1

Gartner Identifies Top 10 Data and Analytics Technology Trends for 2019

According to Donald Feinberg, vice president and distinguished analyst at Gartner, the very challenge created by digital disruption — too much data — has also created an unprecedented opportunity. The vast amount of data, together with increasingly powerful processing capabilities enabled by the cloud, means it is now possible to train and execute algorithms at the large scale necessary to finally realize the full potential of AI.

“The size, complexity, distributed nature of data, speed of action and the continuous intelligence required by digital business means that rigid and centralized architectures and tools break down,” Mr. Feinberg said. “The continued survival of any business will depend upon an agile, data-centric architecture that responds to the constant rate of change.”

Gartner recommends that data and analytics leaders talk with senior business leaders about their critical business priorities and explore how the following top trends can enable them.

 

Trend No. 5: Graph

Graph analytics is a set of analytic techniques that allows for the exploration of relationships between entities of interest such as organizations, people and transactions.

The application of graph processing and graph DBMSs will grow at 100 percent annually through 2022 to continuously accelerate data preparation and enable more complex and adaptive data science.

Graph data stores can efficiently model, explore and query data with complex interrelationships across data silos, but the need for specialized skills has limited their adoption to date, according to Gartner.

Graph analytics will grow in the next few years due to the need to ask complex questions across complex data, which is not always practical or even possible at scale using SQL queries.

https://www.gartner.com/en/newsroom/press-releases/2019-02-18-gartner-identifies-top-10-data-and-analytics-technolo




What is the Answer to AI Model Risk Management?

Algorithm-XLab – March 2019

Franz CEO Dr. Jans Aasman Explains how to manage AI Modelling Risks.

AI model risk management has moved to the forefront of contemporary concerns for statistical Artificial Intelligence, perhaps even displacing the notion of ethics in this regard because of the immediate, undesirable repercussions of tenuous machine learning and deep learning models.

AI model risk management requires taking steps to ensure that the models used in artificial applications produce results that are unbiased, equitable, and repeatable.

The objective is to ensure that given the same inputs, they produce the same outputs.

If organizations cannot prove how they got the results of AI risk models, or have results that are discriminatory, they are subject to regulatory scrutiny and penalties.

Strict regulations throughout the financial services industry in the United Statesand Europe require governing, validating, re-validating, and demonstrating the transparency of models for financial products.

There’s a growing cry for these standards in other heavily regulated industries such as healthcare, while the burgeoning Fair, Accountable, Transparent movementtypifies the horizontal demand to account for machine learning models’ results.

AI model risk management is particularly critical in finance.

Financial organizations must be able to demonstrate how they derived the offering of any financial product or service for specific customers.

When deploying AI risk models for these purposes, they must ensure they can explain (to customers and regulators) the results that determined those offers.

Read the full article at Algorithm-XLab.




Why Is JSON-LD Important To Businesses?

Forbes – February 2019

Although you may not have heard of JavaScript Object Notation Linked Data (JSON-LD), it is already affecting your business. Search engine giant Google has mentioned JSON-LD as a preferred means of adding structured data to webpages to make them considerably easier to parse for more accurate search engine results. The Google use case is indicative of the larger capacity for JSON-LD to increase web traffic for sites and better guide users to the results they want.

Expectations are high for JSON-LD, and with good reason. It effectively delivers the many benefits of JSON, a lightweight data interchange format, into the linked data world. Linked data is the technological approach supporting the World Wide Web and one of the most effective means of sharing data ever devised.

In addition, the growing number of enterprise knowledge graphs fully exploit the potential of JSON-LD as it enables organizations to readily access data stored in document formats and a variety of semi-structured and unstructured data as well. By using this technology to link internal and external data, knowledge graphs exemplify the linked data approach underpinning the growing adoption of JSON-LD — and the demonstrable, recurring business value that linked data consistently provides.

Read the full article at Forbes.




Unraveling the Quandary of Access Layer versus Storage Layer Security

InfoSecurity – February 2019

Dr. Jans Aasman was quoted in this article about how AllegroGraph’s Triple Attributes provide Storage Layer Security.

With horizontal standards such as the General Data Protection Regulation (GDPR) and vertical mandates like the Fair Credit Reporting Act increasing in scope and number, information security is impacted by regulatory compliance more than ever.

Organizations frequently decide between concentrating protection at the access layer via role-based security filtering, or at the storage layer with methods like encryption, masking, and tokenization.

The argument is that the former underpins data governance policy and regulatory compliance by restricting data access according to department or organizational role. However, the latter’s perceived as providing more granular security implemented at the data layer.

 

A hybrid of access based security and security at the data layer—implemented by triple attributes—can counteract the weakness of each approach with the other’s strength, resulting in information security that Franz CEO Jans Aasman characterized as “fine-grained and flexible enough” for any regulatory requirements or security model.

 

The security provided by this semantic technology is considerably enhanced by the addition of key-value pairs as JSON objects, which can be arbitrarily assigned to triples within databases. These key-value pairs provide a second security mechanism “embedded in the storage, so you cannot cheat,” Aasman remarked.

 

When implementing HIPPA standards with triple attributes, “even if you’re a doctor, you can only see a patient record if all your other attributes are okay,” Aasman mentioned.

 

“We’re talking about a very flexible mechanism where we can add any combination of key-value pairs to any triples, and have a very flexible language to specify how to use that to create flexible security models,” Aasman said.

 

Read the full article at InfoSecurity.




Going Beyond Blockchain with Directed Acyclic Graphs (DAG)

Crypto Slate – January 2019

by Dr. Jans Aasman, CEO, Franz Inc.

If organizations could only augment blockchain’s strengths—its immutability, security, and decentralization—while addressing its latency and scalability issues, it could become the vaunted enterprise tool it was initially intended. That day will soon come courtesy of Directed Acyclic Graphs (DAGs).

Blockchain’s premise is straightforward, utilitarian, and more lucrative than that of any other new technology to recently emerge. This distributed ledger system promises near real-time updates of transactions between remote parties for trustworthy, impenetrable peer-to-peer networks, eliminating the need (and expense) of middlemen.

Read the full article at Crypto Slate.




Semantic Web and Semantic Technology Trends in 2019

Dataversity – January 2019

What to expect of Semantic Web and other Semantic Technologies in 2019? Quite a bit. DATAVERSITY engaged with leaders in the space to get their thoughts on how Semantic Technologies will have an impact on multiple areas.

Dr. Jans Aasman, CEO of Franz Inc. was quoted several times in the article:

Among the semantic-driven AI ventures next year will be those that relate to the healthcare space, says Dr. Jans Aasman, CEO of Semantic Web technology company Franz, Inc:

“In the last two years some of the technologies were starting to get used in production,” he says. “In 2019 we will see a ramp-up of the number of AI applications that will help save lives by providing early warning signs for impending diseases. Some diseases will be predicted years in advance by using genetic patient data to understand future biological issues, like the likelihood of cancerous mutations — and start preventive therapies before the disease takes hold.”

 

If that’s not enough, how about digital immortality via AI Knowledge Graphs, where an interactive voice system will bring public figures in contact with anyone in the real world? “We’ll see the first examples of Digital Immortality in 2019 in the form of AI Digital Personas for public figures,” says Aasman, whose company is a partner in the Noam Chomsky Knowledge Graph:

“The combination of Artificial Intelligence and Semantic Knowledge Graphs will be used to transform the works of scientists, technologists, politicians, and scholars like Noam Chomsky into an interactive response system that uses the person’s actual voice to answer questions,” he comments.

“AI Digital Personas will dynamically link information from various sources — such as books, research papers, notes and media interviews — and turn the disparate information into a knowledge system that people can interact with digitally.” These AI Digital Personas could also be used while the person is still alive to broaden the accessibility of their expertise.

 

On the point of the future of graph visualization apps, Aasman notes that:

“Most graph visualization applications show network diagrams in only two dimensions, but it is unnatural to manipulate graphs on a flat computer screen in 2D. Modern R virtual reality will add at least two dimensions to graph visualization, which will create a more natural way to manipulate complex graphs by incorporating more depth and temporal unfolding to understand information within a time perspective.”

 

Read the full article at Dataversity.




2019 Trends In The Internet Of Things: The Makings Of An Intelligent IoT

AI Business – December 2018

2019 will be a crucial year for the Internet of Things for two reasons. Firstly, many of the initial predictions for this application of big data prognosticated a future whereby at the start of the next decade there would be billions of connected devices all simultaneously producing sensor data. The IoT is just a year away from making good on those claims.

Dr. Jans Aasman, Franz’s CEO was quoted by the author:

The IIoT is the evolution of the IoT that will give it meaning and help it actualize the number of connected devices forecast for the start of the next decade. The IIoT will encompass smart cities, edge devices, wearables, deep learning and classic machine learning alongside lesser acknowledged elements of AI in a basic paradigm in which, according to Franz CEO Jans Aasman, “you can look at the past and learn from certain situations what’s likely going to happen. You feed it in your [IoT] system and it does better… then you look at what actually happened and it goes back in your machine learning system. That will be your feedback loop.”

Although deep learning relies on many of the same concepts as traditional machine learning, with “deep learning it’s just that you do it with more computers and more intermediate layers,” Aasman said, which results in higher accuracy levels.

The feedback mechanism described by Aasman has such a tremendous capacity to reform data-driven businesses because of the speed of the iterations provided by low latency IIoT data.

One of the critical learning facets the latter produces involves optimization, such as determining the best way to optimize route deliveries encompassing a host of factors based on dedicated rules about them. “There’s no way in [Hades] that a machine learning system would be able to do the complex scheduling of 6,000 people,” Aasman declared. “That’s a really complicated thing where you have to think of every factor for every person.”

However, constraint systems utilizing multi-step reasoning can regularly complete such tasks and the optimization activities for smart cities. Aasman commented that for smart cities, semantic inferencing systems can incorporate data from traffic patterns and stop lights, weather predictions, the time of year, and data about specific businesses and their customers to devise rules for optimal event scheduling. Once the events actually take place, their results—as determined by KPIs—can be analyzed with machine learning to issue future predictions about how to better those results in what Aasman called “a beautiful feedback loop between a machine learning system and a rules-based system.”

In almost all of the examples discussed above, the IIoT incorporates cognitive computing “so humans can take action for better business results,” Aasman acknowledged. The means by which these advantages are created are practically limitless.

 

Read the Full Article at AI Business.