
The Knowledge Graph Cookbook
Recipes for Knowledge Graphs that Work:

Learn why and how to build knowledge graphs that help
enterprises use data to innovate, create value and
increase revenue. This practical manual is full of
recipes and knowledge on the subject.
Learn more about the variety of applications based on
knowledge graphs.
Learn how to build working knowledge graphs and which
technologies to use.
See how knowledge graphs can benefit different parts of
your organization.
Get ready for the next generation of enterprise data
management tools.

Dr. Jans Aasman, CEO, Franz Inc. is interviewed in the Expert
Opinion Section.

“KNOWLEDGE GRAPHS AREN’T WORTH THEIR NAME IF THEY DON’T
ALSO LEARN AND BECOME SMARTER DAY BY DAY” – Dr. Aasman

https://allegrograph.com/the-knowledge-graph-cookbook/

Click here to get the book as free PDF or Kindle version.

Graphorum – Dr. Aasman
Presenting
Graph-Driven Event Processing for Intelligent Customer
Operations

Wednesday, October 16, 2019
10:15 AM – 11:15 AM
Level: Case Study

https://www.poolparty.biz/resources/the-knowledge-graph-cookbook-resource/
https://allegrograph.com/graphorum-dr-aasman-presenting/
https://allegrograph.com/graphorum-dr-aasman-presenting/

In the typical organization, the
contents of the actual chat or
voice conversation between agent
and customer is a black hole. In
the modern Intelligent Customer
Operations center, the interactions
between agent and customer are a
source of rich information that
helps agents to improve the quality

of the interaction in real time, creates more sales, and
provides far better analytics for management. The Intelligent
Customer Operations center is enabled by a taxonomy of the
products and services sold, speech recognition to turn
conversations into text, a taxonomy-driven entity extractor to
take the important concepts out of conversations, and machine
learning to classify chats in various ways. All of this is
stored in a real-time Knowledge Graph that also knows (and
stores) everything about customers and agents and provides the
raw data for machine learning to improve the agent/customer
interaction.

In this presentation, we describe a real-world Intelligent
Customer Organization that uses graph-based technology for
taxonomy-driven entity extraction, speech recognition, machine
learning, and predictive analytics to improve quality of
conversations, increase sales, and improve business
visibility.

https://graphorum2019.dataversity.net/sessionPop.cfm?confid=13
2&proposalid=11010

The Importance of FAIR Data
in Earth Science
Franz’s CEO, Jans Aasman’s recent Marine Technology News:

Data’s valuation as an enterprise asset is most acutely
realized over time. When properly managed, the same dataset

supports a plurality of use cases,
becomes almost instantly available
upon request, and is exchangeable
between departments or
organizations to systematically
increase its yield with each
deployment.

These boons of leveraging data as an enterprise asset are the
foundation of GO FAIR’s Findable Accessible Interoperable
Reusable (FAIR) principles profoundly impacting the data
management rigors of geological science. Numerous
organizations in this space have embraced these tenets to
swiftly share information among a diversity of disciplines to
safely guide the stewardship of the earth.

According to Dr. Annie Burgess, Lab Director of Earth Science
Information Partners (ESIP), the “most pressing global
challenges cannot be solved by a single organization.
Scientists require data collected across multiple disciplines,
which are often managed by many different agencies and
institutions.” As numerous members of the earth science
community are realizing, the most effectual means of managing
those disparate data according to FAIR principles is by
utilizing the semantic standards underpinning knowledge
graphs.

Read the full article at Marine Technology News

https://allegrograph.com/the-importance-of-fair-data-in-earth-science/
https://allegrograph.com/the-importance-of-fair-data-in-earth-science/
https://www.marinetechnologynews.com/news/importance-earth-science-593757

Harnessing the Internet of
Things with JSON-LD

Franz’s CEO, Jans Aasman’s recent
IoT Evolution Article:

Conceptually, the promise of the Internet of Things is almost
halcyon. Its billions of sensors are all connected,
continuously transmitting data to support tailored, cost-
saving measures maximizing revenues in applications as diverse
as smart cities, smart price tags, and predictive maintenance
in the Industrial Internet.

Practically, the data management necessities of capitalizing
on this promise by the outset of the next decade are daunting.
The vast majority of these datasets are unstructured or semi-
structured. The data modeling challenges of rectifying their
schema for integration are considerable. The low latency
action required to benefit from their data implies machine
intelligence largely elusive to today’s organizations.

…….
The self-describing, linked data approach upon which JSON-LD
is founded excels at the low latent action resulting from
machine to machine communication in the IoT. The nucleus of
the linked data methodology—semantic statements and their
unique Uniform Resource Identifiers (URIs)—are read and

https://allegrograph.com/harnessing-the-internet-of-things-with-json-ld/
https://allegrograph.com/harnessing-the-internet-of-things-with-json-ld/

understood by machines. This characteristic aids many of the
IoT use cases requiring machine intelligence; by transmitting
IoT data via the JSON-LD format organizations can maximize
this boon. Smart cities provide particularly compelling
examples of the machine intelligence fortified by this
expression of semantic technology.

Read the full article at IoT Evolution

SHACL – Shapes Constraint
Language in AllegroGraph
SHACL is a SHApe Constraint Language. It specifies a
vocabulary (using triples) to describe the shape that data
should have. The shape specifies things like the following
simple requirements:

How many triples with a specified subject and predicate
should be in the repository (e.g. at least 1, at most 1,
exactly 1).
What the nature of the object of a triple with a
specified subject and predicate should be (e.g. a
string, an integer, etc.)

See the specification for more examples.

SHACL allows you to validate that your data is conforming to
desired requirements.

For a given validation, the shapes are in the Shapes
Graph (where graph means a collection of triples) and the data
to be validated is in the Data Graph (again, a collection of

https://www.iotevolutionworld.com/iot/articles/443068-harnessing-internet-things-with-json-ld.htm
https://allegrograph.com/shacl-shapes-constraint-language-in-allegrograph/
https://allegrograph.com/shacl-shapes-constraint-language-in-allegrograph/
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/

triples). The SHACL vocabularly describes how a given shape is
linked to targets in the data and also provides a way for a
Data Graph to specify the Shapes Graph that should be used for
validatation. The result of a SHACL validation describes
whether the Data Graph conforms to the Shapes Graph and, if it
does not, describes each of the failures.

Namespaces Used in this Document
Along with standard predefined namespaces (such
as rdf: for <http://www.w3.org/1999/02/22-rdf-syntax-
ns#> and rdfs: for <http://www.w3.org/2000/01/rdf-schema#>),
the following are used in code and examples below:

prefix fr: <https://franz.com#>
prefix sh: <http://www.w3.org/ns/shacl#>
prefix franz: <https://franz.com/ns/allegrograph/6.6.0/>

A Simple Example
Suppose we have a Employee class and for each Employee
instance, there must be exactly one triple of the form

emp001 hasID "000-12-3456"

where the object is the employee’s ID Number, which has the
format is [3 digits]-[2 digits]-[4 digits].

This TriG file encapsulates the constraints above:

@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<https://franz.com#Shapes> {
 <https://franz.com#EmployeeShape>
 a sh:NodeShape ;
 sh:targetClass <https://franz.com#Employee> ;
 sh:property [
 sh:path <https://franz.com#hasID> ;

 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:datatype xsd:string ;
 sh:pattern "^[0-9][0-9][0-9]-[0-9][0-9]-

[0-9][0-9][0-9][0-9]$" ;
] .
}

It says that for instances of fr:Employee (sh:targetClass
<https://franz.com#Employee>), there must be exactly 1 triple
with predicate (path) fr:hasID and the object of that triple
must be a string with pattern [3 digits]-[2 digits]-[4 digits]
(sh:pattern "^[0-9][0-9][0-9]-[0-9][0-9]-
[0-9][0-9][0-9][0-9]$").

This TriG file defines the Employee class and some employee
instances:

@prefix fr: <https://franz.com#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

{
 fr:Employee
 a rdfs:Class .
 fr:emp001
 a fr:Employee ;
 fr:hasID "000-12-3456" ;
 fr:hasID "000-77-3456" .
 fr:emp002
 a fr:Employee ;
 fr:hasID "00-56-3456" .
 fr:emp003
 a fr:Employee .
 }

Recalling the requirements above, we immediately see these
problems with these triples:

emp001 has two hasID triples.1.
The value of emp002‘s ID has the wrong format (two2.

leading digits rather than 3).
emp003 does not have a hasID triple.3.

We load the two TriG files into our repository, and end up
with the following triple set. Note that all the employee
triples use the default graph and the SHACL-related triples
use the graph <https://franz.com#Shapes> specified in the TriG
file.

Now we use agtool shacl-validate to validate our data:

bin/agtool shacl-validate --data-graph default --shapes-graph
https://franz.com#Shapes shacl-repo-1
Validation report: Does not conform
Created: 2019-06-27T10:24:10
Number of shapes graphs: 1
Number of data graphs: 1
Number of NodeShapes: 1
Number of focus nodes checked: 3

3 validation results:
Result:
 Focus node: <https://franz.com#emp001>
 Path: <https://franz.com#hasID>
 Source Shape: _:b7A1D241Ax1

 Constraint Component:
<http://www.w3.org/ns/shacl#MaxCountConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Result:

 Focus node: <https://franz.com#emp002>
 Path: <https://franz.com#hasID>
 Value: "00-56-3456"
 Source Shape: _:b7A1D241Ax1

 Constraint Component:
<http://www.w3.org/ns/shacl#PatternConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp003>
 Path: <https://franz.com#hasID>
 Source Shape: _:b7A1D241Ax1

 Constraint Component:
<http://www.w3.org/ns/shacl#MinCountConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

The validation fails with the problems listed above. The Focus
node is the subject of a triple that did not conform. Path is
the predicate or a property path (predicates in this
example). Value is the offending value. Source Shape is the
shape that established the constraint (you must look at the
shape triples to see exactly what Source Shape is requiring).

We revise our employee data with the following SPARQL
expresssion, deleting one of the emp001 triples, deleting
the emp002 triple and adding a new one with the correct
format, and adding an emp003 triple.

prefix fr: <https://franz.com#>

DELETE DATA {fr:emp002 fr:hasID "00-56-3456" } ;

INSERT DATA {fr:emp002 fr:hasID "000-14-1772" } ;

DELETE DATA {fr:emp001 fr:hasID "000-77-3456" } ;

INSERT DATA {fr:emp003 fr:hasID "000-54-9662" } ;

Now our employee triples are

We run the validation again and are told our data conforms:

% bin/agtool shacl-validate --data-graph default --shapes-
graph https://franz.com#Shapes shacl-repo-1
Validation report: Conforms
Created: 2019-06-27T10:32:19
Number of shapes graphs: 1
Number of data graphs: 1
Number of NodeShapes: 1
Number of focus nodes checked: 3

When we refer to this example in the remainder of this
document, it is to the un-updated (incorrect) triples.

SHACL API
The example above illustrates the SHACL steps:

Have a data set with triples that should conform to a1.
shape
Have SHACL triples that express the desired shape2.
Run SHACL validation to determine if the data conforms3.

Note that SHACL validation does not modify the data being
validated. Once you have the conformance report, you must
modify the data to fix the conformance problems and then rerun
the validation test.

The main entry point to the API is agtool shacl-validate. It
takes various options and has several output choices. Online
help for agtool shacl-validate is displayed by running agtool
shacl-validate --help.

In order to validate triples, the system must know:

What tripes to examine1.
What rules (SHACL triples) to use2.
What to do with the results3.

Specifying what triples to examine
Two arguments to agtool shacl-validate specify the triples to
evaluate: --data-graph and --focus-node. Each can be specified
multiple times.

The --data-graph argument specifies the graph value for
triples to be examined. Its value must be an IRI
or default. Only triples in the specified graphs will be
examined. default specifies the default graph. It is
also the default value of the --data-graph argument. If
no value is specified for --data-graph, only triples in
the default graph will be examined. If a value for --
data-graph is specified, triples in the default graph
will only be examined if --data-graph default is also
specified.
The --focus-node argument specifies IRIs which are
subjects of triples. If this argument is specified, only
triples with these subjects will be examined. To be
examined, triples must also have graph values specified
by --data-graph arguments. --focus-node does not have a
default value. If unspecified, all triples in the
specified data graphs will be examined. This argument
can be specified multiple times.

The --data-graph argument was used in the simple
example above. Here is how the --focus-node argument can be
used to restrict validation to triples with
subjects <https://franz.com#emp002>and <https://franz.com#emp0
03> and to ignore triples with
subject <https://franz.com#emp001> (applying agtool shacl-
validate to the orignal non-conformant data):

% bin/agtool shacl-validate --data-graph default \

https://franz.com/agraph/support/documentation/current/shacl.html#simple-example
https://franz.com/agraph/support/documentation/current/shacl.html#simple-example

 --shapes-graph https://franz.com#Shapes \
 --focus-node https://franz.com#emp003 \
 --focus-node https://franz.com#emp002 shacl-repo-1
Validation report: Does not conform
Created: 2019-06-27T11:37:49
Number of shapes graphs: 1
Number of data graphs: 1
Number of NodeShapes: 1
Number of focus nodes checked: 2

2 validation results:
Result:
 Focus node: <https://franz.com#emp003>
 Path: <https://franz.com#hasID>
 Source Shape: _:b7A1D241Ax2

 Constraint Component:
<http://www.w3.org/ns/shacl#MinCountConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp002>
 Path: <https://franz.com#hasID>
 Value: "00-56-3456"
 Source Shape: _:b7A1D241Ax2

 Constraint Component:
<http://www.w3.org/ns/shacl#PatternConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Specifying What Shape Triples to Use
Two arguments to agtool shacl-validate, analogous to the two
arguments for data described above, specify Shape triples to
use. Further, following the SHACL spec, data triples with
predicate <http://www.w3.org/ns/shacl#shapeGraph> also specify
graphs containing Shape triples to be used.

The arguments to agtool shacl-validate are the following. Each
may be specified multiple times.

The --shapes-graph argument specifies the graph value

for shape triples to be used for SHACL validation. Its
value must be an IRI or default. default specifies the
default graph. The --shapes-graph argument has no
default value. If unspecified, graphs specified by data
triples with
the <http://www.w3.org/ns/shacl#shapeGraph> predicate
will be used (they are used whether or not --shapes-
graph has a value). If --shapes-graph has no value and
there are no data triples with
the <http://www.w3.org/ns/shacl#shapeGraph> predicate,
the data graphs are used for shape graphs. (Shape
triples have a known format and so can be identified
among the data triples.)
The --shape argument specifies IRIs which are subjects
of shape nodes. If this argument is specified, only
shape triples with these subjects and subsiduary triples
to these will be used for validation. To be included,
the triples must also have graph values specified by
the --shapes-graph arguments or specified by a data
triple with
the <http://www.w3.org/ns/shacl#shapeGraph> predicate. -
-shape does not have a default value. If unspecified,
all shapes in the shapes graphs will be used.

Other APIs
There is a lisp API using the function validate-data-graph,
defined next:

validate-data-graphdb &key data-graph-iri/s shapes-graph-
iri/s shape/s focus-node/s verbose conformance-only?
function

Perform SHACL validation and return a validation-report
structure.

The validation uses data-graph-iri/s to construct the

https://franz.com/agraph/support/documentation/current/shacl.html#validate-data-graph

dataGraph. This can be a single IRI, a list of IRIs or NIL, in
which case the default graph will be used. The shapesGraph can
be specified using the shapes-graph-iri/s parameter which can
also be a single IRI or a list of IRIs. If shape-graph-
iri/s is not specified, the SHACL processor will first look to
create the shapesGraph by finding triples with the
predicate sh:shapeGraph in the dataGraph. If there are no such
triples, then the shapesGraph will be assumed to be the same
as the dataGraph.

Validation can be restricted to particular shapes and focus
nodes using the shape/s and focus-node/s parameters. Each of
these can be an IRI or list of IRIs.

If conformance-only? is true, then validation will stop as
soon as any validation failures are detected.

You can use validation-report-conforms-p to see whether or not
the dataGraph conforms to the shapesGraph (possibly restricted
to just particular shape/s and focus-node/s).

The function validation-report-conforms-p returns t or nil as
the validation struct returned by validate-data-graph does or
does not conform.

validation-report-conforms-preport
function

Returns t or nil to indicate whether or not REPORT (a
validation-report struct) indicates that validation conformed.
There is also a REST API. See HTTP reference.

Validation Output
The simple example above and the SHACL examples below show
output from agtool validate-shacl. There are various output
formats, specified by the --output option. Those examples use
the plain format, which means printing results descriptively.

https://franz.com/agraph/support/documentation/current/shacl.html#validation-report-conforms-p
https://franz.com/agraph/support/documentation/current/shacl.html#validation-report-conforms-p
https://franz.com/agraph/support/documentation/current/shacl.html#validate-data-graph
https://franz.com/agraph/support/documentation/current/http-reference.html
https://franz.com/agraph/support/documentation/current/shacl.html#simple-example
https://franz.com/agraph/support/documentation/current/shacl.html#shacl-examples

Other choices include json, trig, trix, turtle, nquads, rdf-
n3, rdf/xml, and ntriples. Here are the simple
example (uncorrected) results using ntriples output:

% bin/agtool shacl-validate --output ntriples --data-graph
default --shapes-graph https://franz.com#Shapes shacl-repo-1

_:b271983AAx1
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/ns/shacl#ValidationReport> .
_:b271983AAx1 <http://www.w3.org/ns/shacl#conforms>
"false"^^<http://www.w3.org/2001/XMLSchema#boolean> .
_:b271983AAx1 <http://purl.org/dc/terms/created>
"2019-07-01T18:26:03"^^<http://www.w3.org/2001/XMLSchema#dateT
ime> .
_:b271983AAx1 <http://www.w3.org/ns/shacl#result>
_:b271983AAx2 .
_:b271983AAx2
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/ns/shacl#ValidationResult> .
_:b271983AAx2 <http://www.w3.org/ns/shacl#focusNode>
<https://franz.com#emp001> .
_:b271983AAx2 <http://www.w3.org/ns/shacl#resultPath>
<https://franz.com#hasID> .
_:b271983AAx2 <http://www.w3.org/ns/shacl#resultSeverity>
<http://www.w3.org/ns/shacl#Violation> .
_:b271983AAx2
<http://www.w3.org/ns/shacl#sourceConstraintComponent>
<http://www.w3.org/ns/shacl#MaxCountConstraintComponent> .
_:b271983AAx2 <http://www.w3.org/ns/shacl#sourceShape>
_:b271983AAx3 .
_:b271983AAx1 <http://www.w3.org/ns/shacl#result>
_:b271983AAx4 .
_:b271983AAx4
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/ns/shacl#ValidationResult> .
_:b271983AAx4 <http://www.w3.org/ns/shacl#focusNode>
<https://franz.com#emp002> .
_:b271983AAx4 <http://www.w3.org/ns/shacl#resultPath>
<https://franz.com#hasID> .
_:b271983AAx4 <http://www.w3.org/ns/shacl#resultSeverity>

https://franz.com/agraph/support/documentation/current/shacl.html#simple-example
https://franz.com/agraph/support/documentation/current/shacl.html#simple-example

<http://www.w3.org/ns/shacl#Violation> .
_:b271983AAx4
<http://www.w3.org/ns/shacl#sourceConstraintComponent>
<http://www.w3.org/ns/shacl#PatternConstraintComponent> .
_:b271983AAx4 <http://www.w3.org/ns/shacl#sourceShape>
_:b271983AAx3 .
_:b271983AAx4 <http://www.w3.org/ns/shacl#value> "00-56-3456"
.
_:b271983AAx1 <http://www.w3.org/ns/shacl#result>
_:b271983AAx5 .
_:b271983AAx5
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/ns/shacl#ValidationResult> .
_:b271983AAx5 <http://www.w3.org/ns/shacl#focusNode>
<https://franz.com#emp003> .
_:b271983AAx5 <http://www.w3.org/ns/shacl#resultPath>
<https://franz.com#hasID> .
_:b271983AAx5 <http://www.w3.org/ns/shacl#resultSeverity>
<http://www.w3.org/ns/shacl#Violation> .
_:b271983AAx5
<http://www.w3.org/ns/shacl#sourceConstraintComponent>
<http://www.w3.org/ns/shacl#MinCountConstraintComponent> .
_:b271983AAx5 <http://www.w3.org/ns/shacl#sourceShape>
_:b271983AAx3 .

You can have the triples added to the repository by specifying
the --add-to-repo option true.

In the plain output information is provided about how many
data graphs are examined, how many shape graphs were specified
and node shapes are found, and how many focus nodes are
checked. If zero focus nodes are checked, that is likely not
what you want and something has gone wrong. Here we mis-spell
the name of the shape graph (https://franz.com#shapes instead
of https://franz.com#Shapes) and get 0 focus nodes checked:

% bin/agtool shacl-validate --data-graph default --shapes-
graph https://franz.com#shapes shacl-repo-1
Validation report: Conforms
Created: 2019-06-28T10:34:22
Number of shapes graphs: 1

Number of data graphs: 1
Number of NodeShapes: 0
Number of focus nodes checked: 0

SPARQL integration
There are two sets of magic properties defined: one checks for
basic conformance and the other produces validation reports as
triples:

?valid franz:shaclConforms (?dataGraph [?shapesGraph]
)
?valid franz:shaclFocusNodeConforms1 (?dataGraph
?nodeOrNodeCollection)
?valid franz:shaclFocusNodeConforms2 (?dataGraph
?shapesGraph ?nodeOrNodeCollection)
?valid franz:shaclShapeConforms1 (?dataGraph
?shapeOrShapeCollection [?nodeOrNodeCollection])
?valid franz:shaclShapeConforms2 (?dataGraph
?shapesGraph ?shapeOrShapeCollection [
?nodeOrNodeCollection])
(?s ?p ?o) franz:shaclValidationReport (?dataGraph [
?shapesGraph])
(?s ?p ?o) franz:shaclFocusNodeValidationReport1 (
?dataGraph ?nodeOrNodeCollection) .
(?s ?p ?o) franz:shaclFocusNodeValidationReport2 (
?dataGraph ?shapesGraph ?nodeOrNodeCollection) .
(?s ?p ?o) franz:shaclShapeValidationReport1 (
?dataGraph ?shapeOrShapeCollection [
?nodeOrNodeCollection]) .
(?s ?p ?o) franz:shaclShapeValidationReport2 (
?dataGraph ?shapesGraph ?shapeOrShapeCollection [
?nodeOrNodeCollection]) .

In all of the above ?dataGraph and ?shapesGraph can be IRIs,
the literal ‘default’, or a variable that is bound to a SPARQL
collection (list or set) that was previously created with a

function
like https://franz.com/ns/allegrograph/6.5.0/fn#makeSPARQLList
 or https://franz.com/ns/allegrograph/6.5.0/fn#lookupRdfList.
If a collection is used, then the SHACL processor will create
a temporary RDF merge of all of the graphs in it to produce
the data graph or the shapes graph.

Similarly, ?shapeOrShapeCollection and ?nodeOrNodeCollection c
an be bound to an IRI or a SPARQL collection. If a collection
is used, then it must be bound to a list of IRIs. The SHACL
processor will restrict validation to the shape(s) and focus
node(s) (i.e. nodes that should be validated) specified.

The shapesGraph argument is optional in both of
the shaclConforms and shaclValidationReport magic properties.
If the shapesGraph is not specified, then the shapesGraph will
be created by following triples in the dataGraph that use
the sh:shapesGraph predicate. If there are no such triples,
then the shapesGraph will be the same as the dataGraph.

For example, the following SPARQL expression

construct { ?s ?p ?o } where {
 # form a collection of focusNodes
bind(<https://franz.com/ns/allegrograph/6.6.0/fn#makeSPARQLLis
t>(
 <http://Journal1/1942/Article25>,
 <http://Journal1/1943>) as ?nodes)

 (?s ?p ?o)
<https://franz.com/ns/allegrograph/6.6.0/shaclShapeValidationR
eport1>
 ('default' <ex://franz.com/documentShape1> ?nodes) .
}

would use the default graph as the Data Graph and the Shapes
Graph and then validate two focus nodes against the
shape <ex://franz.com/documentShape1>.

https://franz.com/ns/allegrograph/6.5.0/fn#makeSPARQLList
https://franz.com/ns/allegrograph/6.5.0/fn#lookupRdfList

SHACL Example
We build on our simple example above. Start with a fresh
repository so triples from the simple example do not interfere
with this example.

We start with a TriG file with various shapes defined on some
classes.

@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix fr: <https://franz.com#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<https://franz.com#ShapesGraph> {
fr:EmployeeShape
 a sh:NodeShape ;
 sh:targetClass fr:Employee ;
 sh:property [
 ## Every employee must have exactly one ID
 sh:path fr:hasID ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:datatype xsd:string ;
 sh:pattern "^[0-9][0-9][0-9]-[0-9][0-9]-

[0-9][0-9][0-9][0-9]$" ;
] ;
 sh:property [
 ## Every employee is a manager or a worker
 sh:path fr:employeeType ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:datatype xsd:string ;
 sh:in ("Manager" "Worker") ;
] ;
 sh:property [
 ## If birthyear supplied, must be 2001 or before
 sh:path fr:birthYear ;
 sh:maxInclusive 2001 ;
 sh:datatype xsd:integer ;

https://franz.com/agraph/support/documentation/current/shacl.html#simple-example

] ;
 sh:property [
 ## Must have a title, may have more than one
 sh:path fr:hasTitle ;
 sh:datatype xsd:string ;
 sh:minCount 1 ;
] ;

 sh:or (
 ## The President does not have a supervisor
 [
 sh:path fr:hasTitle ;
 sh:hasValue "President" ;
]
 [
 ## Must have a supervisor
 sh:path fr:hasSupervisor ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:class fr:Employee ;
]
) ;

 sh:or (
 # Every employee must either have a wage or a salary
 [
 sh:path fr:hasSalary ;
 sh:datatype xsd:integer ;
 sh:minInclusive 3000 ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
]
 [
 sh:path fr:hasWage ;
 sh:datatype xsd:decimal ;
 sh:minExclusive 15.00 ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
]
)
 .

 }

This file says the following about instances of the
class fr:Employee:

Every employee must have exactly one ID (object1.
of fr:hasID), a string of the form NNN-NN-NNNN where
the Ns are digits (this is the simple example
requirement).
Every employee must have exactly2.
one fr:employeeType triple with value either “Manager”
or “Worker”.
Employees may have a fr:birthYear triple, and if so, the3.
value must be 2001 or earlier.
Employees must have a fr:hasTitle and may have more than4.
one.
All employees except the one with title “President” must5.
have a supervisor (specified with fr:hasSupervisor).
Every employee must either have a wage (a decimal6.
specifying hourly pay, greater than 15.00) or a salary
(an integer specifying monthly pay, greater than or
equal to 3000).

Here is some employee data:

@prefix fr: <https://franz.com#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

{
 fr:Employee
 a rdfs:Class .

 fr:emp001
 a fr:Employee ;
 fr:hasID "000-12-3456" ;
 fr:hasTitle "President" ;
 fr:employeeType "Manager" ;
 fr:birthYear "1953"^^xsd:integer ;

 fr:hasSalary "10000"^^xsd:integer .

 fr:emp002
 a fr:Employee ;
 fr:hasID "000-56-3456" ;
 fr:hasTitle "Foreman" ;
 fr:employeeType "Worker" ;
 fr:birthYear "1966"^^xsd:integer ;
 fr:hasSupervisor fr:emp003 ;
 fr:hasWage "20.20"^^xsd:decimal .

 fr:emp003
 a fr:Employee ;
 fr:hasID "000-77-3232" ;
 fr:hasTitle "Production Manager" ;
 fr:employeeType "Manager" ;
 fr:birthYear "1968"^^xsd:integer ;
 fr:hasSupervisor fr:emp001 ;
 fr:hasSalary "4000"^^xsd:integer .

 fr:emp004
 a fr:Employee ;
 fr:hasID "000-88-3456" ;
 fr:hasTitle "Fitter" ;
 fr:employeeType "Worker" ;
 fr:birthYear "1979"^^xsd:integer ;
 fr:hasSupervisor fr:emp002 ;
 fr:hasWage "17.20"^^xsd:decimal .

 fr:emp005
 a fr:Employee ;
 fr:hasID "000-99-3492" ;
 fr:hasTitle "Fitter" ;
 fr:employeeType "Worker" ;
 fr:birthYear "2000"^^xsd:integer ;
 fr:hasWage "17.20"^^xsd:decimal .

 fr:emp006
 a fr:Employee ;
 fr:hasID "000-78-5592" ;
 fr:hasTitle "Filer" ;

 fr:employeeType "Intern" ;
 fr:birthYear "2003"^^xsd:integer ;
 fr:hasSupervisor fr:emp002 ;
 fr:hasWage "14.20"^^xsd:decimal .

 fr:emp007
 a fr:Employee ;
 fr:hasID "000-77-3232" ;
 fr:hasTitle "Sales Manager" ;
 fr:hasTitle "Vice President" ;
 fr:employeeType "Manager" ;
 fr:birthYear "1962"^^xsd:integer ;
 fr:hasSupervisor fr:emp001 ;
 fr:hasSalary "7000"^^xsd:integer .
 }

Comparing these data with the requirements, we see these
problems:

emp005 does not have a supervisor.1.
emp006 is pretty messed up, with (1) employeeType2.
“Intern”, not an allowed value, (2) a birthYear (2003)
later than the required maximum of 2001, and (3) a wage
(14.40) less than the minimum (15.00).

Otherwise the data seems OK.

We load these two TriG files into an emply repository (which
we have named shacl-repo-2). We specify the default graph for
the data and the https://franz.com#ShapesGraph for the shapes.
(Though not required, it is a good idea to specify a graph for
shape data as it makes it easy to delete and reload shapes
while developing.) We have 101 triples, 49 data and 52 shape.
Then we run agtool shacl-validate:

% bin/agtool shacl-validate --shapes-graph
https://franz.com#ShapesGraph --data-graph default shacl-
repo-2

There are four violations, as expected, one for emp005 and
three for emp006.

Validation report: Does not conform
Created: 2019-07-03T11:35:27
Number of shapes graphs: 1
Number of data graphs: 1
Number of NodeShapes: 1
Number of focus nodes checked: 7

4 validation results:
Result:
 Focus node: <https://franz.com#emp005>
 Value: <https://franz.com#emp005>
 Source Shape: <https://franz.com#EmployeeShape>

 Constraint Component:
<https://www.w3.org/ns/shacl#OrConstraintComponent>
 Severity: <https://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp006>
 Path: <https://franz.com#employeeType>
 Value: "Intern"
 Source Shape: _:b19D062B9x221

 Constraint Component:
<http://www.w3.org/ns/shacl#InConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp006>
 Path: <https://franz.com#birthYear>

 Value:
"2003"^^<http://www.w3.org/2001/XMLSchema#integer>
 Source Shape: _:b19D062B9x225

 Constraint Component:
<http://www.w3.org/ns/shacl#MaxInclusiveConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp006>
 Value: <https://franz.com#emp006>
 Source Shape: <https://franz.com#EmployeeShape>

 Constraint Component:
<http://www.w3.org/ns/shacl#OrConstraintComponent>

 Severity: <http://www.w3.org/ns/shacl#Violation>

Fixing the data is left as an exercise for the reader.

Using JSON-LD in AllegroGraph
– Python Example

The following is example #19
from our AllegroGraph Python
Tutorial.

JSON-LD is described pretty well at https://json-ld.org/ and
the specification can be found
at https://json-ld.org/latest/json-ld/ .

The website https://json-ld.org/playground/ is also useful.

There are many reasons for working with JSON-LD. The major
search engines such as Google require ecommerce companies to
mark up their websites with a systematic description of their
products and more and more companies use it as an easy
serialization format to share data.

The benefit for your organization is that you can now combine
your documents with graphs, graph search and graph algorithms.
Normally when you store documents in a document store you set
up your documents in such a way that it is optimized for
direct retrieval queries. Doing complex joins for multiple
types of documents or even doing a shortest path through a
mass of object (types) is however very complicated. Storing
JSON-LD objects in AllegroGraph gives you all the benefits of
a document store and you can semantically link objects

https://allegrograph.com/using-json-ld-in-allegrograph-python-example/
https://allegrograph.com/using-json-ld-in-allegrograph-python-example/
https://franz.com/agraph/support/documentation/current/python/tutorial.html
https://franz.com/agraph/support/documentation/current/python/tutorial.html
https://json-ld.org/
https://json-ld.org/latest/json-ld/
https://json-ld.org/playground/

together, do complex joins and even graph search.

A second benefit is that, as an application developer, you do
not have to learn the entire semantic technology stack,
especially the part where developers have to create individual
triples or edges. You can work with the JSON data
serialization format that application developers usually
prefer.

In the following you will first learn about JSON-LD as a
syntax for semantic graphs. After that we will talk more about
using JSON-LD with AllegroGraph as a document-graph-store.

Setup
You can use Python 2.6+ or Python 3.3+. There are small setup
differences which are noted. You do need agraph-
python-101.0.1 or later.

Mimicking instructions in the Installation document, you
should set up the virtualenv environment.

Create an environment named jsonld:1.

python3 -m venv jsonld

or

python2 -m virtualenv jsonld

Activate it:2.

Using the Bash shell:

source jsonld/bin/activate

Using the C shell:

source jsonld/bin/activate.csh

Install agraph-python:3.

pip install agraph-python

And start python:

python
[various startup and copyright messages]
>>>

We assume you have an AllegroGraph 6.5.0 server running. We
call ag_connect. Modify the host, port, user, and password in
your call to their correct values:

from franz.openrdf.connect import ag_connect
with ag_connect('repo', host='localhost', port='10035',
 user='test', password='xyzzy') as conn:
 print (conn.size())

If the script runs successfully a new repository
named repo will be created.

JSON-LD setup
We next define some utility functions which are somewhat
different from what we have used before in order to work
better with JSON-LD. createdb() creates and opens a new
repository and opendb() opens an existing repo (modify the
values of host, port, user, and password arguments in the
definitions if necessary). Both return repository connections
which can be used to perform repository
operations. showtriples() displays triples in a repository.

import os
import json, requests, copy

from franz.openrdf.sail.allegrographserver import
AllegroGraphServer
from franz.openrdf.connect import ag_connect
from franz.openrdf.vocabulary.xmlschema import XMLSchema
from franz.openrdf.rio.rdfformat import RDFFormat

Functions to create/open a repo and return a
RepositoryConnection
Modify the values of HOST, PORT, USER, and PASSWORD if
necessary

def createdb(name):
 return

ag_connect(name,host="localhost",port=10035,user="test",passwo
rd="xyzzy",create=True,clear=True)

def opendb(name):
 return

ag_connect(name,host="localhost",port=10035,user="test",passwo
rd="xyzzy",create=False)

def showtriples(limit=100):
 statements = conn.getStatements(limit=limit)
 with statements:
 for statement in statements:
 print(statement)

Finally we call our createdb function to create a repository
and return a RepositoryConnection to it:

conn=createdb('jsonplay')

Some Examples of Using JSON-LD
In the following we try things out with some JSON-LD objects
that are defined in json-ld playground: jsonld

The first object we will create is an event dict. Although it
is a Python dict, it is also valid JSON notation. (But note
that not all Python dictionaries are valid JSON. For example,

https://json-ld.org/playground/

JSON uses null where Python would use None and there is no
magic to automatically handle that.) This object has one key
called @context which specifies how to translate keys and
values into predicates and objects. The
following @context says that every time you see ical: it
should be replaced
by http://www.w3.org/2002/12/cal/ical#, xsd: by http://www.w3.
org/2001/XMLSchema#, and that if you see ical:dtstart as a key
than the value should be treated as an xsd:dateTime.

event = {
 "@context": {
 "ical": "http://www.w3.org/2002/12/cal/ical#",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "ical:dtstart": { "@type": "xsd:dateTime" }
 },
 "ical:summary": "Lady Gaga Concert",
 "ical:location": "New Orleans Arena, New Orleans,
Louisiana, USA",
 "ical:dtstart": "2011-04-09T20:00:00Z"
}

Let us try it out (the subjects are blank nodes so you will
see different values):

>>> conn.addData(event)
>>> showtriples()
(_:b197D2E01x1, <http://www.w3.org/2002/12/cal/ical#summary>,
"Lady Gaga Concert")
(_:b197D2E01x1, <http://www.w3.org/2002/12/cal/ical#location>,
"New Orleans Arena, New Orleans, Louisiana, USA")
(_:b197D2E01x1, <http://www.w3.org/2002/12/cal/ical#dtstart>,
"2011-04-09T20:00:00Z"^^<http://www.w3.org/2001/XMLSchema#date
Time>)

Adding an @id and @type to Objects
In the above we see that the JSON-LD was correctly translated
into triples but there are two immediate problems: first each

subject is a blank node, the use of which is problematic when
linking across repositories; and second, the object does not
have an RDF type. We solve these problems by adding an @id to
provide an IRI as the subject and adding a @type for the
object (those are at the lines just after
the @context definition):

>>> event = {
 "@context": {
 "ical": "http://www.w3.org/2002/12/cal/ical#",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "ical:dtstart": { "@type": "xsd:dateTime" }
 },
 "@id": "ical:event-1",
 "@type": "ical:Event",
 "ical:summary": "Lady Gaga Concert",
 "ical:location": "New Orleans Arena, New Orleans,
Louisiana, USA",
 "ical:dtstart": "2011-04-09T20:00:00Z"
 }

We also create a test function to test our JSON-LD objects. It
is more powerful than needed right now (here we just
need conn,addData(event) and showTriples() but test will be
useful in most later examples. Note
the allow_external_references=True argument to addData().
Again, not needed in this example but later examples use
external contexts and so this argument is required for those.

def
test(object,json_ld_context=None,rdf_context=None,maxPrint=100
,conn=conn):
 conn.clear()
 conn.addData(object, allow_external_references=True)
 showtriples(limit=maxPrint)

>>> test(event)
(<http://www.w3.org/2002/12/cal/ical#event-1>,
<http://www.w3.org/2002/12/cal/ical#summary>, "Lady Gaga

Concert")
(<http://www.w3.org/2002/12/cal/ical#event-1>,
<http://www.w3.org/2002/12/cal/ical#location>, "New Orleans
Arena, New Orleans, Louisiana, USA")
(<http://www.w3.org/2002/12/cal/ical#event-1>,
<http://www.w3.org/2002/12/cal/ical#dtstart>,
"2011-04-09T20:00:00Z"^^<http://www.w3.org/2001/XMLSchema#date
Time>)
(<http://www.w3.org/2002/12/cal/ical#event-1>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://www.w3.org/2002/12/cal/ical#Event>)

Note in the above that we now have a proper subject and a
type.

Referencing a External Context Via a URL
The next object we add to AllegroGraph is a person object.
This time the @context is not specified as a JSON object but
as a link to a context that is stored at http://schema.org/.
Also in the definition of the function test above we had this
parameter in addData:allow_external_references=True. Requiring
that argument explicitly is a security feature. One should use
external references only that context at that URL is trusted
(as it is in this case).

person = {
 "@context": "http://schema.org/",
 "@type": "Person",
 "@id": "foaf:person-1",
 "name": "Jane Doe",
 "jobTitle": "Professor",
 "telephone": "(425) 123-4567",
 "url": "http://www.janedoe.com"
}

>>> test(person)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://schema.org/name>, "Jane Doe")

http://schema.org/

(<http://xmlns.com/foaf/0.1/person-1>,
<http://schema.org/jobTitle>, "Professor")
(<http://xmlns.com/foaf/0.1/person-1>,
<http://schema.org/telephone>, "(425) 123-4567")
(<http://xmlns.com/foaf/0.1/person-1>,
<http://schema.org/url>, <http://www.janedoe.com>)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://schema.org/Person>)

Improving Performance by Adding Lists
Adding one person at a time requires doing an interaction with
the server for each person. It is much more efficient to add
lists of objects all at once rather than one at a time. Note
that addData will take a list of dicts and still do the right
thing. So let us add a 1000 persons at the same time, each
person being a copy of the above person but with a
different @id. (The example code is repeated below for ease of
copying.)

>>> x = [copy.deepcopy(person) for i in range(1000)]
>>> len(x)
1000
>>> c = 0
>>> for el in x:
 el['@id']= "http://franz.com/person-" + str(c)
 c= c + 1
>>> test(x,maxPrint=10)
(<http://franz.com/person-0>, <http://schema.org/name>, "Jane
Doe")
(<http://franz.com/person-0>, <http://schema.org/jobTitle>,
"Professor")
(<http://franz.com/person-0>, <http://schema.org/telephone>,
"(425) 123-4567")
(<http://franz.com/person-0>, <http://schema.org/url>,
<http://www.janedoe.com>)
(<http://franz.com/person-0>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://schema.org/Person>)
(<http://franz.com/person-1>, <http://schema.org/name>, "Jane
Doe")
(<http://franz.com/person-1>, <http://schema.org/jobTitle>,
"Professor")
(<http://franz.com/person-1>, <http://schema.org/telephone>,
"(425) 123-4567")
(<http://franz.com/person-1>, <http://schema.org/url>,
<http://www.janedoe.com>)
(<http://franz.com/person-1>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://schema.org/Person>)
>>> conn.size()
5000
>>>

x = [copy.deepcopy(person) for i in range(1000)]
len(x)

c = 0
for el in x:
 el['@id']= "http://franz.com/person-" + str(c)
 c= c + 1

test(x,maxPrint=10)

conn.size()

Adding a Context Directly to an Object
You can download a context directly in Python, modify it and
then add it to the object you want to store. As an
illustration we load a person context from json-ld.org
(actually a fragment of the schema.org context) and insert it
in a person object. (We have broken and truncated some output
lines for clarity and all the code executed is repeated below
for ease of copying.)

>>>

context=requests.get("https://json-ld.org/contexts/person.json
ld").json()['@context']
>>> context
{'Person': 'http://xmlns.com/foaf/0.1/Person',
 'xsd': 'http://www.w3.org/2001/XMLSchema#',
 'name': 'http://xmlns.com/foaf/0.1/name',
 'jobTitle': 'http://xmlns.com/foaf/0.1/title',
 'telephone': 'http://schema.org/telephone',
 'nickname': 'http://xmlns.com/foaf/0.1/nick',
 'affiliation': 'http://schema.org/affiliation',
 'depiction': {'@id': 'http://xmlns.com/foaf/0.1/depiction',
'@type': '@id'},
 'image': {'@id': 'http://xmlns.com/foaf/0.1/img', '@type':
'@id'},
 'born': {'@id': 'http://schema.org/birthDate', '@type':
'xsd:date'},
 ...}
>>> person = {
 "@context": context,
 "@type": "Person",
 "@id": "foaf:person-1",
 "name": "Jane Doe",
 "jobTitle": "Professor",
 "telephone": "(425) 123-4567",
}
>>> test(person)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://xmlns.com/foaf/0.1/name>, "Jane Doe")
(<http://xmlns.com/foaf/0.1/person-1>,
<http://xmlns.com/foaf/0.1/title>, "Professor")
(<http://xmlns.com/foaf/0.1/person-1>,
<http://schema.org/telephone>, "(425) 123-4567")
(<http://xmlns.com/foaf/0.1/person-1>,
 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
 <http://xmlns.com/foaf/0.1/Person>)
>>>

context=requests.get("https://json-ld.org/contexts/person.json
ld").json()['@context']
The next produces lots of output, uncomment if desired
#context

person = {
 "@context": context,
 "@type": "Person",
 "@id": "foaf:person-1",
 "name": "Jane Doe",
 "jobTitle": "Professor",
 "telephone": "(425) 123-4567",
}
test(person)

Building a Graph of Objects
We start by forcing a key’s value to be stored as a resource.
We saw above that we could specify the value of a key to be a
date using the xsd:dateTime specification. We now do it again
for foaf:birthdate. Then we created several linked objects and
show the connections using Gruff.

context = { "foaf:child": {"@type":"@id"},
 "foaf:brotherOf": {"@type":"@id"},
 "foaf:birthdate": {"@type":"xsd:dateTime"}}

p1 = {
 "@context": context,
 "@type":"foaf:Person",
 "@id":"foaf:person-1",
 "foaf:birthdate": "1958-04-09T20:00:00Z",
 "foaf:child": ['foaf:person-2', 'foaf:person-3']
}

p2 = {
 "@context": context,
 "@type":"foaf:Person",
 "@id":"foaf:person-2",
 "foaf:brotherOf": "foaf:person-3",
 "foaf:birthdate": "1992-04-09T20:00:00Z",
}

p3 = {"@context": context,
 "@type":"foaf:Person",

 "@id":"foaf:person-3",
 "foaf:birthdate": "1994-04-09T20:00:00Z",
}

test([p1,p2,p3])

>>> test([p1,p2,p3])
(<http://xmlns.com/foaf/0.1/person-1>,
<http://xmlns.com/foaf/0.1/birthdate>,
"1958-04-09T20:00:00Z"^^<http://www.w3.org/2001/XMLSchema#date
Time>)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://xmlns.com/foaf/0.1/child>,
<http://xmlns.com/foaf/0.1/person-2>)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://xmlns.com/foaf/0.1/child>,
<http://xmlns.com/foaf/0.1/person-3>)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://xmlns.com/foaf/0.1/Person>)
(<http://xmlns.com/foaf/0.1/person-2>,
<http://xmlns.com/foaf/0.1/brotherOf>,
<http://xmlns.com/foaf/0.1/person-3>)
(<http://xmlns.com/foaf/0.1/person-2>,
<http://xmlns.com/foaf/0.1/birthdate>,
"1992-04-09T20:00:00Z"^^<http://www.w3.org/2001/XMLSchema#date
Time>)
(<http://xmlns.com/foaf/0.1/person-2>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://xmlns.com/foaf/0.1/Person>)
(<http://xmlns.com/foaf/0.1/person-3>,
<http://xmlns.com/foaf/0.1/birthdate>,
"1994-04-09T20:00:00Z"^^<http://www.w3.org/2001/XMLSchema#date
Time>)
(<http://xmlns.com/foaf/0.1/person-3>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://xmlns.com/foaf/0.1/Person>)

The following shows the graph that we created in Gruff. Note
that this is what JSON-LD is all about: connecting objects
together.

JSON-LD Keyword Directives can be Added
at any Level
Here is an example from the wild. The
URL https://www.ulta.com/antioxidant-facial-oil?productId=xlsI
mpprod18731241 goes to a web page advertising a facial oil.
(We make no claims or recommendations about this product. We
are simply showing how JSON-LD appears in many places.) Look
at the source of the page and you’ll find a JSON-LD object
similar to the following. Note that @ directives go to any
level. We added an @id key.

hippieoil = {"@context":"http://schema.org",
 "@type":"Product",
 "@id":"http://franz.com/hippieoil",
 "aggregateRating":
 {"@type":"AggregateRating",
 "ratingValue":4.6,

https://franz.com/agraph/support/documentation/current/python/_images/person-graph.png

 "reviewCount":73},
 "description":"""Make peace with your inner hippie while
hydrating & protecting against photoaging....Mad Hippie's
preservative-free Antioxidant Facial Oil is truly the most
natural way to moisturize.""",
 "brand":"Mad Hippie",
 "name":"Antioxidant Facial Oil",
 "image":"https://images.ulta.com/is/image/Ulta/2530018",
 "productID":"2530018",
 "offers":
 {"@type":"Offer",
 "availability":"http://schema.org/InStock",
 "price":"24.99",
 "priceCurrency":"USD"}}

test(hippieoil)

JSON-LD @graphs
One can put one or more JSON-LD objects in an RDF named graph.
This means that the fourth element of each triple generated
from a JSON-LD object will have the specified graph name.
Let’s show in an example.

context = {
 "name": "http://schema.org/name",
 "description": "http://schema.org/description",
 "image": {
 "@id": "http://schema.org/image", "@type": "@id"
},

https://franz.com/agraph/support/documentation/current/python/_images/hippieoil.png

 "geo": "http://schema.org/geo",
 "latitude": {
 "@id": "http://schema.org/latitude", "@type":
"xsd:float" },
 "longitude": {
 "@id": "http://schema.org/longitude", "@type":
"xsd:float" },
 "xsd": "http://www.w3.org/2001/XMLSchema#"
 }

place = {
 "@context": context,
 "@id": "http://franz.com/place1",
 "@graph": {
 "@id": "http://franz.com/place1",
 "@type": "http://franz.com/Place",
 "name": "The Empire State Building",
 "description": "The Empire State Building is a 102-
story landmark in New York City.",

 "image":
"http://www.civil.usherbrooke.ca/cours/gci215a/empire-state-bu
ilding.jpg",
 "geo": {
 "latitude": "40.75",
 "longitude": "73.98" }
 }}

and here is the result:

>>> test(place, maxPrint=3)
(<http://franz.com/place1>, <http://schema.org/name>, "The
Empire State Building", <http://franz.com/place1>)
(<http://franz.com/place1>, <http://schema.org/description>,
"The Empire State Building is a 102-story landmark in New York
City.", <http://franz.com/place1>)
(<http://franz.com/place1>, <http://schema.org/image>,
<http://www.civil.usherbrooke.ca/cours/gci215a/empire-state-bu
ilding.jpg>, <http://franz.com/place1>)
>>>

Note that the fourth element (graph) of each of the triples is

<http://franz.com/place1>. If you don’t add the @id the
triples will be put in the default graph.

Here a slightly more complex example:

library = {
 "@context": {
 "dc": "http://purl.org/dc/elements/1.1/",
 "ex": "http://example.org/vocab#",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "ex:contains": {
 "@type": "@id"
 }
 },
 "@id": "http://franz.com/mygraph1",
 "@graph": [
 {
 "@id": "http://example.org/library",
 "@type": "ex:Library",
 "ex:contains": "http://example.org/library/the-republic"
 },
 {
 "@id": "http://example.org/library/the-republic",
 "@type": "ex:Book",
 "dc:creator": "Plato",
 "dc:title": "The Republic",

 "ex:contains":
"http://example.org/library/the-republic#introduction"
 },
 {

 "@id":
"http://example.org/library/the-republic#introduction",
 "@type": "ex:Chapter",
 "dc:description": "An introductory chapter on The
Republic.",
 "dc:title": "The Introduction"
 }
]
}

With the result:

>>> test(library, maxPrint=3)
(<http://example.org/library>,
<http://example.org/vocab#contains>,
<http://example.org/library/the-republic>,
<http://franz.com/mygraph1>) (<http://example.org/library>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://example.org/vocab#Library>,
<http://franz.com/mygraph1>)
(<http://example.org/library/the-republic>,
<http://purl.org/dc/elements/1.1/creator>,
"Plato",<http://franz.com/mygraph1>)
>>>

JSON-LD as a Document Store
So far we have treated JSON-LD as a syntax to create triples.
Now let us look at the way we can start using AllegroGraph as
a combination of a document store and graph database at the
same time. And also keep in mind that we want to do it in such
a way that you as a Python developer can add documents such as
dictionaries and also retrieve values or documents as
dictionaries.

https://franz.com/agraph/support/documentation/current/python/_images/library-graph.png

Setup
The Python source file jsonld_tutorial_helper.py contains
various definitions useful for the remainder of this example.
Once it is downloaded, do the following (after adding the path
to the filename):

conn=createdb("docugraph")
from jsonld_tutorial_helper import *
addNamespace(conn,"jsonldmeta","http://franz.com/ns/allegrogra
ph/6.4/load-meta#")
addNamespace(conn,"ical","http://www.w3.org/2002/12/cal/ical#"
)

Let’s use our event structure again and see how we can store
this JSON document in the store as a document. Note that
the addData call includes the
keyword: json_ld_store_source=True.

event = {
 "@context": {
 "@id": "ical:event1",
 "@type": "ical:Event",
 "ical": "http://www.w3.org/2002/12/cal/ical#",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "ical:dtstart": { "@type": "xsd:dateTime" }
 },
 "ical:summary": "Lady Gaga Concert",
 "ical:location":
 "New Orleans Arena, New Orleans, Louisiana, USA",
 "ical:dtstart": "2011-04-09T20:00:00Z"
}

>>> conn.addData(event,
allow_external_references=True,json_ld_store_source=True)

The jsonld_tutorial_helper.py file defines the
function store as simple wrapper around addDatathat always
saves the JSON source. For experimentation reasons it also has
a parameter fresh to clear out the repository first.

>>> store(conn,event, fresh=True)

If we look at the triples in Gruff we see that the JSON source
is stored as well, on the root (top-level @id) of the JSON
object.

For the following part of the tutorial we want a little bit
more data in our repository so please look at the helper
file jsonld_tutorial_helper.py where you will see that at the
end we have a dictionary named obs with about 9 diverse
objects, mostly borrowed from the json-ld.org site: a person,
an event, a place, a recipe, a group of persons, a product,
and our hippieoil.

First let us store all the objects in a fresh repository. Then
we check the size of the repo. Finally, we create a freetext
index for the JSON sources.

>>> store(conn,[v for k,v in obs.items()], fresh=True)
>>> conn.size()
86
>>>
conn.createFreeTextIndex("source",['<http://franz.com/ns/alleg

https://franz.com/agraph/support/documentation/current/python/_images/event-store-source.png

rograph/6.4/load-meta#source>'])
>>>

Retrieving values with SPARQL
To simply retrieve values in objects but not the objects
themselves, regular SPARQL queries will suffice. But because
we want to make sure that Python developers only need to deal
with regular Python structures as lists and dictionaries, we
created a simple wrapper around SPARQL (see helper file). The
name of the wrapper is runSparql.

Here is an example. Let us find all the roots (top-level @ids)
of objects and their types. Some objects do not have roots,
so None stands for a blank node.

>>> pprint(runSparql(conn,"select ?s ?type { ?s a ?type }"))
[{'s': 'cocktail1', 'type': 'Cocktail'},
 {'s': None, 'type': 'Individual'},
 {'s': None, 'type': 'Vehicle'},
 {'s': 'tesla', 'type': 'Offering'},
 {'s': 'place1', 'type': 'Place'},
 {'s': None, 'type': 'Offer'},
 {'s': None, 'type': 'AggregateRating'},
 {'s': 'hippieoil', 'type': 'Product'},
 {'s': 'person-3', 'type': 'Person'},
 {'s': 'person-2', 'type': 'Person'},
 {'s': 'person-1', 'type': 'Person'},
 {'s': 'person-1000', 'type': 'Person'},
 {'s': 'event1', 'type': 'Event'}]
>>>

We do not see the full URIs for ?s and ?type. You can see them
by adding an appropriate formatargument to runSparql, but the
default is terse.

>>> pprint(runSparql(conn,"select ?s ?type { ?s a ?type }
limit 2",format='ntriples'))
[{'s': '<http://franz.com/cocktail1>', 'type':

'<http://franz.com/Cocktail>'},
 {'s': None, 'type':

'<http://purl.org/goodrelations/v1#Individual>'}]
>>>

Retrieving a Dictionary or Object
retrieve is another function defined
(in jsonld_tutorial_helper.py) for this tutorial. It is a
wrapper around SPARQL to help extract objects. Here we see how
we can use it. The sole purpose of retrieve is to retrieve the
JSON-LD/dictionary based on a SPARQL pattern.

>>> retrieve(conn,"{?this a ical:Event}")
[{'@type': 'ical:Event', 'ical:location': 'New Orleans Arena,
New Orleans, Louisiana, USA', 'ical:summary': 'Lady Gaga
Concert', '@id': 'ical:event1', '@context': {'xsd':
'http://www.w3.org/2001/XMLSchema#', 'ical':
'http://www.w3.org/2002/12/cal/ical#', 'ical:dtstart':
{'@type': 'xsd:dateTime'}}, 'ical:dtstart':
'2011-04-09T20:00:00Z'}]
>>>

Ok, for a final fun (if you like expensive cars) example: Let
us find a thing that is “fast and furious”, that is worth more
than $80,000 and that we can pay for in cash:

>>>
addNamespace(conn,"gr","http://purl.org/goodrelations/v1#")
>>> x = retrieve(conn, """{ ?this fti:match 'fast furious*';
 gr:acceptedPaymentMethods gr:Cash ;
 gr:hasPriceSpecification ?price .
 ?price gr:hasCurrencyValue ?value ;
 gr:hasCurrency "USD" .
 filter (?value > 80000.0) }""")
>>> pprint(x)
[{'@context': {'foaf': 'http://xmlns.com/foaf/0.1/',
 'foaf:page': {'@type': '@id'},
 'gr': 'http://purl.org/goodrelations/v1#',

 'gr:acceptedPaymentMethods': {'@type': '@id'},
 'gr:hasBusinessFunction': {'@type': '@id'},
 'gr:hasCurrencyValue': {'@type': 'xsd:float'},
 'pto': 'http://www.productontology.org/id/',
 'xsd': 'http://www.w3.org/2001/XMLSchema#'},
 '@id': 'http://example.org/cars/for-sale#tesla',
 '@type': 'gr:Offering',
 'gr:acceptedPaymentMethods': 'gr:Cash',
 'gr:description': 'Need to sell fast and furiously',
 'gr:hasBusinessFunction': 'gr:Sell',
 'gr:hasPriceSpecification': {'gr:hasCurrency': 'USD',
 'gr:hasCurrencyValue':
'85000'},
 'gr:includes': {'@type': ['gr:Individual', 'pto:Vehicle'],
 'foaf:page':

'http://www.teslamotors.com/roadster',
 'gr:name': 'Tesla Roadster'},
 'gr:name': 'Used Tesla Roadster'}]
>>> x[0]['@id']
'http://example.org/cars/for-sale#tesla'

New!!! AllegroGraph v6.5 –
Multi-model Semantic Graph
and Document Database
Download – AllegroGraph v6.5 and Gruff v7.3

AllegroGraph – Documentation

Gruff – Documentation

Adding JSON/JSON-LD Documents to a Graph Database

Traditional document databases (e.g. MongoDB) have excelled at
storing documents at scale, but are not designed for linking

https://allegrograph.com/new-allegrograph-v6-5-multi-model-semantic-graph-and-document-database/
https://allegrograph.com/new-allegrograph-v6-5-multi-model-semantic-graph-and-document-database/
https://allegrograph.com/new-allegrograph-v6-5-multi-model-semantic-graph-and-document-database/
https://allegrograph.com/downloads/
https://allegrograph.com/downloads/
https://franz.com/agraph/support/documentation/current/agraph-introduction.html
https://franz.com/agraph/gruff/gruff_documentation.html

data to other documents in the same database or in different
databases. AllegroGraph 6.5 delivers the unique power to
define many different types of documents that can all point to
each other using standards-based semantic linking and then run
SPARQL queries, conduct graph searches, execute complex joins
and even apply Prolog AI rules directly on a diverse sea of
objects.

AllegroGraph 6.5 provides free text indexes of JSON documents
for retrieval of information about entities, similar to
document databases. But unlike document databases, which only
link data objects within documents in a single database,
AllegroGraph 6.5 moves the needle forward in data analytics by
semantically linking data objects across multiple JSON
document stores, RDF databases and CSV files. Users can run a
single SPARQL query that results in a combination of
structured data and unstructured information inside documents
and CSV files. AllegroGraph 6.5 also enables retrieval of
entire documents.

There are many reasons for working with JSON-LD. The big
search engines force ecommerce companies to mark up their
webpages with a systematic description of their products and
more and more companies use it as an easy serialization format
to share data.

A direct benefit for companies using AllegroGraph is that they
now can combine their documents with graphs, graph search and
graph algorithms. Normally when you store documents in a
document database you set up your documents in such a way that
it is optimized for certain direct retrieval queries.
Performing complex joins for multiple types of documents or
even performing a shortest path through a mass of object
(types) is too complicated. Storing JSON-LD objects in
AllegroGraph gives users all the benefits of a document
database AND the ability to semantically link objects
together, run complex joins, and perform graph search queries.

Another key benefit for companies is that your application
developers don’t have to learn the entire semantic technology
stack, especially the part where developers have to create
individual RDF triples or edges. Application developers love
to work with JSON data as serialization for objects. In
JavaScript the JSON format is syntactically identical to the
code for creating JavaScript objects and in Python the most
import data structure is the ‘dictionary’ which is also near
identical to JSON.

Key AllegroGraph v6.5 Features:

Support for loading JSON-LD and also some non-RDF data
files, that is files which are not already organized
into triples or quads. See Loading non-RDF data section
in the Data Loading document for more information on
loading non-RDF data files. Loading JSON-LD files is
described along with other RDF formats in the Data
Loading document. The section Supported RDF
formats lists all supported RDF formats.

Support for two phase commits (2PC), which allows
AllegroGraph to participate in distributed transactions
compromising a number of AllegroGraph and non-
AllegroGraph databases (e.g. MongoDB, Solr, etc), and to
ensure that the work of a transaction must either be
committed on all participants or be rolled back on all
participants. Two-phase commit is described in the Two-
phase commit document.

An event scheduler: Users can schedule events in the
future. The event specifies a script to run. It can run
once or repeatedly on a regular schedule. See the Event
Scheduler document for more information.

https://franz.com/agraph/support/documentation/current/agload.html#loading-raw-data
https://franz.com/agraph/support/documentation/current/agload.html
https://franz.com/agraph/support/documentation/current/agload.html
https://franz.com/agraph/support/documentation/current/agload.html
https://franz.com/agraph/support/documentation/current/agload.html#supported-rdf
https://franz.com/agraph/support/documentation/current/agload.html#supported-rdf
https://franz.com/agraph/support/documentation/current/two-phase-commit.html
https://franz.com/agraph/support/documentation/current/two-phase-commit.html
https://franz.com/agraph/support/documentation/current/scheduler.html
https://franz.com/agraph/support/documentation/current/scheduler.html

AllegroGraph is 100 percent ACID, supporting
Transactions: Commit, Rollback, and Checkpointing. Full
and Fast Recoverability. Multi-Master Replication
Triple Attributes – Quads/Triples can now have
attributes which can provide fine access control.
Data Science – Anaconda, R Studio
3D and multi-dimensional geospatial functionality
SPARQL v1.1 Support for Geospatial, Temporal, Social
Networking Analytics, Hetero Federations
Cloudera, Solr, and MongoDB integration
JavaScript stored procedures
RDF4J Friendly, Java Connection Pooling
Graphical Query Builder for SPARQL and Prolog – Gruff
SHACL (Beta) and SPIN Support (SPARQL Inferencing
Notation)
AGWebView – Visual Graph Search, Query Interface, and DB
Management
Transactional Duplicate triple/quad deletion and
suppression
Advanced Auditing Support
Dynamic RDFS++ Reasoning and OWL2 RL Materializer
AGLoad with Parallel loader optimized for both
traditional spinning media and SSDs.

Numerous other optimizations, features, and enhancements.
Read the release notes –
https://franz.com/agraph/support/documentation/current/release
-notes.html

https://franz.com/agraph/support/documentation/current/release-notes.html
https://franz.com/agraph/support/documentation/current/release-notes.html

