No-Code Queries Can
Accelerate Al and Data
Analytics

By Dr. Jans Aasman, CEO

The low-code, no-code methodology is becoming highly sought-
after throughout the modern IT ecosystem—and with good reason.
Options that minimize manually writing code capitalize on the
self-service, automation idiom that’s imperative in a world in
which working remotely and doing more with 1less keeps
organizations in business.

Most codeless or low-code approaches avoid the need for
writing language-specific code and replace it with a visual
approach in which users simply manipulate on-screen objects
via a drag-and-drop, point-and-click interface to automate
code generation. The intuitive ease of this approach — which
is responsible for new standards of efficiency and
democratization of no-code development — has now extended to
no-code query writing.

No-code querying provides two unassailable advantages to the
enterprise. First, it considerably expedites what is otherwise
a time-consuming ordeal, thereby accelerating data analytics
and AI-driven applications and second, it can help
organizations overcome the talent shortage of developers and
knowledge engineers. Moreover, it does so by furnishing all
the above benefits that make codeless and low-code options
mandatory for success.

Read the full article at DZone.
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Data-Centric Architecture
Forum — DCAF 2021

Data and the subsequent knowledge derived from information are
the most valuable strategic asset an organization possesses.
Despite the abundance of sophisticated technology
developments, most organizations don’t have disciplines or a
plan to enable data-centric principles.

DCAF 2021 will help provide clarity.

Our overarching theme for this conference is to make it REAL.
Real in the sense that others are becoming data-centric, it is
achievable, and you are not alone in your efforts.

Join us in understanding how data as an open, centralized
resource outlives any application. Once globally integrated by
sharing a common meaning, internal and external data can be
readily integrated, unlike the traditional “application-
centric” mindset predominantly used in systems development.

The compounding problem is these application systems each have
their own completely idiosyncratic data models. The net result
is that after a few decades, hundreds or thousands of
applications implemented have given origin to a segregated
family of disparate data silos. Integration debt rises and
unsustainable architectural complexity abounds with every
application bought, developed, or rented (SaaS).

Becoming data-centric will improve data characteristics of
findability, accessibility, interoperability, and re-usability
(FAIR principles), thereby allowing data to be exported into
any needed format with virtually free integration.\
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Dr. Jans Aasman to present -
Franz’s approach to Entity Event
Data Modeling for Enterprise
Knowledge Fabrics

Dr. Jans Aasman, CEQ, Franz Inc.

Text Analytics Forum 2020 -
KMWorld Connect

Join us November 17, 2020 — Text Analytics has the ability to
add depth, meaning, and intelligence to any organization’s
most under-utilized resource — text. Through text analytics,
enterprises can unlock a wealth of information that would not
otherwise be available. Join us as we explore the power of
text analytics to provide relevant, valuable, and actionable
data for enterprises of all kinds.

Jans Aasman to present — Analyzing Spoken Conversations for
Real-Time Decision Support in Mission-Critical Applications

November 17, 2020 at 2PM Eastern
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Sharing Ontologies Globally
To Speed Science And
Healthcare Solutions —
OntoPortal

International Ontology Sharing Is Becoming A Reality

A consortium of researchers recently formed an organization
dedicated to standardizing how scientists define their
ontologies, which are essential for retrieving datasets as
well as understanding and reproducing research. The group
called OntoPortal Alliance is creating a public repository of
internationally shared domain-specific ontologies. ALl the
repositories will be managed with a common OntoPortal
appliance that has been tested with AllegroGraph Semantic
Knowledge Graph software. This enables any OntoPortal adopter
to get all the power, features, maintainability, and support
benefits that come from using a widely adopted, state-of-the-
art semantic knowledge graph database.

Read the full article at HealthIT Outcomes —

As Dr. Jans Aasman, CEO of Franz Inc. explains, “When building
a Knowledge Graph as your enterprise’s single source of truth,
it’s critical to include ontologies and taxonomies. AI
applications and complex reasoning analytics require
information from both databases and knowledge bases that
contain domain information, taxonomies, and ontologies to
solve complex questions. To make this possible, we developed a
novel hybrid sharding technology called FedShard, which
facilitates the combination of data and knowledge required by
applications like Montefiore’s PALM. But this approach is not
unique or specific to Healthcare, it is applicable in many
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other industries, which 1s why we are excited about
OntoPortal’s plans to bring sharing of domain ontologies to a
broad audience.”

Knowledge Graphs: A Single
Source of Truth for the
Enterprise
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The notion of a “single source of
truth” for the enterprise has been
the proverbial moving goalpost for
generations of CIOs, only to be
waylaid by brittle technology and
unending legacy systems. Truth-
seeking visions rebuffed by
technological trends have
continuously confounded business
units trying to achieve growth and market penetration. But
technology innovation has finally led us to a point where CIOs
can now deliver that truth.

Dr. Jans Aasman, CEQ, Franz Inc.

Graphing the Truth

Knowledge graphs possess the power to deliver a single source
of truth by linking together any assortment of data sources
required, standardizing their diversity of data elements, and
eliminating silos. They support the most advanced analytics
options and decentralized transactions, which is why they’re
now deployed as systems of records for some of the most
significant, mission-critical use cases affecting our
population.

Because they scale to include almost any number of
applications — and link to other knowledge graphs as well -
these repositories are the ideal solution for real-time
information necessary to inform business users’ performances
with concrete, data-supported facts. Most importantly, users
can get an exhaustive array of touchpoints pertaining to any
customer, product, or interaction with an organization from
the knowledge graph, making it a single source of truth.

Read the full article at Dataversity.
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Using Microsoft Power BI with
AllegroGraph

There are multiple methods to integrate AllegroGraph SPARQL
results into Microsoft Power BI. In this document we describe
two best practices to automate queries and refresh results if
you have a production AllegroGraph database with new streaming
data:

The first method uses Python scripts to feed Power BI. The
second method issues SPARQL queries directly from Power BI
using POST requests.

Method 1: Python Script:

Assuming you know Python and have it installed locally, this
is definitely the easiest way to incorporate SPARQL results
into Power BI. The basic idea of the method is as follows:
First, the Python script enables a connection to your desired
AllegroGraph repository. Then we utilize AllegroGraph’s
Python API within our script to run a SPARQL query and return
it as a Pandas dataframe. When running this script within
Power BI Desktop, the Python scripting service recognizes all
unique dataframes created, and allows you to import the
dataframe into Power BI as a table, which can then be used to
create visualizations.

Requirements:

1. You must have the AllegroGraph Python API installed. If
you do not, installation instructions are here:
https://franz.com/agraph/support/documentation/current/p
ython/install.html

2. Python scripting must be enabled in Power BI Desktop.
Instructions to do SO are here:
https://docs.microsoft.com/en-us/power-bi/connect-data/d
esktop-python-scripts
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a) As mentioned in the article, pandas and matplotlib
must be installed. This can be done with ‘pip install
pandas’ and ‘pip install matplotlib’ in your terminal.

The Process:

Once these requirements have been met, create a Python file
with whatever script editor you usually use. The following
code will create a connection to your desired repository. For
this example, we will be using the Kennedy dataset that is
available with the AllegroGraph distribution (See the
‘Tutorial’ directory). Load the Kennedy.ntriples file into
your running AllegroGraph. (Replace the ‘****’ in the code
with your corresponding username and password.)

#the necessary imports

import os
from franz.openrdf.connect import ag connect
from franz.openrdf.query.query import QuerylLanguage

import pandas as pd

#connect to your agraph repository

def setup env var(var name, value, description):
os.environ[var name] = value

print("{}: {}".format(description, value))

setup env var('AGRAPH HOST', 'localhost', 'Hostname')
setup env _var('AGRAPH PORT', '10035', 'Port')

setup env var('AGRAPH USER', '***x' 'Username')



setup _env_var('AGRAPH PASSWORD', '***x',

'Password"')

conn = ag connect('kennedy', create=False, clear=False)

2. We then want to create a query.

For this example, we will

first show what our data looks like, what the visual query of
and what the written query looks like.
With the following query we want every person’s first and last

the information 1is,

names, as well as their birth years.
of the data visualized in Gruff,

the query:
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3. Then add the written query to the python script as a
variable string (we added an additional line to the query to
sort on birth year). Next use the API functionality to simply
execute the query and turn the results into a pandas
dataframe.

query = """select ?person ?first name ?last name ?birth year
where
{ ?person <http://www.franz.com/simple#first-name> ?first name

’

<http://www.franz.com/simple#birth-year> ?birth year

rdf:type <http://www.franz.com/simple#person> ;
<http://www.franz.com/simple#last-name> ?last name

}

order by desc(?birth year)"""

with conn.executeTupleQuery(query) as result:
df = result.toPandas()

When looking at the result, we see that we have a DataFrame!

[5] df.head()

™

X
person first name last name birth year

<http:/ /v . com/ simpleitperson7e> Kym Smith 1972
<http://vw .com/simple#person63> Molly Stark 1968
<http://vwew . com/simple#iperson64> Rory Kennedy 1968

<http://vwew .com/ simpleitperson62> Douglas Kennedy 1967

<http:// v . com/ simple#tperson65> Mark Bailey 1967

4. Now we will use this script in Power BI. When in Power BI
Desktop, go to ‘Get Data’ and look for the python script
option. Then simply copy and paste your entire script into the



text box, and run the script. In this case, our output looks
like this:

Navigator

£ | df (2

tenlav Dot - ] - i
Display Options E person first_name last_narme birth_year

y Python [1] <httpy/fwww franz.com/simple#iperson70>  Kym Smith

~

== | <http:/fwww franz.com/simpledpersong3>  Molly Stark

<http:/fwww.franz.com/simple#personéd>  Rory Kennedy
<http:/fwww franz.com/simpledpersoné2>  Douglas Kennedy
<http://www.franz.com/simplegperson65>  Mark Bailey

<http:/fwww.franz.com/simplefperson6g8> Amanda Srnith

5. Next simply ‘Load’ the data, and then you can use the
Power BI Desktop interface to create whatever visualizations
you want! If you do have a lot of additional operations to
perform on your dataframe, we recommend doing these in your
python script.

Method 2: POST Request:

For the SPARQL query via POST requests to work you need to
url-encode the query. Every modern programming language will
support that, but in our example we will be using Python
again. This method is better for when you do not have python
locally installed or prefer a different programming language.

It is possible to send a GET request from Power BI, but once
the results from the query reach a certain size, a POST
request is required, which is confusing to do within the Power
BI Desktop interface. The following steps will show you how to
do SPARQL Queries using POST requests. It looks a bit odd but
it works well.

The Process:

1. In your AG WebView create an ‘anonymous’ user. (Go to
admin -> Users -> [add a user] -> and add ‘anonymous’ as



username without adding a password). You can use these
settings:

Users

anonymous [remove]
Roles: None
[suspend] [disable] [expire password]

[_] Superuser [ ] Start sessions [_] Evaluate arbitrary code [_| Control replication [_] Two-phase commit
[¥] Allow user attributes via HTTP header x-user-attributes
[] Allow user attributes via SPARQL PREFIX franzOption userAttributes

o read/write on all [remove]

Grant | read/write v on catalog | * ~ | repository | * v | [ok]
Security Filters: [add]

2. Go to your desired repository in WebView and Click on
‘Queries’ -> ‘New’

3. Write a simple SPARQL query, and run it to make sure you
get the correct response back.

4. In python create the following script: (Assuming your
AllegroGraph is on your localhost port 10035 and your repo is
called ‘kennedy’)

import urllib

def CreateP0STquery(query):
start =
“http://anonymous:@localhost:10035/repositories/kennedy?queryL
n=SPARQL&Limit=1000&infer=false&returnQueryMetadata=false&chec
kVariables=false&query="
response = start + urllib.parse.quote(query)
return response

This function url-encodes the query and attaches it to the
POST request. Replace the ‘localhost:10035' and ‘kennedy’
strings in the start variable with your corresponding data.
Then, using the same query as our previous example, we create



our url-encoded POST query:

query = """select ?person ?first name ?last name ?birth year
where
{ ?person <http://www.franz.com/simple#first-name> ?first name

<http://www.franz.com/simple#birth-year> ?birth year

rdf:type <http://www.franz.com/simple#person> ;
<http://www.franz.com/simple#last-name> ?last name

}

order by desc(?birth_year)"""

result = CreateP0STquery(query)
print(result)

This gives us the following result:

[16] result

“hittp: //anonymous :@localhost:1ee35/repositories/kennedy?queryLn=sPARQLE&]limi t=10@8&infer=false&returnQuerymMetadata=false&checkvariab
les —false&quer\. electX2eX3Fpersont2eX3Ffirst_nameX2eX3Flast_nameX20X3Fbirth_yearXlewhereXoAX7EX2eX3Fpersoni2eX3chttpXaA/ /www. fran

1 ex23first-nameX3EX20X3Ffirst_nameZ2eX3BXoARIoR20%20R 20X 20%20%20R20%20%28%3ChTLtpX2A/ /www. franz. com/simpleX23birth-yeari3
EX28X3Fbirth ari2eX3nXaaireXralreXrairetiareX e e rerd LAt ype2aX3Cht tpX2A/ fwwm . franz . com/ simpleX23p EIEXIGXIBABALISLIAND
exzenzak2akzen2enzaR2eR3ChittpR3A/ fwww. franz. com/simpleX23last-namei3 E'Xzeﬁ;aF1ast_nane.vzB.ZZEi?D%ﬁAor‘dEnez&tl‘,-'izadescHsBFbl.rth |_year#k
29°

5. Within Power BI Desktop we go to ‘Get data’ and create a
‘Blank query’ and go into the ‘Advanced Editor’ window. Using
the following format we will get our desired results (please
note that due to the length of the url-encoded request, it did
not all fit in the image. Copy and pasting into the url field
works fine. The ‘url’ variable needs to be in quotes and have
a comma at the end):



QueryT

let
url = "http://anonymous:@localhost:18035/repositories/kennedy?queryLn=SPARQLELimit=1060&infer=false&returnQuery
body = "",
Ssource = Csv.Document(Web.Contents(url, [Headers = [Accept="text/csv"], Content=Text.ToBinary(body)]))
in
source

We see the following results:

[ T A

=% 1 —_— I T L = Properties _— s S i Data Type: Test = [ Merge Queries = = Test Analytics
-t b e ! & [ AdmancedEdior Pt I I il 7 Use First Row as Meaders = T Append Queries = @
Close & Mew  Recent l.'|l.er Data source hanage Redresh e le-os.e_ 'I.l.eTo.e Keep  Remove Eplit Group 1, ; Fuplace Vakes Comblng Filss .‘-\ Piurn Machine Loarning
Apply~  Source* Sources=  Data setlings  Parameters >  Preview s —J 4 Columrs~ Calumrs = Rows* Rows * Column® By 3
Class Now Quary Data Sources Paramaters Quary Manage Columrs Reduce Rows sant Transfoem Combing Al nsights
Cueries [1] < M = Csv,Document{web.Contents(url, [Headers = [Accepte="text/csv™], ContentsText.Tosinary(body)]))
] Cluery1 . Calumnl = | BB Calumnz = | ¥ Calumn3 = | M Columnd -
1 persan first_name last_name bt _ywar
2 hpeyfwews franz.comysimpleipersondd  Kym Smith 1972
1 hittpef o, frans. comfsimplefpersonBd  Molly Stark 1968
4 tgs/fwees frang.comysimplegpersonBs  Rory Kennedy 1968
5 Wtpefwews franz.comysimplafparson62  Douglas Kenrady 1967
£ httpcffwane. franz.comfsimplefpersonBS  Mark Bailey 1967
T httpsfecane. franz.comyfsimplefpersonéd  Amanda Smith 1967
& hupsffesee. franz.comysimpledperson7l  Alfred Tischear 1967
4 hitpeyfwewe. frana.comyfsimpledperson?s  Patrick Kenrody 1967
10 hittpzffwew. franz.comysimple#iperson23  Carolyn Bessstte 1966
11 hittpzf forwas. franz.comysimplepersonBd  Cart Hood 1966
12 e e, frana. comysimplempersond?  Jeannia Rigp 1965
13 hvip:d foowee frans.comysimplefpersona3  Anthany Shrives 1965
14 httpz/fwrerer. franz.comysimpledpersondd  Alina Mojica 1965
15  httpsfweaw. franz.comy/simplefipersontd  Matthew Kennedy 1965
16 Wotpsyforwes. franz.comyfsimplemperson3l  Mark Shrives 1964
17 httpeffocere, frane. comysimpledpersont]  Victona Stauss 1964
18 httpz/fwww franz.comysimplefpersonld  Patrick Kennedy 1963
19 httpzffwears. franz.comysimpleffipersonS8  Christopher Kennedy 1963

6. One last step is to turn the top row into the column
names, which can be achieved by pressing the ‘Use first row as
headers’:

—
—

Data Type: Text ~ &) Merge Queries ~ E- Text Analytics

A
Z -
i- j Use First Row as Headers ~ _ Append Queries * <€ Vision
Split  Group , ) _ _ .
Column~ By 2 Replace Values Combine Files ‘,[_},5 Azure Machine Learning

ort Transform Combine Al Insights

The best part about both of these methods is that once the
query has been created, Power BI can refresh the visuals using
the same queries if your data changed. This can be achieved by



scheduling refreshes within the Power BI Desktop interface
(https://docs.microsoft.com/en-us/power-bi/connect-data/refres
h-data#configure-scheduled-refresh)

Please send any questions or issues to: support@franz.com

AllegroGraph Named to 100
Companies That Matter Most 1in
Data

Franz Inc. Acknowledged as a Leader for Knowledge Graph
Solutions

Lafayette, Calif., June 23, 2020 - Franz Inc., an early
innovator in Artificial Intelligence (AI) and leading supplier
of Semantic Graph Database technology for Knowledge Graph
Solutions, today announced that it has been named to The 100
Companies That Matter in Data by Database Trends and
Applications. The annual list reflects the urgency felt among
many organizations to provide a timely flow of targeted
information. Among the more prominent initiatives is the use
of AI and cognitive computing, as well as related capabilities
such as machine learning, natural language processing, and
text analytics. This 1list recognizes companies based on
their presence, execution, vision and innovation in delivering
products and services to the marketplace.

“We’re excited to announce our eighth annual list, as the
industry continues to grow and evolve,” remarked Thomas Hogan,
Group Publisher at Database Trends and Applications. “Now,
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more than ever, businesses are looking for ways transform how
they operate and deliver value to customers with greater
agility, efficiency and innovation. This 1list seeks to
highlight those companies that have been successful 1in
establishing themselves as unique resources for data
professionals and stakeholders.”

“We are honored to receive this acknowledgement for our
efforts in delivering Enterprise Knowledge Graph Solutions,”
said Dr. Jans Aasman, CEO, Franz Inc. “In the past year, we
have seen demand for Enterprise Knowledge Graphs take off
across industries along with recognition from top technology
analyst firms that Knowledge Graphs provide the critical
foundation for artificial intelligence applications and
predictive analytics.

Our recent launch of AllegroGraph 7 with FedShard, a
breakthrough that allows infinite data integration to unify
all data and siloed knowledge into an Entity-Event Knowledge
Graph solution will catalyze Knowledge Graph deployments
across the Enterprise.”

Gartner recently released a report “How to Build Knowledge
Graphs That Enable AI-Driven Enterprise Applications” and have
previously stated, “The application of graph processing and
graph databases will grow at 100 percent annually through 2022
to continuously accelerate data preparation and enable more
complex and adaptive data science.” To that end, Gartner named
graph analytics as a “Top 10 Data and Analytics Trend” to
solve critical business priorities. (Source: Gartner, Top 10
Data and Analytics Trends, November 5, 2019).

“Graph databases and knowledge graphs are now viewed as a
must-have by enterprises serious about leveraging AI and
predictive analytics within their organization,” said Dr.
Aasman “We are working with organizations across a broad range
of industries to deploy large-scale, high-performance Entity-
Event Knowledge Graphs that serve as the foundation for AI-
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driven applications for personalized medicine, predictive call
centers, digital twins for IoT, predictive supply chain
management and domain-specific Q&A applications — just to name
a few.”

Forrester Shortlists AllegroGraph

AllegroGraph was shortlisted in the February 3, 2020 Forrester
Now Tech: Graph Data Platforms, Q1 2020 report, which
recommends that organizations “Use graph data platforms to
accelerate connected-data initiatives.” Forrester states, “You
can use graph data platforms to become significantly more
productive, deliver accurate customer recommendations, and
quickly make connections to related data.”

Bloor Research covers AllegroGraph with FedShard

Bloor Research Analyst, Daniel Howard noted “With the 7.0
release of AllegroGraph, arguably the most compelling new
capability is its ability to create what Franz refers to as
“Entity-Event Knowledge Graphs” (or EEKGs) via its patented
FedShard technology.” Mr. Howard goes on to state “Franz
clearly considers this a major release for AllegroGraph.
Certainly, the introduction of an explicit entity-event graph
is not something I’'ve seen before. The newly introduced text
to speech capabilities also seem highly promising.”

AllegroGraph Named to KMWorld’s 100 Companies That Matter in
Knowledge Management

AllegroGraph was also recently named to KMWorld’s 100
Companies That Matter in Knowledge Management. The KMWorld
100 showcases organizations that are advancing their products
and capabilities to meet changing requirements in Knowledge
Management.

Franz Knowledge Graph Technology and Services

Franz’'s Knowledge Graph Solution includes both technology and
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services for building industrial strength Entity-Event
Knowledge Graphs based on best-of-class tools, products,
knowledge, skills and experience. At the core of the solution
is Franz’s graph database technology, AllegroGraph with
FedShard, which is utilized by dozens of the top F500
companies worldwide and enables businesses to extract
sophisticated decision insights and predictive analytics from
highly complex, distributed data that cannot be uncovered with
conventional databases.

Franz delivers the expertise for designing ontology and
taxonomy-based solutions by wutilizing standards-based
development processes and tools. Franz also offers data
integration services from siloed data using W3C industry
standard semantics, which can then be continually integrated
with information that comes from other data sources. In
addition, the Franz data science team provides expertise in
custom algorithms to maximize data analytics and uncover
hidden knowledge.

Ubiquitous AI Demands A New
Type Of Database Sharding

Forbes published the following article by Dr. Jans Aasman,
Franz Inc.’s CEO.
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The notion of sharding has become
increasingly crucial for selecting and
optimizing database architectures. In
many cases, sharding 1s a means of
horizontally distributing data; if
properly implemented, it results in
near-infinite scalability. This option
enables database availability for
business continuity, allowing organizations to replicate
databases among geographic locations. It’s equally useful for
load balancing, in which computational necessities (like
processing) shift between machines to improve IT resource
allocation.

However, these use cases fail to actualize sharding’s full
potential to maximize database performance in today’s post-big
data landscape. There’s an even more powerful form of
sharding, called “hybrid sharding,” that drastically improves
the speed of query results and duly expands the complexity of
the questions that can be asked and answered. Hybrid sharding
is the ability to combine data that can be partitioned into
shards with data that represents knowledge that is usually un-
shardable.

This hybrid sharding works particularly well with the
knowledge graph phenomenon leveraged by the world’s top data-
driven companies. Hybrid sharding also creates the enterprise
scalability to query scores of internal and external sources
for nuanced, detailed results, with responsiveness
commensurate to that of the contemporary AI age.

Read the full article at Forbes.
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Natural Language Processing
and Machine Learning 1in
AllegroGraph

The majority of our customers build Knowledge Graphs with
Natural Language and Machine learning components. Because of
this trend AllegroGraph now offers strong support for the use
of Natural Language Processing and Machine learning.

Franz Inc has a team of NLP engineers and Taxonomy experts
that can help with building turn-key solutions. In general
however, our customers already have some expertise in house.
In those cases we train customers in how to take the output of
NLP and ML processing and turn that into an efficient
Knowledge Graph based on best practices in the industry.

This document primarily describes the NLP and ML plug-in
AllegroGraph.

Note that many enterprises already have a data science team
with NLP experts that use modern open source NLP tools like
Spacy, Gensim or Polyglot, or Machine Learning based NLP tools
like BERT and Scikit-Learn. In another blog about Document
Handling we describe a pipeline of how to deal with NLP in
Document Knowledge Graphs by using our NLP and ML plugin and
mix that with open source tools.

PlugIn features for Natural Language Processing and Machine
Learning in AllegroGraph.

Here is the outline of the plugin features that we are going
to describe in more detail.


https://allegrograph.com/natural-language-processing-and-machine-learning-in-allegrograph/
https://allegrograph.com/natural-language-processing-and-machine-learning-in-allegrograph/
https://allegrograph.com/natural-language-processing-and-machine-learning-in-allegrograph/
https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/
https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/
https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/

Machine learning

= data acquisition

= classifier training

» feature extraction support
= performance analysis

» model persistence

NLP

= handling languages
 handling dictionaries
» tokenization

= entity extraction

= Sentiment analysis

» basic pattern matching

SPARQL Access

» Future development

Machine Learning

ML: Data Acquisition

Given that the NLP and ML functions operate within
AllegroGraph, after loading the plugins, data acquisition can
be performed directly from the triple-store, which drastically
simplifies the data scientist workflow. However, if the data
is not in AllegroGraph yet we can also import it directly from
ten formats of triples or we can use our additional
capabilities to import from CSV/JSON/JSON-LD.

Part of the Data Acquisition is also that we need to pre-
process the data for training so we provide these three
functions:

 prepare-training-data
» split-dev-test



= equalize (for resampling)

Machine Learning: Classifiers

» Currently we provide simple linear classifiers. In case
there’s a need for neural net or other advanced
classifiers, those can be integrated on-demand.

»We also provide support for online learning (online
machine learning is an ML method in which data becomes
available in a sequential order and is used to update
the best predictor for future data at each step, as
opposed to batch learning techniques which generate the
best predictor by learning on the entire training data
set at once). This feature is useful for many real-world
data sets that are constantly updated.

The default classifiers available are Averaged
Perceptron and AROW

Machine Learning: Feature Extraction

Each classifier is expecting a vector of features: either
feature indices (indicative features) or pairs of numbers
(index — value). These are obtained in a two-step process:

1. A classifier-specific extract-features method should be
defined that will return raw feature vector with features
identified by strings of the following form:
prefix|feature.

The prefix should be provided as a keyword argument to the
collect-features method call, and it is used to distinguish
similar features from different sources (for instance, for
distinct predicates).

2. Those features will be automatically transformed to
unique integer 1ids. The resulting feature vector of
indicator features may look like the following: #(1 123
2999 ..)



Note that these features may be persisted to AllegroGraph for
repeated re-use (e.g. for experimenting with classifier
hyperparameter tuning or different classification models).

Many possible features may be extracted from data, but there
is a set of common ones, such as:

1. individual tokens of the text field

2. ngrams (of a specified order) of the text field

3. presence of a token in a specific dictionary (like, the
dictionary of slang words)

4. presence/value of a certain predicate for the subject of
the current triple

5. length of the text

And in case the user has a need for special types of tokens we
can write specific token methods, here is an example (in Lisp)
that produces an indicator feature of a presence of emojis in
the text:

(defmethod collect-features ((method (eql :emoji)) toks &key
pred)
(dolist (tok toks)
(when (some #'(lambda (code)
(or (<= #x1F600 code #x1F64F)
(<= #x1F650 code #x1F67F)
(<= #x1F680 code #x1F6FF)))
(map 'vector #'char-code tok))
(return (list "emoji")))))

Machine Learning: Integration with Spacy

The NLP and ML community invents new features and capabilities
at an incredible speed. Way faster than any database company
can keep up with. So why not embrace that? Whenever we need
something that we don’t have in AllegroGraph yet we can call
out to Spacy or any other external NLP tool. Here is an
example of using feature extraction from Spacy to collect



indicator features of the text dependency parse relations:

(defmethod collect-features ((method (eql :dep)) deps &key
pred dep-type dep-labels)
(Loop :for ds :in deps :nconc
(Loop :for dep :in ds
:when (and (member (dep-tag dep) dep-labels)
(dep-head dep)
(dep-tok dep))
:collect (format nil "dep|~a|~a ~a"
dep-type
(tok-word (dep-head dep)
(tok-word (dep-tok dep))))))

The demonstrated integration uses Spacy Docker instance and
its HTTP API.

Machine Learning: Classifier Analysis

We provide all the basic tools and metrics for classifier
quality analysis:

= accuracy

= f1, precision, recall

= confusion matrix

= and an aggregated classification report

Machine Learning: Model Persistence

The idea behind model persistence is that all the data can be
stored in AllegroGraph, including features and classifier
models. AllegroGraph stores classifiers directly as triples.
This is a far more robust and language-independent approach
than currently popular among data scientists reliance on
Python pickle files. For the storage we provide a basic
triple-based format, so it is also possible to interchange the
models using standard RDF data formats.

The biggest advantage of this approach is that when adding



text to AllegroGraph we don’t have to move the data externally
to perform the classification but can keep the whole pipeline
entirely internal.

Natural Language Procession (NLP)

NLP: Language Packs

Most of the NLP tools are language-dependent: i.e. there’s a
general function that uses language-specific model/rules/etc.
In AllegroGraph, support for particular languages is provided
on-demand and all the language-specific is grouped in the so
called “language pack” or langpack, for short — a directory
with a number of text and binary files with predefined names.

Currently, the Tlangpack for English 1is provided at
nlp/langs/en.zip, with the following files:

= contractions.txt — a dictionary of contractions
abbrs.txt — a dictionary of abbreviations
stopwords.txt — a dictionary of stopwords
pos-dict.txt — positive sentiment words
neg-dict.txt — negative sentiment words
=word-tok.txt — a list of word tokenization rules

Additionally, we use a general dictionary, a word-form
dictionary (obtained from Wiktionary), and custom lexicons.

Loading a langpack for a particular language is performed
using load-langpack.

Creating a langpack is just a matter of adding the properly
named files to the directory and can be done manually. The
names of the files should correspond to the names of the
dictionary variables that will be filled by the pack. The
dictionaries that don’t have a corresponding file will be just
skipped.We have just finished creating a langpack for Spanish
and it will be published soon. In case you need other



dictionaries we use our AG/Spacy infrastructure. Spacy
recently added a comprehensive list of new languages:

Language Chinese Danish Dutch m French German

Greek Italian Japanese Lithuanian Norwegian Bokmal

Polish Portuguese Romanian Spanish Multi-language

NLP: Dictionaries

Dictionaries are read from the language packs or other sources
and are kept in memory as language-specific hash-tables.
Alongside support for storing the dictionaries as text files,
there are also utilities for working with them as triples and
putting them into the triple store.

Note that we at Franz Inc specialize in Taxonomy Building
using various commercial taxonomy building tools. All these
tools can now export these taxonomies as a mix of SKOS
taxonomies and OWL. We have several functions to read directly
from these SKOS taxonomies and turn them into dictionaries
that support efficient phrase-level lookup.

NLP: Tokenization

Tokenization 1is performed using a time-proven rule-based
approach. There are 3 levels of tokenization that have both a
corresponding specific utility function and an :output format
of the tokenize function:

:parags — splits the text into a list of lists of tokens
for paragraphs and sentences in each paragraph

:sents — splits the text into a list of tokens for each
sentence

:words — splits the text into a plain list of tokens



Paragraph-level tokenization considers newlines as paragraph
delimiters. Sentence-level tokenization 1is geared towards
western-style writing that uses dot and other punctuation
marks to delimit sentences. It is, currently, hard-coded, but
if the need arises, additional handling may be added for other
writing systems. Word-level tokenization is performed using a
language-specific set of rules.

NLP: Entity Extraction

Entity extraction is performed by efficient matching (exactly
or fuzzy) of the token sequences to the existing dictionary
structure.

It is expected that the entities come from the triple store
and there’s a special utility function that builds lookup
dictionaries from all the triples of the repository identified
by certain graphs that have a skos:prefLabel or skos:altLabel
property. The lookup may be case-insensitive with the
exception of abbreviations (default) or case-sensitive.

Similar to entity extraction, there’s also support for
spotting sentiment words. It is performed using the
positive/negative words dictionaries from the langpack.

One feature that we needed to develop for our customers 1is
‘heuristic entity extraction’ . In case you want to extract
complicated product names from text or call-center
conversations between customers and agents you run into the
problem that it becomes very expensive to develop altLabels in
a taxonomy tool. We created special software to facilitate the
automatic creation of altlabels.

NLP: Basic Pattern Matching for relationship and event
detection

Getting entities out of text is now well understood and
supported by the software community. However, to find complex
concepts or relationships between entities or even events is



way harder and requires a flexible rule-based pattern matcher.
Given our long time background in Lisp and Prolog one can
imagine we created a very powerful pattern matcher.

SPARQL Access

Currently all the features above can be controlled as stored
procedures or using Lisp as the command language. We have a
new (beta) version that uses SPARQL for most of the control.
Here are some examples. Note that fai is a magic-property
namespace for “AI”-related stuff and inc is a custom namespace
of an imaginary client:

1. Entity extraction

select ?ent {
?subj fai:entityTaxonomy inc:products
?subj fai:entityTaxonomy inc:salesTerms
?7subj fai:textPredicate inc:text
?subj fai:entity(fai:language "en", fai:taxonomy
inc:products) 7?ent

}

The expressions ?subj fai:entityTaxonomy inc:poducts and ?subj
fai:entityTaxonomy inc:salesTerms specify which taxonomies to
use (the appropriate matchers are cached).

The expression ?subj fai:entity ?ent will either return the
already extracted entities with the specified predicate
(fai:entity) or extract the new entities according to the
taxonomies in the texts accessible by fai:textPredicate.

2. fai:sentiment will return a single triple with sentiment
score:

select ?sentiment {
?7subj fai:textPredicate inc:text
?subj fai:sentiment ?sentiment
?subj fai:language "en"
?7subj fai:sentimentTaxonomy franz:sentiwords



3. Text classification:

Provided inc:customClassifier was already trained previously,
this query will return labels for all texts as a result of
classification.

select ?label {

?7subj fai:textPredicate inc:text .

?subj fai:classifier inc:customClassifier .
?7subj fai:classify ?label .

?label fai:storeResultPredicate inc:label .

}

Further Development
Our team is currently working on these new features:

» A more accessible UI (python client & web) to facilitate
NLP and ML pipelines

» Addition of various classifier models

» Sequence classification support (already implemented for
a customer project)

 Pre-trained models shipped with AllegroGraph (e.g.
English NER)

» Graph ML algorithms (deepwalk, Google Expander)

» Clustering algorithms (k-means, OPTICS)



Document Knowledge Graphs
with NLP and ML

A core competency for Franz Inc is turning text and documents
into Knowledge Graphs (KG) using Natural Language Processing
(NLP) and Machine Learning (ML) techniques in combination with
AllegroGraph. In this document we discuss how the techniques
described in [NLP and ML components of AllegroGraph] can be
combined with popular software tools to create a robust
Document Knowledge Graph pipeline.

We have applied these techniques for several Knowledge Graphs
but in this document we will primarily focus on three
completely different examples that we summarize below. First
is the Chomsky Legacy Project where we have a large set of
very dense documents and very different knowledge sources,
Second is a knowledge graph for an intelligent call center
where we have to deal with high volume dynamic data and real-
time decision support and finally, a large government
organization where it is very important that people can do a
semantic search against documents and policies that steadily
change over time and where it is important that you can see
the history of documents and policies.

Example [1] Chomsky Knowledge Graph

The Chomsky Legacy Project is a project run by a group of
admirers of Noam Chomsky with the primary goal to preserve all
his written work, including all his books, papers and
interviews but also everything written about him. Ultimately
students, researchers, journalists, lobbyists, people from the
AI community, and linguists can all use this knowledge graph
for their particular goals and questions.

The biggest challenges for this project are finding causal
relationships in his work using event and relationship
extraction. A simple example we extracted from an author


https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/
https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/
https://allegrograph.com/natural-language-processing-and-machine-learning-in-allegrograph/

quoting Chomsky 1is that neoliberalism ultimately causes
childhood death.
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Example 2: N3 Results and the Intelligent Call Center

This is a completely different use case (See a recent KMwWorld
Articlehttps://allegrograph.com/knowledge-graphs-enhance-custo
mer-experience-through-speed-and-accuracy/). Whereas the
previous use case was very static, this one is highly dynamic.
We analyze in real-time the text chats and spoken
conversations between call center agents and customers. Our
knowledge graph software provides real-time decision support
to make the call center agents more efficient. N3 Results
helps big tech companies to sell their high tech solutions,
mostly cloud-based products and services but also helps their
clients sell many other technologies and services.

The main challenge we tackle is to really deeply understand
what the customer and agent are talking about. None of this
can be solved by only simple entity extraction but requires
elaborate rule-based and machine learning techniques. Just to
give a few examples. We want to know if the agent talked about
their most important talking points: that is, did the agent
ask if the customer has a budget, or the authority to make a
decision or a timeline about when they need the new technology
or whether they actually have expressed their need. But also
whether the agent reached the right person, and whether the
agent talked about the follow-up. In addition, if the customer



talks about competing technology we need to recognize that and
provide the agent in real-time with a battle card specific to
the competing technology. And in order to be able to do the
latter, we also analyzed the complicated marketing materials
of the clients of N3.

Example 3: Complex Government Documents

Imagine a regulatory body with tens of thousands of documents.
Where nearly every paragraph has reference to other paragraphs
in the same document or other documents and the documents
change over time. The goal here is to provide the end-users in
the government with the right document given their current
task at hand. The second goal is to keep track of all the
changes in the documents (and the relationship between
documents) over time.

The Document to Knowledge Graph Pipeline




Process Name

Input

Output

1. Custom Taxonomy
Creation

Corpus Analytics,
Taxonomy tool

A SKOS taxonomy
containing concepts,
concept hierarchy,

prefLabels, altLabels.

2. Document Preparation

Documents (pdf, word,
ppt, xIsx), Apache Tika,
Spacy for XML cleanup

An XML version of each
document

3. Extract Document Meta
Data

Document + Apache Tika

JSON dictionary of the
Document MetaData

4. XML-to-Triples

XML+JSON dictionary,
XMLToTriples.py

Graph-based document
tree with chapters,
sections, and paragraphs
as triples. Also includes
meta data as triples

5. Entity-Extraction

Paragraphs + taxonomies

+ AllegroGraph Entity
extract or external

extractors

Concepts, persons,

places, currencies.
Connected to paragraphs

6. LOD Enrichment

Paragraphs + IBM Natural
Language Understanding.

Concept categories and
links to DBpedia and
GeoNames, etc.

7. Complex Relationship
and Event extraction.

Paragraphs + Taxonomy +
Rules in Spacy or
AllegroGraph

Complex events and

relationships, References
to other document

sections.

8. NLP and ML

Chapters and paragraphs
+ all the tools described
[here], but also using
Spacy, Gensim, BERT,
SciKit Learn.

Similarities, sentiment,
query answering, smart
search, text classification,
word embeddings,
abstracts

9. Versioning and
Document tracking

Old + New document,
compare.py

Old document in historic
repository, new document
in current, changed graph.

10. Statistical
Relationships

Concepts + OddRatio.py
or OddsRatio.cl

Statistical relationships
between concepts.




Let us first give a quick summary in words of how we turn
documents into a Knowledge Graph.

[1] Taxonomy Creation

Taxonomy of all the concepts important to the business using
open source or commercial taxonomy builders. An available
industry taxonomy is a good starting point for additional
customizations.

[2] Document Preparation

We then take a document and turn it into an intermediate XML
using Apache Tika. Apache Tika supports more than 1000
document types and although Apache Tika is a fantastic tool,
the output is still usually not clean enough to create a graph
from, so we use Spacy rules to clean up the XML to make it as
uniform as possible.

[3] Extract Document MetaData

Most documents also contain document metadata (author, date,
version, title, etc) and Apache Tika will also deliver the
metadata for a document as a JSON object.

[4] XML to Triples

Our tools ingest the XML and metadata and transform that into
a graph-based document tree. The document is the root and from
that, it branches out into chapters, optionally sections, all
the way down to paragraphs. The ultimate text content is in
the paragraphs. In the following example we took the XML
version of Noam Chomsky’'s book Media Control and turned that
into a tree. The following shows a tiny part of that tree. We
start with the Media Control node, then we show three (of the
11) chapters, for one chapter we show three (of the 6)
paragraphs, and then we show the actual text in that
paragraph. We sometimes can go even deeper to the level of
sentences and tokens but for most projects that is overkill.
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Faragraph moved into the 1930s. That's where a lot
of our information about it comes from.

[5] Entity Extractor

AllegroGraph’s entity extractor takes as input the text of
each paragraph in the document tree and one or more of the
taxonomies and returns recognized SKOS concepts based on
prefLabels and altLabels. AllegroGraph’s entity extractor is
state of the art and especially powerful when it comes to
complex terms like product names. We find that in our call
center a technical product name can sometimes have up to six
synonyms or very specific jargon. For example the Cisco
product Catalyst 9000 will also be abbreviated as the cat 9k.
Instead of developing altLabels for every possible permutation
that human beings *will* use, we have specialized heuristics
to optimize the yield from the entity extractor. The following
picture shows 4 (of the 14) concepts discovered in paragraph
16. Plus one person that was extracted by IBM’s NLU.
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[6] Linked Data Enrichment



In many use cases, AllegroGraph can link extracted entities to
concepts in the linked data cloud. The most prominent being
DBpedia, wikidata, the census database, GeoNames, but also
many Linked Open Data repositories. One tool that is very
useful for this is IBM’s Natural Language Understanding
program but there are others available. In the following image
we see that the Nelson Mandela entity (Red) is linked to the
dbpedia entity for Nelson Mandela and that then links to the
DBpedia itself. We extracted some of his spouses and a child
with their pictures.
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[7] Complex Relationship and Event Extraction

Entity extraction is a first good step to ‘see’ what 1is in
your documents but it is just the first step. For example: how
do you find in a text whether company Cl1 merged with company
C2. There are many different ways to express the fact that a
company fired a CEO. For example: Uber got rid of Kalanick,
Uber and Kalanick parted ways, the board of Uber kicked out
the CEO, etc. We need to write explicit symbolic rules for
this or we need a lot of training data to feed a machine
learning algorithm.

[8] NLP and Machine Learning



There are many many AI algorithms that can be applied 1in
Document Knowledge Graphs. We provide best practices for
topics like:

[a] Sentiment Analysis, using good/bad word 1lists or
training data.

[b] Paragraph or Chapter similarity using statistical
techniques like Gensim similarity or symbolic techniques
where we just the overlap of recognized entities as a
function of the size of a text.

[c] Query answering using word2vec or more advanced
techniques like BERT

[d] Semantic search using the hierarchy in SKOS taxonomies.
[e] Summarization techniques for Abstractive or Extractive
abstracts using Gensim or Spacy.

[9] Versioning and Document tracking

Several of our customers with Document Knowledge Graphs have
noted the one constant in all of these KGs is that documents
change over time. As part of our solution, we have created
best practices where we deal with these changes. A crucial
first step is to put each document in its own graph (i.e. the
fourth element of every triple in the document tree is the
document id itself). When we get a new version of a document
the document ID changes but the new document will point back
to the old version. We then compute which paragraphs stayed
the same within a certain margin (there are always changes in
whitespace) and we materialize what paragraphs disappeared in
the new version and what new paragraphs appeared compared to
the previous version. Part of the best practice is to put the
old version of a document in a historical database that at all
times can be federated with the ‘current’ set of documents.

Note that in the following picture we see the progression of a
document. On the right hand side we have a newer version of a
document 1100.161 with a chapter -> section -> paragraph ->
contents where the content is almost the same as the one in



the older version. But note that the newer one spells
‘decision making’ as one word whereas the older version said
‘decision-making’. Note that also the chapter titles and the
section titles are almost the same but not entirely. Also,
note that the new version has a back-pointer (changed-from) to
the older version.
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[10] Statistical Relationships

One important analytic one can do on documents is to look at
the co-occurrence of terms. Although, given that certain words
might occur more frequently in text, we have to correct the
co-occurrence between words for the frequency of the two terms
in a co-occurrence to get a better idea of the
‘surprisingness’ of a co-occurrence. The platform offers
several techniques in Python and Lisp to compute these co-
occurrences. Note that in the following picture we computed
the odds ratios between recognized entities and so we see in



the following gruff picture that if Noam Chomsky talks about
South Africa then the chances are very high he will also talk

about Nelson Mandela.
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