourself as described next.

We will create an AMI to run AllegroGraph with Replication
with the following features

When an EC2 instance running this AMI is started it1.
starts AllegroGraph and joins the cluster of nodes
serving a particular repository.
When the the EC2 instance is terminated the instance2.
sends a message to the controlling instance to ensure
that the terminating instance is removed from the
cluster
If the EC2 instance is started at a particular IP3.
address it creates the cluster and acts as the
controlling instance of the cluster

This is a very simple setup but will serve many applications.
For more complex needs you’ll need to write your own tools.
Contact support@franz.com to discuss support options.

The choice of AMI on which to build our AMI is not important
except that our scripts assume that the initial account name
of the image is ec2-user. Thus we suggest that you use one of
the Amazon Linux images. If you use another kind of image
you’ll need to do extra work (as an example we describe below
how to use a Centos AMI). Since the instance we’ll build with
the AMI are used only for AllegroGraph and not for other uses
there’s no point in running a different version of Linux that

mailto:support@franz.com

you may use in your development work.

These are the steps to build an AMI:

Start an instance using an Amazon Linux AMI with EBS support.

We can’t specify the exact name of the image to start as the
names change over time and depending on the region. We will
usually pick one of the first images listed.

You don’t need to start a large virtual machine. A t2.micro
will do.

You’ll need to specify a VPC and subnet. There should be a
default VPC available. If not you’ll have to create one.

Make sure that when you specify that subnet that you want to
external IP address.

Copy an agraph distribution (tar.gz format) to the ec2
instance into the home directory of ec2-user. Also copy the
file aws-repl/aws-repl.tar to the home directory of ec2-user
on the instance. aws-repl.tar contains scripts to support
replication setup on AWS.

Extract the agraph repo in a temporary spot and run install-
agraph in it, specifying the root of the agraph distribution.

I put it in /home/ec2-user/agraph

For example:

% mkdir tmp
% cd tmp
% tar xfz ../agraph-6.5.0-linuxamd64.64.tar.gz
% cd agraph-6.5.0
% ./install-agraph ~/agraph

Edit the file ~/agraph/lib/agraph.cfg and add the line

UseMainPortForSessions yes

This will allow sessions to be tracked through the Load
Balancer.

If you have an agraph license key you should add it to the
agraph.cfg file.

Unpack and install the aws-repl code:

% tar xf aws-repl.tar
% cd aws-repl
% sudo ./install.sh

You can delete aws-repl.tar but don’t delete the aws-repl
directory. It will be used on startup.

Look at aws-repl/var.sh to see the parameter values. You’ll
see an agraphroot parameter which should match where you
installed agraph.

At this point the instance is setup.

You should go to the aws console, select this instance, and
from the Action menu select “Image / Create Image”. Wait for
the AMI to be built. At this time you can terminate the ec2
instance.

Using a CentOS 7 image:
If you wish to install on top of CentOS then you’ll need
additional steps. The initial user on CentOS is called
‘centos’ rather than ‘ec2-user’. In order to keep things
consistent we’ll create the ec2-user account and use that for
running agraph just as we do for the Amazon AMI.

ssh to the ec2 vm as centos and do the following to create the
ec2-user account and to allow ssh access to it just like the
centos account

[centos@ip-10-0-1-227 ~]$ sudo sh

sh-4.2# adduser ec2-user

sh-4.2# cp -rp .ssh ~ec2-user
sh-4.2# chown -R ec2-user ~ec2-user/.ssh
sh-4.2# exit

[centos@ip-10-0-1-227 ~]

$

At this point you can copy the agraph distribution to the ec2
vm. Scp to ec2-user@x.x.x.x rather than centos@x.x.x.x. Also
copy the aws-repl.tar file.

The only change to the procedure is when you must run
install.sh in the aws-repl directory.

The ec2-user account does not have the ability to sudo. So
this command must be run

when logged in as the user centos;

centos@ip-10-0-1-227 ~]$ sudo sh
sh-4.2# cd ~ec2-user/aws-repl
sh-4.2# ./install.sh
+ cp joincluster /etc/rc.d/init.d
+ chkconfig --add joincluster
sh-4.2# exit

[centos@ip-10-0-1-227 ~]

$

Edit the terraform file we supply
to suit your needs
Edit the file agelb.tf. This file contains directives to
terraform to create the cluster with load balancer. At the top
are the variables you can easily change. Other values are
found inside the directives and you can change those as well.

Two variables you definitely need to change are

mailto:ec2-user@x.x.x.x
mailto:centos@x.x.x.x

“ag-elb-ami” – this is the name of the AMI you created1.
in the previous step or the AMI we supply.
“ssh-key” – this is the name of the ssh key pair you2.
want to use in the instances created.

You may wish to change the region where you want the instances
built (that value is in the provider clause at the top of the
file) and if you do you’ll need to change the variable “azs”.

We suggest you try building the cluster with the minimum
changes to verify it works and then customize it to your
liking.

Run terraform to build the cluster
To build the cluster make sure your have an ~/.aws/config file
with a default entry, such as

[default]
aws_access_key_id = AKIAIXXXXXXXXXXXXXXX
aws_secret_access_key = o/dyrxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

This is what terraform uses as credentials when it contacts
AWS.

In order to use terraform the first time (or any time you
change the provider clause in agelb.tf) run this command

% terraform init

Terraform will download the files appropriate for the provider
you specified.

After that you can build your cluster with

% terraform apply

And watch the messages. If there are no errors terraform will
wait for confirmation from you to proceed. Type yes to
proceed, anything else to abort.

After terraform is finished you’ll see the address of the load
balancer printed.

You can make changes the agelb.tf file and again ‘terraform
apply ‘ and terraform will tell you what it needs to do to
change things from how they are now to what the agelb.tf file
specifies.

To delete everything terraform added type the command

% terraform destroy

And type yes when prompted.

SHACL – Shapes Constraint
Language in AllegroGraph
SHACL is a SHApe Constraint Language. It specifies a
vocabulary (using triples) to describe the shape that data
should have. The shape specifies things like the following
simple requirements:

How many triples with a specified subject and predicate
should be in the repository (e.g. at least 1, at most 1,
exactly 1).
What the nature of the object of a triple with a
specified subject and predicate should be (e.g. a
string, an integer, etc.)

See the specification for more examples.

SHACL allows you to validate that your data is conforming to
desired requirements.

For a given validation, the shapes are in the Shapes

https://allegrograph.com/shacl-shapes-constraint-language-in-allegrograph/
https://allegrograph.com/shacl-shapes-constraint-language-in-allegrograph/
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/

Graph (where graph means a collection of triples) and the data
to be validated is in the Data Graph (again, a collection of
triples). The SHACL vocabularly describes how a given shape is
linked to targets in the data and also provides a way for a
Data Graph to specify the Shapes Graph that should be used for
validatation. The result of a SHACL validation describes
whether the Data Graph conforms to the Shapes Graph and, if it
does not, describes each of the failures.

Namespaces Used in this Document
Along with standard predefined namespaces (such
as rdf: for <http://www.w3.org/1999/02/22-rdf-syntax-
ns#> and rdfs: for <http://www.w3.org/2000/01/rdf-schema#>),
the following are used in code and examples below:

prefix fr: <https://franz.com#>
prefix sh: <http://www.w3.org/ns/shacl#>
prefix franz: <https://franz.com/ns/allegrograph/6.6.0/>

A Simple Example
Suppose we have a Employee class and for each Employee
instance, there must be exactly one triple of the form

emp001 hasID "000-12-3456"

where the object is the employee’s ID Number, which has the
format is [3 digits]-[2 digits]-[4 digits].

This TriG file encapsulates the constraints above:

@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<https://franz.com#Shapes> {
 <https://franz.com#EmployeeShape>
 a sh:NodeShape ;
 sh:targetClass <https://franz.com#Employee> ;

 sh:property [
 sh:path <https://franz.com#hasID> ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:datatype xsd:string ;
 sh:pattern "^[0-9][0-9][0-9]-[0-9][0-9]-

[0-9][0-9][0-9][0-9]$" ;
] .
}

It says that for instances of fr:Employee (sh:targetClass
<https://franz.com#Employee>), there must be exactly 1 triple
with predicate (path) fr:hasID and the object of that triple
must be a string with pattern [3 digits]-[2 digits]-[4 digits]
(sh:pattern "^[0-9][0-9][0-9]-[0-9][0-9]-
[0-9][0-9][0-9][0-9]$").

This TriG file defines the Employee class and some employee
instances:

@prefix fr: <https://franz.com#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

{
 fr:Employee
 a rdfs:Class .
 fr:emp001
 a fr:Employee ;
 fr:hasID "000-12-3456" ;
 fr:hasID "000-77-3456" .
 fr:emp002
 a fr:Employee ;
 fr:hasID "00-56-3456" .
 fr:emp003
 a fr:Employee .
 }

Recalling the requirements above, we immediately see these
problems with these triples:

emp001 has two hasID triples.1.
The value of emp002‘s ID has the wrong format (two2.
leading digits rather than 3).
emp003 does not have a hasID triple.3.

We load the two TriG files into our repository, and end up
with the following triple set. Note that all the employee
triples use the default graph and the SHACL-related triples
use the graph <https://franz.com#Shapes> specified in the TriG
file.

Now we use agtool shacl-validate to validate our data:

bin/agtool shacl-validate --data-graph default --shapes-graph
https://franz.com#Shapes shacl-repo-1
Validation report: Does not conform
Created: 2019-06-27T10:24:10
Number of shapes graphs: 1
Number of data graphs: 1
Number of NodeShapes: 1
Number of focus nodes checked: 3

3 validation results:
Result:
 Focus node: <https://franz.com#emp001>
 Path: <https://franz.com#hasID>
 Source Shape: _:b7A1D241Ax1

 Constraint Component:
<http://www.w3.org/ns/shacl#MaxCountConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp002>
 Path: <https://franz.com#hasID>
 Value: "00-56-3456"
 Source Shape: _:b7A1D241Ax1

 Constraint Component:
<http://www.w3.org/ns/shacl#PatternConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp003>
 Path: <https://franz.com#hasID>
 Source Shape: _:b7A1D241Ax1

 Constraint Component:
<http://www.w3.org/ns/shacl#MinCountConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

The validation fails with the problems listed above. The Focus
node is the subject of a triple that did not conform. Path is
the predicate or a property path (predicates in this
example). Value is the offending value. Source Shape is the
shape that established the constraint (you must look at the
shape triples to see exactly what Source Shape is requiring).

We revise our employee data with the following SPARQL
expresssion, deleting one of the emp001 triples, deleting
the emp002 triple and adding a new one with the correct
format, and adding an emp003 triple.

prefix fr: <https://franz.com#>

DELETE DATA {fr:emp002 fr:hasID "00-56-3456" } ;

INSERT DATA {fr:emp002 fr:hasID "000-14-1772" } ;

DELETE DATA {fr:emp001 fr:hasID "000-77-3456" } ;

INSERT DATA {fr:emp003 fr:hasID "000-54-9662" } ;

Now our employee triples are

We run the validation again and are told our data conforms:

% bin/agtool shacl-validate --data-graph default --shapes-
graph https://franz.com#Shapes shacl-repo-1
Validation report: Conforms
Created: 2019-06-27T10:32:19
Number of shapes graphs: 1
Number of data graphs: 1
Number of NodeShapes: 1
Number of focus nodes checked: 3

When we refer to this example in the remainder of this
document, it is to the un-updated (incorrect) triples.

SHACL API
The example above illustrates the SHACL steps:

Have a data set with triples that should conform to a1.
shape
Have SHACL triples that express the desired shape2.
Run SHACL validation to determine if the data conforms3.

Note that SHACL validation does not modify the data being
validated. Once you have the conformance report, you must
modify the data to fix the conformance problems and then rerun
the validation test.

The main entry point to the API is agtool shacl-validate. It
takes various options and has several output choices. Online
help for agtool shacl-validate is displayed by running agtool
shacl-validate --help.

In order to validate triples, the system must know:

What tripes to examine1.
What rules (SHACL triples) to use2.
What to do with the results3.

Specifying what triples to examine
Two arguments to agtool shacl-validate specify the triples to
evaluate: --data-graph and --focus-node. Each can be specified
multiple times.

The --data-graph argument specifies the graph value for
triples to be examined. Its value must be an IRI
or default. Only triples in the specified graphs will be
examined. default specifies the default graph. It is
also the default value of the --data-graph argument. If
no value is specified for --data-graph, only triples in
the default graph will be examined. If a value for --
data-graph is specified, triples in the default graph
will only be examined if --data-graph default is also
specified.
The --focus-node argument specifies IRIs which are
subjects of triples. If this argument is specified, only
triples with these subjects will be examined. To be
examined, triples must also have graph values specified
by --data-graph arguments. --focus-node does not have a
default value. If unspecified, all triples in the
specified data graphs will be examined. This argument
can be specified multiple times.

The --data-graph argument was used in the simple
example above. Here is how the --focus-node argument can be
used to restrict validation to triples with
subjects <https://franz.com#emp002>and <https://franz.com#emp0
03> and to ignore triples with
subject <https://franz.com#emp001> (applying agtool shacl-
validate to the orignal non-conformant data):

% bin/agtool shacl-validate --data-graph default \

https://franz.com/agraph/support/documentation/current/shacl.html#simple-example
https://franz.com/agraph/support/documentation/current/shacl.html#simple-example

 --shapes-graph https://franz.com#Shapes \
 --focus-node https://franz.com#emp003 \
 --focus-node https://franz.com#emp002 shacl-repo-1
Validation report: Does not conform
Created: 2019-06-27T11:37:49
Number of shapes graphs: 1
Number of data graphs: 1
Number of NodeShapes: 1
Number of focus nodes checked: 2

2 validation results:
Result:
 Focus node: <https://franz.com#emp003>
 Path: <https://franz.com#hasID>
 Source Shape: _:b7A1D241Ax2

 Constraint Component:
<http://www.w3.org/ns/shacl#MinCountConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp002>
 Path: <https://franz.com#hasID>
 Value: "00-56-3456"
 Source Shape: _:b7A1D241Ax2

 Constraint Component:
<http://www.w3.org/ns/shacl#PatternConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Specifying What Shape Triples to Use
Two arguments to agtool shacl-validate, analogous to the two
arguments for data described above, specify Shape triples to
use. Further, following the SHACL spec, data triples with
predicate <http://www.w3.org/ns/shacl#shapeGraph> also specify
graphs containing Shape triples to be used.

The arguments to agtool shacl-validate are the following. Each
may be specified multiple times.

The --shapes-graph argument specifies the graph value

for shape triples to be used for SHACL validation. Its
value must be an IRI or default. default specifies the
default graph. The --shapes-graph argument has no
default value. If unspecified, graphs specified by data
triples with
the <http://www.w3.org/ns/shacl#shapeGraph> predicate
will be used (they are used whether or not --shapes-
graph has a value). If --shapes-graph has no value and
there are no data triples with
the <http://www.w3.org/ns/shacl#shapeGraph> predicate,
the data graphs are used for shape graphs. (Shape
triples have a known format and so can be identified
among the data triples.)
The --shape argument specifies IRIs which are subjects
of shape nodes. If this argument is specified, only
shape triples with these subjects and subsiduary triples
to these will be used for validation. To be included,
the triples must also have graph values specified by
the --shapes-graph arguments or specified by a data
triple with
the <http://www.w3.org/ns/shacl#shapeGraph> predicate. -
-shape does not have a default value. If unspecified,
all shapes in the shapes graphs will be used.

Other APIs
There is a lisp API using the function validate-data-graph,
defined next:

validate-data-graphdb &key data-graph-iri/s shapes-graph-
iri/s shape/s focus-node/s verbose conformance-only?
function

Perform SHACL validation and return a validation-report
structure.

The validation uses data-graph-iri/s to construct the

https://franz.com/agraph/support/documentation/current/shacl.html#validate-data-graph

dataGraph. This can be a single IRI, a list of IRIs or NIL, in
which case the default graph will be used. The shapesGraph can
be specified using the shapes-graph-iri/s parameter which can
also be a single IRI or a list of IRIs. If shape-graph-
iri/s is not specified, the SHACL processor will first look to
create the shapesGraph by finding triples with the
predicate sh:shapeGraph in the dataGraph. If there are no such
triples, then the shapesGraph will be assumed to be the same
as the dataGraph.

Validation can be restricted to particular shapes and focus
nodes using the shape/s and focus-node/s parameters. Each of
these can be an IRI or list of IRIs.

If conformance-only? is true, then validation will stop as
soon as any validation failures are detected.

You can use validation-report-conforms-p to see whether or not
the dataGraph conforms to the shapesGraph (possibly restricted
to just particular shape/s and focus-node/s).

The function validation-report-conforms-p returns t or nil as
the validation struct returned by validate-data-graph does or
does not conform.

validation-report-conforms-preport
function

Returns t or nil to indicate whether or not REPORT (a
validation-report struct) indicates that validation conformed.
There is also a REST API. See HTTP reference.

Validation Output
The simple example above and the SHACL examples below show
output from agtool validate-shacl. There are various output
formats, specified by the --output option. Those examples use
the plain format, which means printing results descriptively.

https://franz.com/agraph/support/documentation/current/shacl.html#validation-report-conforms-p
https://franz.com/agraph/support/documentation/current/shacl.html#validation-report-conforms-p
https://franz.com/agraph/support/documentation/current/shacl.html#validate-data-graph
https://franz.com/agraph/support/documentation/current/http-reference.html
https://franz.com/agraph/support/documentation/current/shacl.html#simple-example
https://franz.com/agraph/support/documentation/current/shacl.html#shacl-examples

Other choices include json, trig, trix, turtle, nquads, rdf-
n3, rdf/xml, and ntriples. Here are the simple
example (uncorrected) results using ntriples output:

% bin/agtool shacl-validate --output ntriples --data-graph
default --shapes-graph https://franz.com#Shapes shacl-repo-1

_:b271983AAx1
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/ns/shacl#ValidationReport> .
_:b271983AAx1 <http://www.w3.org/ns/shacl#conforms>
"false"^^<http://www.w3.org/2001/XMLSchema#boolean> .
_:b271983AAx1 <http://purl.org/dc/terms/created>
"2019-07-01T18:26:03"^^<http://www.w3.org/2001/XMLSchema#dateT
ime> .
_:b271983AAx1 <http://www.w3.org/ns/shacl#result>
_:b271983AAx2 .
_:b271983AAx2
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/ns/shacl#ValidationResult> .
_:b271983AAx2 <http://www.w3.org/ns/shacl#focusNode>
<https://franz.com#emp001> .
_:b271983AAx2 <http://www.w3.org/ns/shacl#resultPath>
<https://franz.com#hasID> .
_:b271983AAx2 <http://www.w3.org/ns/shacl#resultSeverity>
<http://www.w3.org/ns/shacl#Violation> .
_:b271983AAx2
<http://www.w3.org/ns/shacl#sourceConstraintComponent>
<http://www.w3.org/ns/shacl#MaxCountConstraintComponent> .
_:b271983AAx2 <http://www.w3.org/ns/shacl#sourceShape>
_:b271983AAx3 .
_:b271983AAx1 <http://www.w3.org/ns/shacl#result>
_:b271983AAx4 .
_:b271983AAx4
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/ns/shacl#ValidationResult> .
_:b271983AAx4 <http://www.w3.org/ns/shacl#focusNode>
<https://franz.com#emp002> .
_:b271983AAx4 <http://www.w3.org/ns/shacl#resultPath>
<https://franz.com#hasID> .
_:b271983AAx4 <http://www.w3.org/ns/shacl#resultSeverity>

https://franz.com/agraph/support/documentation/current/shacl.html#simple-example
https://franz.com/agraph/support/documentation/current/shacl.html#simple-example

<http://www.w3.org/ns/shacl#Violation> .
_:b271983AAx4
<http://www.w3.org/ns/shacl#sourceConstraintComponent>
<http://www.w3.org/ns/shacl#PatternConstraintComponent> .
_:b271983AAx4 <http://www.w3.org/ns/shacl#sourceShape>
_:b271983AAx3 .
_:b271983AAx4 <http://www.w3.org/ns/shacl#value> "00-56-3456"
.
_:b271983AAx1 <http://www.w3.org/ns/shacl#result>
_:b271983AAx5 .
_:b271983AAx5
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/ns/shacl#ValidationResult> .
_:b271983AAx5 <http://www.w3.org/ns/shacl#focusNode>
<https://franz.com#emp003> .
_:b271983AAx5 <http://www.w3.org/ns/shacl#resultPath>
<https://franz.com#hasID> .
_:b271983AAx5 <http://www.w3.org/ns/shacl#resultSeverity>
<http://www.w3.org/ns/shacl#Violation> .
_:b271983AAx5
<http://www.w3.org/ns/shacl#sourceConstraintComponent>
<http://www.w3.org/ns/shacl#MinCountConstraintComponent> .
_:b271983AAx5 <http://www.w3.org/ns/shacl#sourceShape>
_:b271983AAx3 .

You can have the triples added to the repository by specifying
the --add-to-repo option true.

In the plain output information is provided about how many
data graphs are examined, how many shape graphs were specified
and node shapes are found, and how many focus nodes are
checked. If zero focus nodes are checked, that is likely not
what you want and something has gone wrong. Here we mis-spell
the name of the shape graph (https://franz.com#shapes instead
of https://franz.com#Shapes) and get 0 focus nodes checked:

% bin/agtool shacl-validate --data-graph default --shapes-
graph https://franz.com#shapes shacl-repo-1
Validation report: Conforms
Created: 2019-06-28T10:34:22
Number of shapes graphs: 1

Number of data graphs: 1
Number of NodeShapes: 0
Number of focus nodes checked: 0

SPARQL integration
There are two sets of magic properties defined: one checks for
basic conformance and the other produces validation reports as
triples:

?valid franz:shaclConforms (?dataGraph [?shapesGraph]
)
?valid franz:shaclFocusNodeConforms1 (?dataGraph
?nodeOrNodeCollection)
?valid franz:shaclFocusNodeConforms2 (?dataGraph
?shapesGraph ?nodeOrNodeCollection)
?valid franz:shaclShapeConforms1 (?dataGraph
?shapeOrShapeCollection [?nodeOrNodeCollection])
?valid franz:shaclShapeConforms2 (?dataGraph
?shapesGraph ?shapeOrShapeCollection [
?nodeOrNodeCollection])
(?s ?p ?o) franz:shaclValidationReport (?dataGraph [
?shapesGraph])
(?s ?p ?o) franz:shaclFocusNodeValidationReport1 (
?dataGraph ?nodeOrNodeCollection) .
(?s ?p ?o) franz:shaclFocusNodeValidationReport2 (
?dataGraph ?shapesGraph ?nodeOrNodeCollection) .
(?s ?p ?o) franz:shaclShapeValidationReport1 (
?dataGraph ?shapeOrShapeCollection [
?nodeOrNodeCollection]) .
(?s ?p ?o) franz:shaclShapeValidationReport2 (
?dataGraph ?shapesGraph ?shapeOrShapeCollection [
?nodeOrNodeCollection]) .

In all of the above ?dataGraph and ?shapesGraph can be IRIs,
the literal ‘default’, or a variable that is bound to a SPARQL
collection (list or set) that was previously created with a

function
like https://franz.com/ns/allegrograph/6.5.0/fn#makeSPARQLList
 or https://franz.com/ns/allegrograph/6.5.0/fn#lookupRdfList.
If a collection is used, then the SHACL processor will create
a temporary RDF merge of all of the graphs in it to produce
the data graph or the shapes graph.

Similarly, ?shapeOrShapeCollection and ?nodeOrNodeCollection c
an be bound to an IRI or a SPARQL collection. If a collection
is used, then it must be bound to a list of IRIs. The SHACL
processor will restrict validation to the shape(s) and focus
node(s) (i.e. nodes that should be validated) specified.

The shapesGraph argument is optional in both of
the shaclConforms and shaclValidationReport magic properties.
If the shapesGraph is not specified, then the shapesGraph will
be created by following triples in the dataGraph that use
the sh:shapesGraph predicate. If there are no such triples,
then the shapesGraph will be the same as the dataGraph.

For example, the following SPARQL expression

construct { ?s ?p ?o } where {
 # form a collection of focusNodes
bind(<https://franz.com/ns/allegrograph/6.6.0/fn#makeSPARQLLis
t>(
 <http://Journal1/1942/Article25>,
 <http://Journal1/1943>) as ?nodes)

 (?s ?p ?o)
<https://franz.com/ns/allegrograph/6.6.0/shaclShapeValidationR
eport1>
 ('default' <ex://franz.com/documentShape1> ?nodes) .
}

would use the default graph as the Data Graph and the Shapes
Graph and then validate two focus nodes against the
shape <ex://franz.com/documentShape1>.

https://franz.com/ns/allegrograph/6.5.0/fn#makeSPARQLList
https://franz.com/ns/allegrograph/6.5.0/fn#lookupRdfList

SHACL Example
We build on our simple example above. Start with a fresh
repository so triples from the simple example do not interfere
with this example.

We start with a TriG file with various shapes defined on some
classes.

@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix fr: <https://franz.com#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<https://franz.com#ShapesGraph> {
fr:EmployeeShape
 a sh:NodeShape ;
 sh:targetClass fr:Employee ;
 sh:property [
 ## Every employee must have exactly one ID
 sh:path fr:hasID ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:datatype xsd:string ;
 sh:pattern "^[0-9][0-9][0-9]-[0-9][0-9]-

[0-9][0-9][0-9][0-9]$" ;
] ;
 sh:property [
 ## Every employee is a manager or a worker
 sh:path fr:employeeType ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:datatype xsd:string ;
 sh:in ("Manager" "Worker") ;
] ;
 sh:property [
 ## If birthyear supplied, must be 2001 or before
 sh:path fr:birthYear ;
 sh:maxInclusive 2001 ;
 sh:datatype xsd:integer ;

https://franz.com/agraph/support/documentation/current/shacl.html#simple-example

] ;
 sh:property [
 ## Must have a title, may have more than one
 sh:path fr:hasTitle ;
 sh:datatype xsd:string ;
 sh:minCount 1 ;
] ;

 sh:or (
 ## The President does not have a supervisor
 [
 sh:path fr:hasTitle ;
 sh:hasValue "President" ;
]
 [
 ## Must have a supervisor
 sh:path fr:hasSupervisor ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:class fr:Employee ;
]
) ;

 sh:or (
 # Every employee must either have a wage or a salary
 [
 sh:path fr:hasSalary ;
 sh:datatype xsd:integer ;
 sh:minInclusive 3000 ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
]
 [
 sh:path fr:hasWage ;
 sh:datatype xsd:decimal ;
 sh:minExclusive 15.00 ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
]
)
 .

 }

This file says the following about instances of the
class fr:Employee:

Every employee must have exactly one ID (object1.
of fr:hasID), a string of the form NNN-NN-NNNN where
the Ns are digits (this is the simple example
requirement).
Every employee must have exactly2.
one fr:employeeType triple with value either “Manager”
or “Worker”.
Employees may have a fr:birthYear triple, and if so, the3.
value must be 2001 or earlier.
Employees must have a fr:hasTitle and may have more than4.
one.
All employees except the one with title “President” must5.
have a supervisor (specified with fr:hasSupervisor).
Every employee must either have a wage (a decimal6.
specifying hourly pay, greater than 15.00) or a salary
(an integer specifying monthly pay, greater than or
equal to 3000).

Here is some employee data:

@prefix fr: <https://franz.com#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

{
 fr:Employee
 a rdfs:Class .

 fr:emp001
 a fr:Employee ;
 fr:hasID "000-12-3456" ;
 fr:hasTitle "President" ;
 fr:employeeType "Manager" ;
 fr:birthYear "1953"^^xsd:integer ;

 fr:hasSalary "10000"^^xsd:integer .

 fr:emp002
 a fr:Employee ;
 fr:hasID "000-56-3456" ;
 fr:hasTitle "Foreman" ;
 fr:employeeType "Worker" ;
 fr:birthYear "1966"^^xsd:integer ;
 fr:hasSupervisor fr:emp003 ;
 fr:hasWage "20.20"^^xsd:decimal .

 fr:emp003
 a fr:Employee ;
 fr:hasID "000-77-3232" ;
 fr:hasTitle "Production Manager" ;
 fr:employeeType "Manager" ;
 fr:birthYear "1968"^^xsd:integer ;
 fr:hasSupervisor fr:emp001 ;
 fr:hasSalary "4000"^^xsd:integer .

 fr:emp004
 a fr:Employee ;
 fr:hasID "000-88-3456" ;
 fr:hasTitle "Fitter" ;
 fr:employeeType "Worker" ;
 fr:birthYear "1979"^^xsd:integer ;
 fr:hasSupervisor fr:emp002 ;
 fr:hasWage "17.20"^^xsd:decimal .

 fr:emp005
 a fr:Employee ;
 fr:hasID "000-99-3492" ;
 fr:hasTitle "Fitter" ;
 fr:employeeType "Worker" ;
 fr:birthYear "2000"^^xsd:integer ;
 fr:hasWage "17.20"^^xsd:decimal .

 fr:emp006
 a fr:Employee ;
 fr:hasID "000-78-5592" ;
 fr:hasTitle "Filer" ;

 fr:employeeType "Intern" ;
 fr:birthYear "2003"^^xsd:integer ;
 fr:hasSupervisor fr:emp002 ;
 fr:hasWage "14.20"^^xsd:decimal .

 fr:emp007
 a fr:Employee ;
 fr:hasID "000-77-3232" ;
 fr:hasTitle "Sales Manager" ;
 fr:hasTitle "Vice President" ;
 fr:employeeType "Manager" ;
 fr:birthYear "1962"^^xsd:integer ;
 fr:hasSupervisor fr:emp001 ;
 fr:hasSalary "7000"^^xsd:integer .
 }

Comparing these data with the requirements, we see these
problems:

emp005 does not have a supervisor.1.
emp006 is pretty messed up, with (1) employeeType2.
“Intern”, not an allowed value, (2) a birthYear (2003)
later than the required maximum of 2001, and (3) a wage
(14.40) less than the minimum (15.00).

Otherwise the data seems OK.

We load these two TriG files into an emply repository (which
we have named shacl-repo-2). We specify the default graph for
the data and the https://franz.com#ShapesGraph for the shapes.
(Though not required, it is a good idea to specify a graph for
shape data as it makes it easy to delete and reload shapes
while developing.) We have 101 triples, 49 data and 52 shape.
Then we run agtool shacl-validate:

% bin/agtool shacl-validate --shapes-graph
https://franz.com#ShapesGraph --data-graph default shacl-
repo-2

There are four violations, as expected, one for emp005 and
three for emp006.

Validation report: Does not conform
Created: 2019-07-03T11:35:27
Number of shapes graphs: 1
Number of data graphs: 1
Number of NodeShapes: 1
Number of focus nodes checked: 7

4 validation results:
Result:
 Focus node: <https://franz.com#emp005>
 Value: <https://franz.com#emp005>
 Source Shape: <https://franz.com#EmployeeShape>

 Constraint Component:
<https://www.w3.org/ns/shacl#OrConstraintComponent>
 Severity: <https://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp006>
 Path: <https://franz.com#employeeType>
 Value: "Intern"
 Source Shape: _:b19D062B9x221

 Constraint Component:
<http://www.w3.org/ns/shacl#InConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp006>
 Path: <https://franz.com#birthYear>

 Value:
"2003"^^<http://www.w3.org/2001/XMLSchema#integer>
 Source Shape: _:b19D062B9x225

 Constraint Component:
<http://www.w3.org/ns/shacl#MaxInclusiveConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp006>
 Value: <https://franz.com#emp006>
 Source Shape: <https://franz.com#EmployeeShape>

 Constraint Component:
<http://www.w3.org/ns/shacl#OrConstraintComponent>

 Severity: <http://www.w3.org/ns/shacl#Violation>

Fixing the data is left as an exercise for the reader.

Turn Customer Service Calls
into Enterprise Knowledge
Graphs
Franz’s CEO, Jans Aasman’s recent Destination CRM article:

The need for text analytics and speech recognition has
broadened over the years, becoming more prevalent and
essential in the sales, marketing, and customer service
departments of various types of businesses and industries. The
goal is simple for these contact center use cases: provide
real-time assistance to human agents interacting with
potential customers to close sales, initiate them, and
increase customer satisfaction.

Until fairly recently, the rich array of unstructured data
encompassing client texts, chats, and phone calls was obscured
from contact centers and organizations due to the sheer
arduousness of speech recognition and text analytics. When
readily integrated into knowledge graphs, however, these same
sources become some of the most credible for improving agent
interactions and achieving business objectives.

Powered by the shrewd usage of organizational taxonomies,
machine learning, natural language processing (NLP), and
semantic search, knowledge graphs make speech recognition and
text analytics immediately accessible, enabling real-time
customer interactions that can maximize business

https://allegrograph.com/turn-customer-service-calls-into-enterprise-knowledge-graphs/
https://allegrograph.com/turn-customer-service-calls-into-enterprise-knowledge-graphs/
https://allegrograph.com/turn-customer-service-calls-into-enterprise-knowledge-graphs/
https://www.gartner.com/it-glossary/speech-recognition/

objectives—and revenues.

Taxonomies
Taxonomies are the foundation of the knowledge graph approach
to rapidly conveying results of speech recognition and text
analytics for timely customer interactions. Agents need three
types of information to optimize customer interactions: their
personas (such as an executive or a purchase department
representative, for example), their reasons for contacting
them, and their industries. Taxonomies are instrumental to
performing these functions because they provide a hierarchy of
relevant terms to organizations.

Read the full article at Destination CRM

AllegroGraph Named to DBTA
Top 100 That Matter Most in
Data
Franz Inc., an early innovator in Artificial Intelligence (AI)
and leading supplier of Graph and Document Database technology
for Knowledge Graphs, today announced that it has been named
to Database Trends and Applications (DBTA) – 2019 Top 100 That
Matter Most in Data.

“We’re excited to announce our seventh annual list, as the
industry continues to grow and evolve,” remarked Thomas Hogan,
Group Publisher at Database Trends and Applications. “Today,
more than ever, businesses are looking to increase their
efficiency, agility and ability to innovate by managing and
leveraging data in new and novel ways. This list seeks to

https://go.forrester.com/blogs/use-text-analytics-technologies-to-handle-mountains-of-unstructured-data/
https://go.forrester.com/blogs/use-text-analytics-technologies-to-handle-mountains-of-unstructured-data/
https://www.destinationcrm.com/Articles/Web-Exclusives/Viewpoints/Turn-Customer-Service-Calls-into-Enterprise-Knowledge-Graphs-133284.aspx
https://allegrograph.com/allegrograph-named-to-dbta-top-100-that-matter-most-in-data/
https://allegrograph.com/allegrograph-named-to-dbta-top-100-that-matter-most-in-data/
https://allegrograph.com/allegrograph-named-to-dbta-top-100-that-matter-most-in-data/
http://www.dbta.com/Magazine/Database-Trends-and-Applications-Magazine-June-July-2019-Issue-9074.aspx
http://www.dbta.com/Magazine/Database-Trends-and-Applications-Magazine-June-July-2019-Issue-9074.aspx

highlight those companies that have been successful in
establishing themselves as unique resources for data
professionals and stakeholders.”

“We are honored to receive this acknowledgement for our
efforts in delivering Enterprise Knowledge Graph Solutions,”
said Dr. Jans Aasman, CEO, Franz Inc. “In the past year, we
have seen demand for Enterprise Knowledge Graphs take off
across industries along with recognition from top technology
analyst firms that Knowledge Graphs provide the critical
foundation for artificial intelligence applications and
predictive analytics. Our AllegroGraph Knowledge Graph
Platform Solution offers a unique comprehensive approach for
helping companies accelerate the creation of Enterprise
Knowledge Graphs that deliver new value to their
organization.”

Franz’s Knowledge Graph Platform Solution includes both
technology and services for building industrial strength
Knowledge Graphs based on best-of-class tools, products,
knowledge, skills and experience. At the core of the solution
is Franz’s graph database technology, AllegroGraph, which is
utilized by dozens of the top F500 companies worldwide and
enables businesses to extract sophisticated decision insights
and predictive analytics from highly complex, distributed data
that cannot be uncovered with conventional databases.

Franz delivers the expertise for designing ontology and
taxonomy-based solutions by utilizing standards-based
development processes and tools. Franz also offers data
integration services from siloed data using W3C industry
standard semantics, which can then be continually integrated
with information that comes from other data sources. In
addition, the Franz data science team provides expertise in
custom algorithms to maximize data analytics and uncover
hidden knowledge.

Companies Across the Globe Use Franz Knowledge Graph Solutions

https://en.wikipedia.org/wiki/Jans_Aasman
https://allegrograph.com/consulting

Organizations in customer service, healthcare, life science,
publishing and technology have relied on Franz to help develop
their knowledge graph solutions.

Global B2B technology firm N3 Results has utilized Franz’s
Knowledge Graph Solution to build an ‘Intelligent Sales
Organization,’ which uses graph based technology for taxonomy
driven entity extraction, speech recognition, machine learning
and predictive analytics to improve quality of conversations,
increase sales and improve business visibility.

“In a typical sales organization, the valuable content within
the online chat or voice conversation between the agent and
customer goes into a black hole,” said Shannon Copeland, COO
of N3. “Franz helped us build a modern Intelligent Sales
Organization (ISO) by creating a real-time Knowledge Graph
that knows everything about customers and agents and provides
the raw data for machine learning to improve doing the
business of ISO. Now we use the rich information between
agents and customers to improve the quality of the interaction
in real time, which ultimately creates more sales and provides
far better analytics for management.”

In 2015, Dr. Parsa Mirhaji, his colleagues and industry
partners, including Franz Inc. embarked on a project to bring
Knowledge Graph technology to Montefiore, a Bronx-based
medical center. “Our strategy at Montefiore is to build a
data-driven and evidence-based health system – essentially a
learning healthcare system – that can understand its own
population thoroughly, understand and improve its practices,
and develop the highest quality of services for the people it
serves,” said Parsa Mirhaji, MD, PhD, Director of the Center
for Health Data Innovations at Montefiore and the Albert
Einstein College of Medicine. “In order to accomplish that
goal, we have created a system that harvests every piece of
data that we can possibly find, from our own EMRs and devices
to patient-generated data to socioeconomic data from the
community. It’s extremely important to use anything we can

find that can help us categorize our patients more
accurately.” (Health IT Analytics, At Montefiore, Artificial
Intelligence Becomes Key to Patient Care, September 10, 2018)

Wolters Kluwer is using graph analytic techniques to
accelerate the knowledge discovery process for its clients.
“What we’re really interested in is achieving insights that
today take a person to analyze and that are prohibitive
computationally,” said Greg Tatham, Wolters Kluwer CTO of
Global Platforms. “We’re providing this live feedback. As
you’re typing, we’re providing question and suggestions for
you live. AllegroGraph gives us a performant way to be able to
just work our way through the whole knowledge model and come
up with suggestions to the user in real time.” (Datanami, How
AI Boosts Human Expertise at Wolters Kluwer, June 6, 2018)

Gartner Identifies Knowledge Graphs and Semantics as Key
Technologies for AI
Gartner recently recognized knowledge graphs as a key new
technology in both their Hype Cycle for Artificial
Intelligence and Hype Cycle for Emerging Technologies.
Gartner’s Hype Cycle for Artificial Intelligence 2018 states,
“The rising role of content and context for delivering
insights with AI technologies, as well as recent knowledge
graph offerings for AI applications have pulled knowledge
graphs to the surface.”

Semantics has also been identified by Gartner as critical for
effectively utilizing enterprise data assets. “Unprecedented
levels of data scale and distribution are making it almost
impossible for organizations to effectively exploit their data
assets. Data and analytics leaders must adopt a semantic
approach to their enterprise data assets or face losing the
battle for competitive advantage.” (Gartner, How to Use
Semantics to Drive the Business Value of Your Data, Guido De
Simoni, November 27, 2018) For more information about the
Gartner report, visit the Gartner Report Order Page.

https://gtnr.it/2H5ZCyY

About Franz Inc.
Franz Inc. is an early innovator in Artificial Intelligence
(AI) and leading supplier of Semantic Graph Database
technology with expert knowledge in developing and deploying
Knowledge Graph solutions. The foundation for Knowledge Graphs
and AI lies in the facets of semantic technology provided by
AllegroGraph and Allegro CL. The ability to rapidly integrate
new knowledge is the crux of the Knowledge Graph and Franz
Inc. provides the key technologies and services to address
your complex challenges. Franz Inc. is your Knowledge Graph
technology partner.

About Database Trends and Applications
Database Trends and Applications (DBTA), published by
Information Today, Inc., is a bimonthly magazine that delivers
advanced trends analysis and case studies in data management
and analysis developed by a team with more than 25 years of
industry experience. Visit www.dbta.com for subscription
information. DBTA also delivers groundbreaking market research
exclusively through its Unisphere Research group.

Creating Explainable AI With
Rules
Franz’s CEO, Jans Aasman’s recent Forbes article:

There’s a fascinating dichotomy in artificial intelligence
between statistics and rules, machine learning and expert
systems. Newcomers to artificial intelligence (AI) regard
machine learning as innately superior to brittle rules-based
systems, while the history of this field reveals both rules
and probabilistic learning are integral components of AI.

https://allegrograph.com/creating-explainable-ai-with-rules/
https://allegrograph.com/creating-explainable-ai-with-rules/
http://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/

This fact is perhaps nowhere truer than in establishing
explainable AI, which is central to the long-term business
value of AI front-office use cases.

Granted, simple machine learning can automate backend
processes. However, the full extent of deep learning or
complex neural networks — which are much more accurate than
basic machine learning — for mission-critical decision-making
and action requires explainability.

Using rules (and rules-based systems) to explicate machine
learning results creates explainable AI. Many of the far-
reaching applications of AI at the enterprise level —
deploying it to combat financial crimes, to predict an
individual’s immediate and long-term future in health care,
for example — require explainable AI that’s fair, transparent
and regulatory compliant.

Rules can explain machine learning results for these purposes
and others.

Read the full article at Forbes

Using JSON-LD in AllegroGraph
– Python Example

The following is example #19
from our AllegroGraph Python
Tutorial.

JSON-LD is described pretty well at https://json-ld.org/ and
the specification can be found

https://www.forbes.com/sites/cognitiveworld/2018/12/20/geoff-hinton-dismissed-the-need-for-explainable-ai-8-experts-explain-why-hes-wrong/#7fde9083756d
https://www.forbes.com/sites/cognitiveworld/2018/12/20/geoff-hinton-dismissed-the-need-for-explainable-ai-8-experts-explain-why-hes-wrong/#7fde9083756d
https://www.forbes.com/sites/forbestechcouncil/2019/05/17/creating-explainable-ai-with-rules/
https://allegrograph.com/using-json-ld-in-allegrograph-python-example/
https://allegrograph.com/using-json-ld-in-allegrograph-python-example/
https://franz.com/agraph/support/documentation/current/python/tutorial.html
https://franz.com/agraph/support/documentation/current/python/tutorial.html
https://json-ld.org/

at https://json-ld.org/latest/json-ld/ .

The website https://json-ld.org/playground/ is also useful.

There are many reasons for working with JSON-LD. The major
search engines such as Google require ecommerce companies to
mark up their websites with a systematic description of their
products and more and more companies use it as an easy
serialization format to share data.

The benefit for your organization is that you can now combine
your documents with graphs, graph search and graph algorithms.
Normally when you store documents in a document store you set
up your documents in such a way that it is optimized for
direct retrieval queries. Doing complex joins for multiple
types of documents or even doing a shortest path through a
mass of object (types) is however very complicated. Storing
JSON-LD objects in AllegroGraph gives you all the benefits of
a document store and you can semantically link objects
together, do complex joins and even graph search.

A second benefit is that, as an application developer, you do
not have to learn the entire semantic technology stack,
especially the part where developers have to create individual
triples or edges. You can work with the JSON data
serialization format that application developers usually
prefer.

In the following you will first learn about JSON-LD as a
syntax for semantic graphs. After that we will talk more about
using JSON-LD with AllegroGraph as a document-graph-store.

Setup
You can use Python 2.6+ or Python 3.3+. There are small setup
differences which are noted. You do need agraph-
python-101.0.1 or later.

https://json-ld.org/latest/json-ld/
https://json-ld.org/playground/

Mimicking instructions in the Installation document, you
should set up the virtualenv environment.

Create an environment named jsonld:1.

python3 -m venv jsonld

or

python2 -m virtualenv jsonld

Activate it:2.

Using the Bash shell:

source jsonld/bin/activate

Using the C shell:

source jsonld/bin/activate.csh

Install agraph-python:3.

pip install agraph-python

And start python:

python
[various startup and copyright messages]
>>>

We assume you have an AllegroGraph 6.5.0 server running. We
call ag_connect. Modify the host, port, user, and password in
your call to their correct values:

from franz.openrdf.connect import ag_connect
with ag_connect('repo', host='localhost', port='10035',
 user='test', password='xyzzy') as conn:

 print (conn.size())

If the script runs successfully a new repository
named repo will be created.

JSON-LD setup
We next define some utility functions which are somewhat
different from what we have used before in order to work
better with JSON-LD. createdb() creates and opens a new
repository and opendb() opens an existing repo (modify the
values of host, port, user, and password arguments in the
definitions if necessary). Both return repository connections
which can be used to perform repository
operations. showtriples() displays triples in a repository.

import os
import json, requests, copy

from franz.openrdf.sail.allegrographserver import
AllegroGraphServer
from franz.openrdf.connect import ag_connect
from franz.openrdf.vocabulary.xmlschema import XMLSchema
from franz.openrdf.rio.rdfformat import RDFFormat

Functions to create/open a repo and return a
RepositoryConnection
Modify the values of HOST, PORT, USER, and PASSWORD if
necessary

def createdb(name):
 return

ag_connect(name,host="localhost",port=10035,user="test",passwo
rd="xyzzy",create=True,clear=True)

def opendb(name):
 return

ag_connect(name,host="localhost",port=10035,user="test",passwo
rd="xyzzy",create=False)

def showtriples(limit=100):
 statements = conn.getStatements(limit=limit)
 with statements:
 for statement in statements:
 print(statement)

Finally we call our createdb function to create a repository
and return a RepositoryConnection to it:

conn=createdb('jsonplay')

Some Examples of Using JSON-LD
In the following we try things out with some JSON-LD objects
that are defined in json-ld playground: jsonld

The first object we will create is an event dict. Although it
is a Python dict, it is also valid JSON notation. (But note
that not all Python dictionaries are valid JSON. For example,
JSON uses null where Python would use None and there is no
magic to automatically handle that.) This object has one key
called @context which specifies how to translate keys and
values into predicates and objects. The
following @context says that every time you see ical: it
should be replaced
by http://www.w3.org/2002/12/cal/ical#, xsd: by http://www.w3.
org/2001/XMLSchema#, and that if you see ical:dtstart as a key
than the value should be treated as an xsd:dateTime.

event = {
 "@context": {
 "ical": "http://www.w3.org/2002/12/cal/ical#",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "ical:dtstart": { "@type": "xsd:dateTime" }
 },
 "ical:summary": "Lady Gaga Concert",
 "ical:location": "New Orleans Arena, New Orleans,
Louisiana, USA",

https://json-ld.org/playground/

 "ical:dtstart": "2011-04-09T20:00:00Z"
}

Let us try it out (the subjects are blank nodes so you will
see different values):

>>> conn.addData(event)
>>> showtriples()
(_:b197D2E01x1, <http://www.w3.org/2002/12/cal/ical#summary>,
"Lady Gaga Concert")
(_:b197D2E01x1, <http://www.w3.org/2002/12/cal/ical#location>,
"New Orleans Arena, New Orleans, Louisiana, USA")
(_:b197D2E01x1, <http://www.w3.org/2002/12/cal/ical#dtstart>,
"2011-04-09T20:00:00Z"^^<http://www.w3.org/2001/XMLSchema#date
Time>)

Adding an @id and @type to Objects
In the above we see that the JSON-LD was correctly translated
into triples but there are two immediate problems: first each
subject is a blank node, the use of which is problematic when
linking across repositories; and second, the object does not
have an RDF type. We solve these problems by adding an @id to
provide an IRI as the subject and adding a @type for the
object (those are at the lines just after
the @context definition):

>>> event = {
 "@context": {
 "ical": "http://www.w3.org/2002/12/cal/ical#",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "ical:dtstart": { "@type": "xsd:dateTime" }
 },
 "@id": "ical:event-1",
 "@type": "ical:Event",
 "ical:summary": "Lady Gaga Concert",
 "ical:location": "New Orleans Arena, New Orleans,
Louisiana, USA",
 "ical:dtstart": "2011-04-09T20:00:00Z"

 }

We also create a test function to test our JSON-LD objects. It
is more powerful than needed right now (here we just
need conn,addData(event) and showTriples() but test will be
useful in most later examples. Note
the allow_external_references=True argument to addData().
Again, not needed in this example but later examples use
external contexts and so this argument is required for those.

def
test(object,json_ld_context=None,rdf_context=None,maxPrint=100
,conn=conn):
 conn.clear()
 conn.addData(object, allow_external_references=True)
 showtriples(limit=maxPrint)

>>> test(event)
(<http://www.w3.org/2002/12/cal/ical#event-1>,
<http://www.w3.org/2002/12/cal/ical#summary>, "Lady Gaga
Concert")
(<http://www.w3.org/2002/12/cal/ical#event-1>,
<http://www.w3.org/2002/12/cal/ical#location>, "New Orleans
Arena, New Orleans, Louisiana, USA")
(<http://www.w3.org/2002/12/cal/ical#event-1>,
<http://www.w3.org/2002/12/cal/ical#dtstart>,
"2011-04-09T20:00:00Z"^^<http://www.w3.org/2001/XMLSchema#date
Time>)
(<http://www.w3.org/2002/12/cal/ical#event-1>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://www.w3.org/2002/12/cal/ical#Event>)

Note in the above that we now have a proper subject and a
type.

Referencing a External Context Via a URL
The next object we add to AllegroGraph is a person object.
This time the @context is not specified as a JSON object but

as a link to a context that is stored at http://schema.org/.
Also in the definition of the function test above we had this
parameter in addData:allow_external_references=True. Requiring
that argument explicitly is a security feature. One should use
external references only that context at that URL is trusted
(as it is in this case).

person = {
 "@context": "http://schema.org/",
 "@type": "Person",
 "@id": "foaf:person-1",
 "name": "Jane Doe",
 "jobTitle": "Professor",
 "telephone": "(425) 123-4567",
 "url": "http://www.janedoe.com"
}

>>> test(person)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://schema.org/name>, "Jane Doe")
(<http://xmlns.com/foaf/0.1/person-1>,
<http://schema.org/jobTitle>, "Professor")
(<http://xmlns.com/foaf/0.1/person-1>,
<http://schema.org/telephone>, "(425) 123-4567")
(<http://xmlns.com/foaf/0.1/person-1>,
<http://schema.org/url>, <http://www.janedoe.com>)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://schema.org/Person>)

Improving Performance by Adding Lists
Adding one person at a time requires doing an interaction with
the server for each person. It is much more efficient to add
lists of objects all at once rather than one at a time. Note
that addData will take a list of dicts and still do the right
thing. So let us add a 1000 persons at the same time, each
person being a copy of the above person but with a

http://schema.org/

different @id. (The example code is repeated below for ease of
copying.)

>>> x = [copy.deepcopy(person) for i in range(1000)]
>>> len(x)
1000
>>> c = 0
>>> for el in x:
 el['@id']= "http://franz.com/person-" + str(c)
 c= c + 1
>>> test(x,maxPrint=10)
(<http://franz.com/person-0>, <http://schema.org/name>, "Jane
Doe")
(<http://franz.com/person-0>, <http://schema.org/jobTitle>,
"Professor")
(<http://franz.com/person-0>, <http://schema.org/telephone>,
"(425) 123-4567")
(<http://franz.com/person-0>, <http://schema.org/url>,
<http://www.janedoe.com>)
(<http://franz.com/person-0>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://schema.org/Person>)
(<http://franz.com/person-1>, <http://schema.org/name>, "Jane
Doe")
(<http://franz.com/person-1>, <http://schema.org/jobTitle>,
"Professor")
(<http://franz.com/person-1>, <http://schema.org/telephone>,
"(425) 123-4567")
(<http://franz.com/person-1>, <http://schema.org/url>,
<http://www.janedoe.com>)
(<http://franz.com/person-1>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://schema.org/Person>)
>>> conn.size()
5000
>>>

x = [copy.deepcopy(person) for i in range(1000)]
len(x)

c = 0

for el in x:
 el['@id']= "http://franz.com/person-" + str(c)
 c= c + 1

test(x,maxPrint=10)

conn.size()

Adding a Context Directly to an Object
You can download a context directly in Python, modify it and
then add it to the object you want to store. As an
illustration we load a person context from json-ld.org
(actually a fragment of the schema.org context) and insert it
in a person object. (We have broken and truncated some output
lines for clarity and all the code executed is repeated below
for ease of copying.)

>>>
context=requests.get("https://json-ld.org/contexts/person.json
ld").json()['@context']
>>> context
{'Person': 'http://xmlns.com/foaf/0.1/Person',
 'xsd': 'http://www.w3.org/2001/XMLSchema#',
 'name': 'http://xmlns.com/foaf/0.1/name',
 'jobTitle': 'http://xmlns.com/foaf/0.1/title',
 'telephone': 'http://schema.org/telephone',
 'nickname': 'http://xmlns.com/foaf/0.1/nick',
 'affiliation': 'http://schema.org/affiliation',
 'depiction': {'@id': 'http://xmlns.com/foaf/0.1/depiction',
'@type': '@id'},
 'image': {'@id': 'http://xmlns.com/foaf/0.1/img', '@type':
'@id'},
 'born': {'@id': 'http://schema.org/birthDate', '@type':
'xsd:date'},
 ...}
>>> person = {
 "@context": context,
 "@type": "Person",
 "@id": "foaf:person-1",

 "name": "Jane Doe",
 "jobTitle": "Professor",
 "telephone": "(425) 123-4567",
}
>>> test(person)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://xmlns.com/foaf/0.1/name>, "Jane Doe")
(<http://xmlns.com/foaf/0.1/person-1>,
<http://xmlns.com/foaf/0.1/title>, "Professor")
(<http://xmlns.com/foaf/0.1/person-1>,
<http://schema.org/telephone>, "(425) 123-4567")
(<http://xmlns.com/foaf/0.1/person-1>,
 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
 <http://xmlns.com/foaf/0.1/Person>)
>>>

context=requests.get("https://json-ld.org/contexts/person.json
ld").json()['@context']
The next produces lots of output, uncomment if desired
#context

person = {
 "@context": context,
 "@type": "Person",
 "@id": "foaf:person-1",
 "name": "Jane Doe",
 "jobTitle": "Professor",
 "telephone": "(425) 123-4567",
}
test(person)

Building a Graph of Objects
We start by forcing a key’s value to be stored as a resource.
We saw above that we could specify the value of a key to be a
date using the xsd:dateTime specification. We now do it again
for foaf:birthdate. Then we created several linked objects and
show the connections using Gruff.

context = { "foaf:child": {"@type":"@id"},

 "foaf:brotherOf": {"@type":"@id"},
 "foaf:birthdate": {"@type":"xsd:dateTime"}}

p1 = {
 "@context": context,
 "@type":"foaf:Person",
 "@id":"foaf:person-1",
 "foaf:birthdate": "1958-04-09T20:00:00Z",
 "foaf:child": ['foaf:person-2', 'foaf:person-3']
}

p2 = {
 "@context": context,
 "@type":"foaf:Person",
 "@id":"foaf:person-2",
 "foaf:brotherOf": "foaf:person-3",
 "foaf:birthdate": "1992-04-09T20:00:00Z",
}

p3 = {"@context": context,
 "@type":"foaf:Person",
 "@id":"foaf:person-3",
 "foaf:birthdate": "1994-04-09T20:00:00Z",
}

test([p1,p2,p3])

>>> test([p1,p2,p3])
(<http://xmlns.com/foaf/0.1/person-1>,
<http://xmlns.com/foaf/0.1/birthdate>,
"1958-04-09T20:00:00Z"^^<http://www.w3.org/2001/XMLSchema#date
Time>)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://xmlns.com/foaf/0.1/child>,
<http://xmlns.com/foaf/0.1/person-2>)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://xmlns.com/foaf/0.1/child>,
<http://xmlns.com/foaf/0.1/person-3>)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://xmlns.com/foaf/0.1/Person>)

(<http://xmlns.com/foaf/0.1/person-2>,
<http://xmlns.com/foaf/0.1/brotherOf>,
<http://xmlns.com/foaf/0.1/person-3>)
(<http://xmlns.com/foaf/0.1/person-2>,
<http://xmlns.com/foaf/0.1/birthdate>,
"1992-04-09T20:00:00Z"^^<http://www.w3.org/2001/XMLSchema#date
Time>)
(<http://xmlns.com/foaf/0.1/person-2>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://xmlns.com/foaf/0.1/Person>)
(<http://xmlns.com/foaf/0.1/person-3>,
<http://xmlns.com/foaf/0.1/birthdate>,
"1994-04-09T20:00:00Z"^^<http://www.w3.org/2001/XMLSchema#date
Time>)
(<http://xmlns.com/foaf/0.1/person-3>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://xmlns.com/foaf/0.1/Person>)

The following shows the graph that we created in Gruff. Note
that this is what JSON-LD is all about: connecting objects
together.

JSON-LD Keyword Directives can be Added
at any Level
Here is an example from the wild. The
URL https://www.ulta.com/antioxidant-facial-oil?productId=xlsI
mpprod18731241 goes to a web page advertising a facial oil.
(We make no claims or recommendations about this product. We
are simply showing how JSON-LD appears in many places.) Look
at the source of the page and you’ll find a JSON-LD object
similar to the following. Note that @ directives go to any
level. We added an @id key.

hippieoil = {"@context":"http://schema.org",
 "@type":"Product",
 "@id":"http://franz.com/hippieoil",
 "aggregateRating":
 {"@type":"AggregateRating",
 "ratingValue":4.6,

https://franz.com/agraph/support/documentation/current/python/_images/person-graph.png

 "reviewCount":73},
 "description":"""Make peace with your inner hippie while
hydrating & protecting against photoaging....Mad Hippie's
preservative-free Antioxidant Facial Oil is truly the most
natural way to moisturize.""",
 "brand":"Mad Hippie",
 "name":"Antioxidant Facial Oil",
 "image":"https://images.ulta.com/is/image/Ulta/2530018",
 "productID":"2530018",
 "offers":
 {"@type":"Offer",
 "availability":"http://schema.org/InStock",
 "price":"24.99",
 "priceCurrency":"USD"}}

test(hippieoil)

JSON-LD @graphs
One can put one or more JSON-LD objects in an RDF named graph.
This means that the fourth element of each triple generated
from a JSON-LD object will have the specified graph name.
Let’s show in an example.

context = {
 "name": "http://schema.org/name",
 "description": "http://schema.org/description",
 "image": {
 "@id": "http://schema.org/image", "@type": "@id"
},

https://franz.com/agraph/support/documentation/current/python/_images/hippieoil.png

 "geo": "http://schema.org/geo",
 "latitude": {
 "@id": "http://schema.org/latitude", "@type":
"xsd:float" },
 "longitude": {
 "@id": "http://schema.org/longitude", "@type":
"xsd:float" },
 "xsd": "http://www.w3.org/2001/XMLSchema#"
 }

place = {
 "@context": context,
 "@id": "http://franz.com/place1",
 "@graph": {
 "@id": "http://franz.com/place1",
 "@type": "http://franz.com/Place",
 "name": "The Empire State Building",
 "description": "The Empire State Building is a 102-
story landmark in New York City.",

 "image":
"http://www.civil.usherbrooke.ca/cours/gci215a/empire-state-bu
ilding.jpg",
 "geo": {
 "latitude": "40.75",
 "longitude": "73.98" }
 }}

and here is the result:

>>> test(place, maxPrint=3)
(<http://franz.com/place1>, <http://schema.org/name>, "The
Empire State Building", <http://franz.com/place1>)
(<http://franz.com/place1>, <http://schema.org/description>,
"The Empire State Building is a 102-story landmark in New York
City.", <http://franz.com/place1>)
(<http://franz.com/place1>, <http://schema.org/image>,
<http://www.civil.usherbrooke.ca/cours/gci215a/empire-state-bu
ilding.jpg>, <http://franz.com/place1>)
>>>

Note that the fourth element (graph) of each of the triples is

<http://franz.com/place1>. If you don’t add the @id the
triples will be put in the default graph.

Here a slightly more complex example:

library = {
 "@context": {
 "dc": "http://purl.org/dc/elements/1.1/",
 "ex": "http://example.org/vocab#",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "ex:contains": {
 "@type": "@id"
 }
 },
 "@id": "http://franz.com/mygraph1",
 "@graph": [
 {
 "@id": "http://example.org/library",
 "@type": "ex:Library",
 "ex:contains": "http://example.org/library/the-republic"
 },
 {
 "@id": "http://example.org/library/the-republic",
 "@type": "ex:Book",
 "dc:creator": "Plato",
 "dc:title": "The Republic",

 "ex:contains":
"http://example.org/library/the-republic#introduction"
 },
 {

 "@id":
"http://example.org/library/the-republic#introduction",
 "@type": "ex:Chapter",
 "dc:description": "An introductory chapter on The
Republic.",
 "dc:title": "The Introduction"
 }
]
}

With the result:

>>> test(library, maxPrint=3)
(<http://example.org/library>,
<http://example.org/vocab#contains>,
<http://example.org/library/the-republic>,
<http://franz.com/mygraph1>) (<http://example.org/library>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://example.org/vocab#Library>,
<http://franz.com/mygraph1>)
(<http://example.org/library/the-republic>,
<http://purl.org/dc/elements/1.1/creator>,
"Plato",<http://franz.com/mygraph1>)
>>>

JSON-LD as a Document Store
So far we have treated JSON-LD as a syntax to create triples.
Now let us look at the way we can start using AllegroGraph as
a combination of a document store and graph database at the
same time. And also keep in mind that we want to do it in such
a way that you as a Python developer can add documents such as
dictionaries and also retrieve values or documents as
dictionaries.

https://franz.com/agraph/support/documentation/current/python/_images/library-graph.png

Setup
The Python source file jsonld_tutorial_helper.py contains
various definitions useful for the remainder of this example.
Once it is downloaded, do the following (after adding the path
to the filename):

conn=createdb("docugraph")
from jsonld_tutorial_helper import *
addNamespace(conn,"jsonldmeta","http://franz.com/ns/allegrogra
ph/6.4/load-meta#")
addNamespace(conn,"ical","http://www.w3.org/2002/12/cal/ical#"
)

Let’s use our event structure again and see how we can store
this JSON document in the store as a document. Note that
the addData call includes the
keyword: json_ld_store_source=True.

event = {
 "@context": {
 "@id": "ical:event1",
 "@type": "ical:Event",
 "ical": "http://www.w3.org/2002/12/cal/ical#",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "ical:dtstart": { "@type": "xsd:dateTime" }
 },
 "ical:summary": "Lady Gaga Concert",
 "ical:location":
 "New Orleans Arena, New Orleans, Louisiana, USA",
 "ical:dtstart": "2011-04-09T20:00:00Z"
}

>>> conn.addData(event,
allow_external_references=True,json_ld_store_source=True)

The jsonld_tutorial_helper.py file defines the
function store as simple wrapper around addDatathat always
saves the JSON source. For experimentation reasons it also has
a parameter fresh to clear out the repository first.

>>> store(conn,event, fresh=True)

If we look at the triples in Gruff we see that the JSON source
is stored as well, on the root (top-level @id) of the JSON
object.

For the following part of the tutorial we want a little bit
more data in our repository so please look at the helper
file jsonld_tutorial_helper.py where you will see that at the
end we have a dictionary named obs with about 9 diverse
objects, mostly borrowed from the json-ld.org site: a person,
an event, a place, a recipe, a group of persons, a product,
and our hippieoil.

First let us store all the objects in a fresh repository. Then
we check the size of the repo. Finally, we create a freetext
index for the JSON sources.

>>> store(conn,[v for k,v in obs.items()], fresh=True)
>>> conn.size()
86
>>>
conn.createFreeTextIndex("source",['<http://franz.com/ns/alleg

https://franz.com/agraph/support/documentation/current/python/_images/event-store-source.png

rograph/6.4/load-meta#source>'])
>>>

Retrieving values with SPARQL
To simply retrieve values in objects but not the objects
themselves, regular SPARQL queries will suffice. But because
we want to make sure that Python developers only need to deal
with regular Python structures as lists and dictionaries, we
created a simple wrapper around SPARQL (see helper file). The
name of the wrapper is runSparql.

Here is an example. Let us find all the roots (top-level @ids)
of objects and their types. Some objects do not have roots,
so None stands for a blank node.

>>> pprint(runSparql(conn,"select ?s ?type { ?s a ?type }"))
[{'s': 'cocktail1', 'type': 'Cocktail'},
 {'s': None, 'type': 'Individual'},
 {'s': None, 'type': 'Vehicle'},
 {'s': 'tesla', 'type': 'Offering'},
 {'s': 'place1', 'type': 'Place'},
 {'s': None, 'type': 'Offer'},
 {'s': None, 'type': 'AggregateRating'},
 {'s': 'hippieoil', 'type': 'Product'},
 {'s': 'person-3', 'type': 'Person'},
 {'s': 'person-2', 'type': 'Person'},
 {'s': 'person-1', 'type': 'Person'},
 {'s': 'person-1000', 'type': 'Person'},
 {'s': 'event1', 'type': 'Event'}]
>>>

We do not see the full URIs for ?s and ?type. You can see them
by adding an appropriate formatargument to runSparql, but the
default is terse.

>>> pprint(runSparql(conn,"select ?s ?type { ?s a ?type }
limit 2",format='ntriples'))
[{'s': '<http://franz.com/cocktail1>', 'type':

'<http://franz.com/Cocktail>'},
 {'s': None, 'type':

'<http://purl.org/goodrelations/v1#Individual>'}]
>>>

Retrieving a Dictionary or Object
retrieve is another function defined
(in jsonld_tutorial_helper.py) for this tutorial. It is a
wrapper around SPARQL to help extract objects. Here we see how
we can use it. The sole purpose of retrieve is to retrieve the
JSON-LD/dictionary based on a SPARQL pattern.

>>> retrieve(conn,"{?this a ical:Event}")
[{'@type': 'ical:Event', 'ical:location': 'New Orleans Arena,
New Orleans, Louisiana, USA', 'ical:summary': 'Lady Gaga
Concert', '@id': 'ical:event1', '@context': {'xsd':
'http://www.w3.org/2001/XMLSchema#', 'ical':
'http://www.w3.org/2002/12/cal/ical#', 'ical:dtstart':
{'@type': 'xsd:dateTime'}}, 'ical:dtstart':
'2011-04-09T20:00:00Z'}]
>>>

Ok, for a final fun (if you like expensive cars) example: Let
us find a thing that is “fast and furious”, that is worth more
than $80,000 and that we can pay for in cash:

>>>
addNamespace(conn,"gr","http://purl.org/goodrelations/v1#")
>>> x = retrieve(conn, """{ ?this fti:match 'fast furious*';
 gr:acceptedPaymentMethods gr:Cash ;
 gr:hasPriceSpecification ?price .
 ?price gr:hasCurrencyValue ?value ;
 gr:hasCurrency "USD" .
 filter (?value > 80000.0) }""")
>>> pprint(x)
[{'@context': {'foaf': 'http://xmlns.com/foaf/0.1/',
 'foaf:page': {'@type': '@id'},
 'gr': 'http://purl.org/goodrelations/v1#',

 'gr:acceptedPaymentMethods': {'@type': '@id'},
 'gr:hasBusinessFunction': {'@type': '@id'},
 'gr:hasCurrencyValue': {'@type': 'xsd:float'},
 'pto': 'http://www.productontology.org/id/',
 'xsd': 'http://www.w3.org/2001/XMLSchema#'},
 '@id': 'http://example.org/cars/for-sale#tesla',
 '@type': 'gr:Offering',
 'gr:acceptedPaymentMethods': 'gr:Cash',
 'gr:description': 'Need to sell fast and furiously',
 'gr:hasBusinessFunction': 'gr:Sell',
 'gr:hasPriceSpecification': {'gr:hasCurrency': 'USD',
 'gr:hasCurrencyValue':
'85000'},
 'gr:includes': {'@type': ['gr:Individual', 'pto:Vehicle'],
 'foaf:page':

'http://www.teslamotors.com/roadster',
 'gr:name': 'Tesla Roadster'},
 'gr:name': 'Used Tesla Roadster'}]
>>> x[0]['@id']
'http://example.org/cars/for-sale#tesla'

Gartner Identifies Top 10
Data and Analytics Technology
Trends for 2019
According to Donald Feinberg, vice president and distinguished
analyst at Gartner, the very challenge created by digital
disruption — too much data — has also created an unprecedented
opportunity. The vast amount of data, together with
increasingly powerful processing capabilities enabled by the
cloud, means it is now possible to train and execute
algorithms at the large scale necessary to finally realize the
full potential of AI.

https://allegrograph.com/gartner-identifies-top-10-data-and-analytics-technology-trends-for-2019/
https://allegrograph.com/gartner-identifies-top-10-data-and-analytics-technology-trends-for-2019/
https://allegrograph.com/gartner-identifies-top-10-data-and-analytics-technology-trends-for-2019/
https://www.gartner.com/analyst/490

“The size, complexity, distributed nature of data, speed of
action and the continuous intelligence required by digital
business means that rigid and centralized architectures and
tools break down,” Mr. Feinberg said. “The continued survival
of any business will depend upon an agile, data-centric
architecture that responds to the constant rate of change.”

Gartner recommends that data and analytics leaders talk with
senior business leaders about their critical business
priorities and explore how the following top trends can enable
them.

Trend No. 5: Graph

Graph analytics is a set of analytic techniques that allows
for the exploration of relationships between entities of
interest such as organizations, people and transactions.

The application of graph processing and graph DBMSs will grow
at 100 percent annually through 2022 to continuously
accelerate data preparation and enable more complex and
adaptive data science.

Graph data stores can efficiently model, explore and query
data with complex interrelationships across data silos, but
the need for specialized skills has limited their adoption to
date, according to Gartner.

Graph analytics will grow in the next few years due to the
need to ask complex questions across complex data, which is
not always practical or even possible at scale using SQL
queries.

https://www.gartner.com/en/newsroom/press-releases/2019-02-18-
gartner-identifies-top-10-data-and-analytics-technolo

https://www.gartner.com/en/newsroom/press-releases/2019-02-18-gartner-identifies-top-10-data-and-analytics-technolo
https://www.gartner.com/en/newsroom/press-releases/2019-02-18-gartner-identifies-top-10-data-and-analytics-technolo

