
SHACL – Shapes Constraint
Language in AllegroGraph
SHACL is a SHApe Constraint Language. It specifies a
vocabulary (using triples) to describe the shape that data
should have. The shape specifies things like the following
simple requirements:

How many triples with a specified subject and predicate
should be in the repository (e.g. at least 1, at most 1,
exactly 1).
What the nature of the object of a triple with a
specified subject and predicate should be (e.g. a
string, an integer, etc.)

See the specification for more examples.

SHACL allows you to validate that your data is conforming to
desired requirements.

For a given validation, the shapes are in the Shapes
Graph (where graph means a collection of triples) and the data
to be validated is in the Data Graph (again, a collection of
triples). The SHACL vocabularly describes how a given shape is
linked to targets in the data and also provides a way for a
Data Graph to specify the Shapes Graph that should be used for
validatation. The result of a SHACL validation describes
whether the Data Graph conforms to the Shapes Graph and, if it
does not, describes each of the failures.

Namespaces Used in this Document
Along with standard predefined namespaces (such
as rdf: for <http://www.w3.org/1999/02/22-rdf-syntax-
ns#> and rdfs: for <http://www.w3.org/2000/01/rdf-schema#>),
the following are used in code and examples below:

https://allegrograph.com/shacl-shapes-constraint-language-in-allegrograph/
https://allegrograph.com/shacl-shapes-constraint-language-in-allegrograph/
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/

prefix fr: <https://franz.com#>
prefix sh: <http://www.w3.org/ns/shacl#>
prefix franz: <https://franz.com/ns/allegrograph/6.6.0/>

A Simple Example
Suppose we have a Employee class and for each Employee
instance, there must be exactly one triple of the form

emp001 hasID "000-12-3456"

where the object is the employee’s ID Number, which has the
format is [3 digits]-[2 digits]-[4 digits].

This TriG file encapsulates the constraints above:

@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<https://franz.com#Shapes> {
 <https://franz.com#EmployeeShape>
 a sh:NodeShape ;
 sh:targetClass <https://franz.com#Employee> ;
 sh:property [
 sh:path <https://franz.com#hasID> ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:datatype xsd:string ;
 sh:pattern "^[0-9][0-9][0-9]-[0-9][0-9]-

[0-9][0-9][0-9][0-9]$" ;
] .
}

It says that for instances of fr:Employee (sh:targetClass
<https://franz.com#Employee>), there must be exactly 1 triple
with predicate (path) fr:hasID and the object of that triple
must be a string with pattern [3 digits]-[2 digits]-[4 digits]
(sh:pattern "^[0-9][0-9][0-9]-[0-9][0-9]-
[0-9][0-9][0-9][0-9]$").

This TriG file defines the Employee class and some employee
instances:

@prefix fr: <https://franz.com#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

{
 fr:Employee
 a rdfs:Class .
 fr:emp001
 a fr:Employee ;
 fr:hasID "000-12-3456" ;
 fr:hasID "000-77-3456" .
 fr:emp002
 a fr:Employee ;
 fr:hasID "00-56-3456" .
 fr:emp003
 a fr:Employee .
 }

Recalling the requirements above, we immediately see these
problems with these triples:

emp001 has two hasID triples.1.
The value of emp002‘s ID has the wrong format (two2.
leading digits rather than 3).
emp003 does not have a hasID triple.3.

We load the two TriG files into our repository, and end up
with the following triple set. Note that all the employee
triples use the default graph and the SHACL-related triples
use the graph <https://franz.com#Shapes> specified in the TriG
file.

Now we use agtool shacl-validate to validate our data:

bin/agtool shacl-validate --data-graph default --shapes-graph
https://franz.com#Shapes shacl-repo-1
Validation report: Does not conform
Created: 2019-06-27T10:24:10
Number of shapes graphs: 1
Number of data graphs: 1
Number of NodeShapes: 1
Number of focus nodes checked: 3

3 validation results:
Result:
 Focus node: <https://franz.com#emp001>
 Path: <https://franz.com#hasID>
 Source Shape: _:b7A1D241Ax1

 Constraint Component:
<http://www.w3.org/ns/shacl#MaxCountConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp002>
 Path: <https://franz.com#hasID>
 Value: "00-56-3456"
 Source Shape: _:b7A1D241Ax1

 Constraint Component:
<http://www.w3.org/ns/shacl#PatternConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Result:

 Focus node: <https://franz.com#emp003>
 Path: <https://franz.com#hasID>
 Source Shape: _:b7A1D241Ax1

 Constraint Component:
<http://www.w3.org/ns/shacl#MinCountConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

The validation fails with the problems listed above. The Focus
node is the subject of a triple that did not conform. Path is
the predicate or a property path (predicates in this
example). Value is the offending value. Source Shape is the
shape that established the constraint (you must look at the
shape triples to see exactly what Source Shape is requiring).

We revise our employee data with the following SPARQL
expresssion, deleting one of the emp001 triples, deleting
the emp002 triple and adding a new one with the correct
format, and adding an emp003 triple.

prefix fr: <https://franz.com#>

DELETE DATA {fr:emp002 fr:hasID "00-56-3456" } ;

INSERT DATA {fr:emp002 fr:hasID "000-14-1772" } ;

DELETE DATA {fr:emp001 fr:hasID "000-77-3456" } ;

INSERT DATA {fr:emp003 fr:hasID "000-54-9662" } ;

Now our employee triples are

We run the validation again and are told our data conforms:

% bin/agtool shacl-validate --data-graph default --shapes-
graph https://franz.com#Shapes shacl-repo-1

Validation report: Conforms
Created: 2019-06-27T10:32:19
Number of shapes graphs: 1
Number of data graphs: 1
Number of NodeShapes: 1
Number of focus nodes checked: 3

When we refer to this example in the remainder of this
document, it is to the un-updated (incorrect) triples.

SHACL API
The example above illustrates the SHACL steps:

Have a data set with triples that should conform to a1.
shape
Have SHACL triples that express the desired shape2.
Run SHACL validation to determine if the data conforms3.

Note that SHACL validation does not modify the data being
validated. Once you have the conformance report, you must
modify the data to fix the conformance problems and then rerun
the validation test.

The main entry point to the API is agtool shacl-validate. It
takes various options and has several output choices. Online
help for agtool shacl-validate is displayed by running agtool
shacl-validate --help.

In order to validate triples, the system must know:

What tripes to examine1.
What rules (SHACL triples) to use2.
What to do with the results3.

Specifying what triples to examine
Two arguments to agtool shacl-validate specify the triples to
evaluate: --data-graph and --focus-node. Each can be specified

multiple times.

The --data-graph argument specifies the graph value for
triples to be examined. Its value must be an IRI
or default. Only triples in the specified graphs will be
examined. default specifies the default graph. It is
also the default value of the --data-graph argument. If
no value is specified for --data-graph, only triples in
the default graph will be examined. If a value for --
data-graph is specified, triples in the default graph
will only be examined if --data-graph default is also
specified.
The --focus-node argument specifies IRIs which are
subjects of triples. If this argument is specified, only
triples with these subjects will be examined. To be
examined, triples must also have graph values specified
by --data-graph arguments. --focus-node does not have a
default value. If unspecified, all triples in the
specified data graphs will be examined. This argument
can be specified multiple times.

The --data-graph argument was used in the simple
example above. Here is how the --focus-node argument can be
used to restrict validation to triples with
subjects <https://franz.com#emp002>and <https://franz.com#emp0
03> and to ignore triples with
subject <https://franz.com#emp001> (applying agtool shacl-
validate to the orignal non-conformant data):

% bin/agtool shacl-validate --data-graph default \
 --shapes-graph https://franz.com#Shapes \
 --focus-node https://franz.com#emp003 \
 --focus-node https://franz.com#emp002 shacl-repo-1
Validation report: Does not conform
Created: 2019-06-27T11:37:49
Number of shapes graphs: 1
Number of data graphs: 1
Number of NodeShapes: 1
Number of focus nodes checked: 2

https://franz.com/agraph/support/documentation/current/shacl.html#simple-example
https://franz.com/agraph/support/documentation/current/shacl.html#simple-example

2 validation results:
Result:
 Focus node: <https://franz.com#emp003>
 Path: <https://franz.com#hasID>
 Source Shape: _:b7A1D241Ax2

 Constraint Component:
<http://www.w3.org/ns/shacl#MinCountConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp002>
 Path: <https://franz.com#hasID>
 Value: "00-56-3456"
 Source Shape: _:b7A1D241Ax2

 Constraint Component:
<http://www.w3.org/ns/shacl#PatternConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Specifying What Shape Triples to Use
Two arguments to agtool shacl-validate, analogous to the two
arguments for data described above, specify Shape triples to
use. Further, following the SHACL spec, data triples with
predicate <http://www.w3.org/ns/shacl#shapeGraph> also specify
graphs containing Shape triples to be used.

The arguments to agtool shacl-validate are the following. Each
may be specified multiple times.

The --shapes-graph argument specifies the graph value
for shape triples to be used for SHACL validation. Its
value must be an IRI or default. default specifies the
default graph. The --shapes-graph argument has no
default value. If unspecified, graphs specified by data
triples with
the <http://www.w3.org/ns/shacl#shapeGraph> predicate
will be used (they are used whether or not --shapes-
graph has a value). If --shapes-graph has no value and
there are no data triples with

the <http://www.w3.org/ns/shacl#shapeGraph> predicate,
the data graphs are used for shape graphs. (Shape
triples have a known format and so can be identified
among the data triples.)
The --shape argument specifies IRIs which are subjects
of shape nodes. If this argument is specified, only
shape triples with these subjects and subsiduary triples
to these will be used for validation. To be included,
the triples must also have graph values specified by
the --shapes-graph arguments or specified by a data
triple with
the <http://www.w3.org/ns/shacl#shapeGraph> predicate. -
-shape does not have a default value. If unspecified,
all shapes in the shapes graphs will be used.

Other APIs
There is a lisp API using the function validate-data-graph,
defined next:

validate-data-graphdb &key data-graph-iri/s shapes-graph-
iri/s shape/s focus-node/s verbose conformance-only?
function

Perform SHACL validation and return a validation-report
structure.

The validation uses data-graph-iri/s to construct the
dataGraph. This can be a single IRI, a list of IRIs or NIL, in
which case the default graph will be used. The shapesGraph can
be specified using the shapes-graph-iri/s parameter which can
also be a single IRI or a list of IRIs. If shape-graph-
iri/s is not specified, the SHACL processor will first look to
create the shapesGraph by finding triples with the
predicate sh:shapeGraph in the dataGraph. If there are no such
triples, then the shapesGraph will be assumed to be the same
as the dataGraph.

https://franz.com/agraph/support/documentation/current/shacl.html#validate-data-graph

Validation can be restricted to particular shapes and focus
nodes using the shape/s and focus-node/s parameters. Each of
these can be an IRI or list of IRIs.

If conformance-only? is true, then validation will stop as
soon as any validation failures are detected.

You can use validation-report-conforms-p to see whether or not
the dataGraph conforms to the shapesGraph (possibly restricted
to just particular shape/s and focus-node/s).

The function validation-report-conforms-p returns t or nil as
the validation struct returned by validate-data-graph does or
does not conform.

validation-report-conforms-preport
function

Returns t or nil to indicate whether or not REPORT (a
validation-report struct) indicates that validation conformed.
There is also a REST API. See HTTP reference.

Validation Output
The simple example above and the SHACL examples below show
output from agtool validate-shacl. There are various output
formats, specified by the --output option. Those examples use
the plain format, which means printing results descriptively.
Other choices include json, trig, trix, turtle, nquads, rdf-
n3, rdf/xml, and ntriples. Here are the simple
example (uncorrected) results using ntriples output:

% bin/agtool shacl-validate --output ntriples --data-graph
default --shapes-graph https://franz.com#Shapes shacl-repo-1

_:b271983AAx1
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/ns/shacl#ValidationReport> .

https://franz.com/agraph/support/documentation/current/shacl.html#validation-report-conforms-p
https://franz.com/agraph/support/documentation/current/shacl.html#validation-report-conforms-p
https://franz.com/agraph/support/documentation/current/shacl.html#validate-data-graph
https://franz.com/agraph/support/documentation/current/http-reference.html
https://franz.com/agraph/support/documentation/current/shacl.html#simple-example
https://franz.com/agraph/support/documentation/current/shacl.html#shacl-examples
https://franz.com/agraph/support/documentation/current/shacl.html#simple-example
https://franz.com/agraph/support/documentation/current/shacl.html#simple-example

_:b271983AAx1 <http://www.w3.org/ns/shacl#conforms>
"false"^^<http://www.w3.org/2001/XMLSchema#boolean> .
_:b271983AAx1 <http://purl.org/dc/terms/created>
"2019-07-01T18:26:03"^^<http://www.w3.org/2001/XMLSchema#dateT
ime> .
_:b271983AAx1 <http://www.w3.org/ns/shacl#result>
_:b271983AAx2 .
_:b271983AAx2
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/ns/shacl#ValidationResult> .
_:b271983AAx2 <http://www.w3.org/ns/shacl#focusNode>
<https://franz.com#emp001> .
_:b271983AAx2 <http://www.w3.org/ns/shacl#resultPath>
<https://franz.com#hasID> .
_:b271983AAx2 <http://www.w3.org/ns/shacl#resultSeverity>
<http://www.w3.org/ns/shacl#Violation> .
_:b271983AAx2
<http://www.w3.org/ns/shacl#sourceConstraintComponent>
<http://www.w3.org/ns/shacl#MaxCountConstraintComponent> .
_:b271983AAx2 <http://www.w3.org/ns/shacl#sourceShape>
_:b271983AAx3 .
_:b271983AAx1 <http://www.w3.org/ns/shacl#result>
_:b271983AAx4 .
_:b271983AAx4
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/ns/shacl#ValidationResult> .
_:b271983AAx4 <http://www.w3.org/ns/shacl#focusNode>
<https://franz.com#emp002> .
_:b271983AAx4 <http://www.w3.org/ns/shacl#resultPath>
<https://franz.com#hasID> .
_:b271983AAx4 <http://www.w3.org/ns/shacl#resultSeverity>
<http://www.w3.org/ns/shacl#Violation> .
_:b271983AAx4
<http://www.w3.org/ns/shacl#sourceConstraintComponent>
<http://www.w3.org/ns/shacl#PatternConstraintComponent> .
_:b271983AAx4 <http://www.w3.org/ns/shacl#sourceShape>
_:b271983AAx3 .
_:b271983AAx4 <http://www.w3.org/ns/shacl#value> "00-56-3456"
.
_:b271983AAx1 <http://www.w3.org/ns/shacl#result>
_:b271983AAx5 .

_:b271983AAx5
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/ns/shacl#ValidationResult> .
_:b271983AAx5 <http://www.w3.org/ns/shacl#focusNode>
<https://franz.com#emp003> .
_:b271983AAx5 <http://www.w3.org/ns/shacl#resultPath>
<https://franz.com#hasID> .
_:b271983AAx5 <http://www.w3.org/ns/shacl#resultSeverity>
<http://www.w3.org/ns/shacl#Violation> .
_:b271983AAx5
<http://www.w3.org/ns/shacl#sourceConstraintComponent>
<http://www.w3.org/ns/shacl#MinCountConstraintComponent> .
_:b271983AAx5 <http://www.w3.org/ns/shacl#sourceShape>
_:b271983AAx3 .

You can have the triples added to the repository by specifying
the --add-to-repo option true.

In the plain output information is provided about how many
data graphs are examined, how many shape graphs were specified
and node shapes are found, and how many focus nodes are
checked. If zero focus nodes are checked, that is likely not
what you want and something has gone wrong. Here we mis-spell
the name of the shape graph (https://franz.com#shapes instead
of https://franz.com#Shapes) and get 0 focus nodes checked:

% bin/agtool shacl-validate --data-graph default --shapes-
graph https://franz.com#shapes shacl-repo-1
Validation report: Conforms
Created: 2019-06-28T10:34:22
Number of shapes graphs: 1
Number of data graphs: 1
Number of NodeShapes: 0
Number of focus nodes checked: 0

SPARQL integration
There are two sets of magic properties defined: one checks for
basic conformance and the other produces validation reports as
triples:

?valid franz:shaclConforms (?dataGraph [?shapesGraph]
)
?valid franz:shaclFocusNodeConforms1 (?dataGraph
?nodeOrNodeCollection)
?valid franz:shaclFocusNodeConforms2 (?dataGraph
?shapesGraph ?nodeOrNodeCollection)
?valid franz:shaclShapeConforms1 (?dataGraph
?shapeOrShapeCollection [?nodeOrNodeCollection])
?valid franz:shaclShapeConforms2 (?dataGraph
?shapesGraph ?shapeOrShapeCollection [
?nodeOrNodeCollection])
(?s ?p ?o) franz:shaclValidationReport (?dataGraph [
?shapesGraph])
(?s ?p ?o) franz:shaclFocusNodeValidationReport1 (
?dataGraph ?nodeOrNodeCollection) .
(?s ?p ?o) franz:shaclFocusNodeValidationReport2 (
?dataGraph ?shapesGraph ?nodeOrNodeCollection) .
(?s ?p ?o) franz:shaclShapeValidationReport1 (
?dataGraph ?shapeOrShapeCollection [
?nodeOrNodeCollection]) .
(?s ?p ?o) franz:shaclShapeValidationReport2 (
?dataGraph ?shapesGraph ?shapeOrShapeCollection [
?nodeOrNodeCollection]) .

In all of the above ?dataGraph and ?shapesGraph can be IRIs,
the literal ‘default’, or a variable that is bound to a SPARQL
collection (list or set) that was previously created with a
function
like https://franz.com/ns/allegrograph/6.5.0/fn#makeSPARQLList
 or https://franz.com/ns/allegrograph/6.5.0/fn#lookupRdfList.
If a collection is used, then the SHACL processor will create
a temporary RDF merge of all of the graphs in it to produce
the data graph or the shapes graph.

Similarly, ?shapeOrShapeCollection and ?nodeOrNodeCollection c
an be bound to an IRI or a SPARQL collection. If a collection
is used, then it must be bound to a list of IRIs. The SHACL

https://franz.com/ns/allegrograph/6.5.0/fn#makeSPARQLList
https://franz.com/ns/allegrograph/6.5.0/fn#lookupRdfList

processor will restrict validation to the shape(s) and focus
node(s) (i.e. nodes that should be validated) specified.

The shapesGraph argument is optional in both of
the shaclConforms and shaclValidationReport magic properties.
If the shapesGraph is not specified, then the shapesGraph will
be created by following triples in the dataGraph that use
the sh:shapesGraph predicate. If there are no such triples,
then the shapesGraph will be the same as the dataGraph.

For example, the following SPARQL expression

construct { ?s ?p ?o } where {
 # form a collection of focusNodes
bind(<https://franz.com/ns/allegrograph/6.6.0/fn#makeSPARQLLis
t>(
 <http://Journal1/1942/Article25>,
 <http://Journal1/1943>) as ?nodes)

 (?s ?p ?o)
<https://franz.com/ns/allegrograph/6.6.0/shaclShapeValidationR
eport1>
 ('default' <ex://franz.com/documentShape1> ?nodes) .
}

would use the default graph as the Data Graph and the Shapes
Graph and then validate two focus nodes against the
shape <ex://franz.com/documentShape1>.

SHACL Example
We build on our simple example above. Start with a fresh
repository so triples from the simple example do not interfere
with this example.

We start with a TriG file with various shapes defined on some
classes.

@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix fr: <https://franz.com#> .

https://franz.com/agraph/support/documentation/current/shacl.html#simple-example

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<https://franz.com#ShapesGraph> {
fr:EmployeeShape
 a sh:NodeShape ;
 sh:targetClass fr:Employee ;
 sh:property [
 ## Every employee must have exactly one ID
 sh:path fr:hasID ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:datatype xsd:string ;
 sh:pattern "^[0-9][0-9][0-9]-[0-9][0-9]-

[0-9][0-9][0-9][0-9]$" ;
] ;
 sh:property [
 ## Every employee is a manager or a worker
 sh:path fr:employeeType ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:datatype xsd:string ;
 sh:in ("Manager" "Worker") ;
] ;
 sh:property [
 ## If birthyear supplied, must be 2001 or before
 sh:path fr:birthYear ;
 sh:maxInclusive 2001 ;
 sh:datatype xsd:integer ;
] ;
 sh:property [
 ## Must have a title, may have more than one
 sh:path fr:hasTitle ;
 sh:datatype xsd:string ;
 sh:minCount 1 ;
] ;

 sh:or (
 ## The President does not have a supervisor
 [
 sh:path fr:hasTitle ;

 sh:hasValue "President" ;
]
 [
 ## Must have a supervisor
 sh:path fr:hasSupervisor ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:class fr:Employee ;
]
) ;

 sh:or (
 # Every employee must either have a wage or a salary
 [
 sh:path fr:hasSalary ;
 sh:datatype xsd:integer ;
 sh:minInclusive 3000 ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
]
 [
 sh:path fr:hasWage ;
 sh:datatype xsd:decimal ;
 sh:minExclusive 15.00 ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
]
)
 .
 }

This file says the following about instances of the
class fr:Employee:

Every employee must have exactly one ID (object1.
of fr:hasID), a string of the form NNN-NN-NNNN where
the Ns are digits (this is the simple example
requirement).
Every employee must have exactly2.
one fr:employeeType triple with value either “Manager”
or “Worker”.

Employees may have a fr:birthYear triple, and if so, the3.
value must be 2001 or earlier.
Employees must have a fr:hasTitle and may have more than4.
one.
All employees except the one with title “President” must5.
have a supervisor (specified with fr:hasSupervisor).
Every employee must either have a wage (a decimal6.
specifying hourly pay, greater than 15.00) or a salary
(an integer specifying monthly pay, greater than or
equal to 3000).

Here is some employee data:

@prefix fr: <https://franz.com#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

{
 fr:Employee
 a rdfs:Class .

 fr:emp001
 a fr:Employee ;
 fr:hasID "000-12-3456" ;
 fr:hasTitle "President" ;
 fr:employeeType "Manager" ;
 fr:birthYear "1953"^^xsd:integer ;
 fr:hasSalary "10000"^^xsd:integer .

 fr:emp002
 a fr:Employee ;
 fr:hasID "000-56-3456" ;
 fr:hasTitle "Foreman" ;
 fr:employeeType "Worker" ;
 fr:birthYear "1966"^^xsd:integer ;
 fr:hasSupervisor fr:emp003 ;
 fr:hasWage "20.20"^^xsd:decimal .

 fr:emp003
 a fr:Employee ;

 fr:hasID "000-77-3232" ;
 fr:hasTitle "Production Manager" ;
 fr:employeeType "Manager" ;
 fr:birthYear "1968"^^xsd:integer ;
 fr:hasSupervisor fr:emp001 ;
 fr:hasSalary "4000"^^xsd:integer .

 fr:emp004
 a fr:Employee ;
 fr:hasID "000-88-3456" ;
 fr:hasTitle "Fitter" ;
 fr:employeeType "Worker" ;
 fr:birthYear "1979"^^xsd:integer ;
 fr:hasSupervisor fr:emp002 ;
 fr:hasWage "17.20"^^xsd:decimal .

 fr:emp005
 a fr:Employee ;
 fr:hasID "000-99-3492" ;
 fr:hasTitle "Fitter" ;
 fr:employeeType "Worker" ;
 fr:birthYear "2000"^^xsd:integer ;
 fr:hasWage "17.20"^^xsd:decimal .

 fr:emp006
 a fr:Employee ;
 fr:hasID "000-78-5592" ;
 fr:hasTitle "Filer" ;
 fr:employeeType "Intern" ;
 fr:birthYear "2003"^^xsd:integer ;
 fr:hasSupervisor fr:emp002 ;
 fr:hasWage "14.20"^^xsd:decimal .

 fr:emp007
 a fr:Employee ;
 fr:hasID "000-77-3232" ;
 fr:hasTitle "Sales Manager" ;
 fr:hasTitle "Vice President" ;
 fr:employeeType "Manager" ;
 fr:birthYear "1962"^^xsd:integer ;
 fr:hasSupervisor fr:emp001 ;

 fr:hasSalary "7000"^^xsd:integer .
 }

Comparing these data with the requirements, we see these
problems:

emp005 does not have a supervisor.1.
emp006 is pretty messed up, with (1) employeeType2.
“Intern”, not an allowed value, (2) a birthYear (2003)
later than the required maximum of 2001, and (3) a wage
(14.40) less than the minimum (15.00).

Otherwise the data seems OK.

We load these two TriG files into an emply repository (which
we have named shacl-repo-2). We specify the default graph for
the data and the https://franz.com#ShapesGraph for the shapes.
(Though not required, it is a good idea to specify a graph for
shape data as it makes it easy to delete and reload shapes
while developing.) We have 101 triples, 49 data and 52 shape.
Then we run agtool shacl-validate:

% bin/agtool shacl-validate --shapes-graph
https://franz.com#ShapesGraph --data-graph default shacl-
repo-2

There are four violations, as expected, one for emp005 and
three for emp006.

Validation report: Does not conform
Created: 2019-07-03T11:35:27
Number of shapes graphs: 1
Number of data graphs: 1
Number of NodeShapes: 1
Number of focus nodes checked: 7

4 validation results:
Result:
 Focus node: <https://franz.com#emp005>
 Value: <https://franz.com#emp005>
 Source Shape: <https://franz.com#EmployeeShape>

 Constraint Component:
<https://www.w3.org/ns/shacl#OrConstraintComponent>
 Severity: <https://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp006>
 Path: <https://franz.com#employeeType>
 Value: "Intern"
 Source Shape: _:b19D062B9x221

 Constraint Component:
<http://www.w3.org/ns/shacl#InConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp006>
 Path: <https://franz.com#birthYear>

 Value:
"2003"^^<http://www.w3.org/2001/XMLSchema#integer>
 Source Shape: _:b19D062B9x225

 Constraint Component:
<http://www.w3.org/ns/shacl#MaxInclusiveConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp006>
 Value: <https://franz.com#emp006>
 Source Shape: <https://franz.com#EmployeeShape>

 Constraint Component:
<http://www.w3.org/ns/shacl#OrConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Fixing the data is left as an exercise for the reader.

