
Using Microsoft Power BI with
AllegroGraph
There are multiple methods to integrate AllegroGraph SPARQL
results into Microsoft Power BI. In this document we describe
two best practices to automate queries and refresh results if
you have a production AllegroGraph database with new streaming
data:

The first method uses Python scripts to feed Power BI. The
second method issues SPARQL queries directly from Power BI
using POST requests.

Method 1: Python Script:

Assuming you know Python and have it installed locally, this
is definitely the easiest way to incorporate SPARQL results
into Power BI. The basic idea of the method is as follows:
First, the Python script enables a connection to your desired
AllegroGraph repository. Then we utilize AllegroGraph’s
Python API within our script to run a SPARQL query and return
it as a Pandas dataframe. When running this script within
Power BI Desktop, the Python scripting service recognizes all
unique dataframes created, and allows you to import the
dataframe into Power BI as a table, which can then be used to
create visualizations.

Requirements:

You must have the AllegroGraph Python API installed. If1.
you do not, installation instructions are here:
https://franz.com/agraph/support/documentation/current/p
ython/install.html
Python scripting must be enabled in Power BI Desktop.2.
Instructions to do so are here:
https://docs.microsoft.com/en-us/power-bi/connect-data/d
esktop-python-scripts

https://allegrograph.com/using-microsoft-power-bi-with-allegrograph/
https://allegrograph.com/using-microsoft-power-bi-with-allegrograph/
https://franz.com/agraph/support/documentation/current/python/install.html
https://franz.com/agraph/support/documentation/current/python/install.html
https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-python-scripts
https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-python-scripts

a) As mentioned in the article, pandas and matplotlib
must be installed. This can be done with ‘pip install
pandas’ and ‘pip install matplotlib’ in your terminal.

The Process:

Once these requirements have been met, create a Python file
with whatever script editor you usually use. The following
code will create a connection to your desired repository. For
this example, we will be using the Kennedy dataset that is
available with the AllegroGraph distribution (See the
‘Tutorial’ directory). Load the Kennedy.ntriples file into
your running AllegroGraph. (Replace the ‘****’ in the code
with your corresponding username and password.)

#the necessary imports

import os

from franz.openrdf.connect import ag_connect

from franz.openrdf.query.query import QueryLanguage

import pandas as pd

#connect to your agraph repository

def setup_env_var(var_name, value, description):

os.environ[var_name] = value

print("{}: {}".format(description, value))

setup_env_var('AGRAPH_HOST', 'localhost', 'Hostname')

setup_env_var('AGRAPH_PORT', '10035', 'Port')

setup_env_var('AGRAPH_USER', '****', 'Username')

setup_env_var('AGRAPH_PASSWORD', '****', 'Password')

conn = ag_connect('kennedy', create=False, clear=False)

2. We then want to create a query. For this example, we will
first show what our data looks like, what the visual query of
the information is, and what the written query looks like.
With the following query we want every person’s first and last
names, as well as their birth years. Here is a small portion
of the data visualized in Gruff, and then the visualization of
the query:

3. Then add the written query to the python script as a
variable string (we added an additional line to the query to
sort on birth year). Next use the API functionality to simply
execute the query and turn the results into a pandas
dataframe.

query = """select ?person ?first_name ?last_name ?birth_year
where
{ ?person <http://www.franz.com/simple#first-name> ?first_name
;
 <http://www.franz.com/simple#birth-year> ?birth_year
;
 rdf:type <http://www.franz.com/simple#person> ;
 <http://www.franz.com/simple#last-name> ?last_name .
}
order by desc(?birth_year)"""

with conn.executeTupleQuery(query) as result:
 df = result.toPandas()

When looking at the result, we see that we have a DataFrame!

4. Now we will use this script in Power BI. When in Power BI
Desktop, go to ‘Get Data’ and look for the python script
option. Then simply copy and paste your entire script into the

text box, and run the script. In this case, our output looks
like this:

5. Next simply ‘Load’ the data, and then you can use the
Power BI Desktop interface to create whatever visualizations
you want! If you do have a lot of additional operations to
perform on your dataframe, we recommend doing these in your
python script.

Method 2: POST Request:

For the SPARQL query via POST requests to work you need to
url-encode the query. Every modern programming language will
support that, but in our example we will be using Python
again. This method is better for when you do not have python
locally installed or prefer a different programming language.

It is possible to send a GET request from Power BI, but once
the results from the query reach a certain size, a POST
request is required, which is confusing to do within the Power
BI Desktop interface. The following steps will show you how to
do SPARQL Queries using POST requests. It looks a bit odd but
it works well.

The Process:

1. In your AG WebView create an ‘anonymous’ user. (Go to
admin -> Users -> [add a user] -> and add ‘anonymous’ as

username without adding a password). You can use these
settings:

2. Go to your desired repository in WebView and Click on
‘Queries’ -> ‘New’

3. Write a simple SPARQL query, and run it to make sure you
get the correct response back.

4. In python create the following script: (Assuming your
AllegroGraph is on your localhost port 10035 and your repo is
called ‘kennedy’)

import urllib

def CreatePOSTquery(query):
 start =

"http://anonymous:@localhost:10035/repositories/kennedy?queryL
n=SPARQL&limit=1000&infer=false&returnQueryMetadata=false&chec
kVariables=false&query="
 response = start + urllib.parse.quote(query)
 return response

This function url-encodes the query and attaches it to the
POST request. Replace the ‘localhost:10035’ and ‘kennedy’
strings in the start variable with your corresponding data.
Then, using the same query as our previous example, we create

our url-encoded POST query:

query = """select ?person ?first_name ?last_name ?birth_year
where
{ ?person <http://www.franz.com/simple#first-name> ?first_name
;
 <http://www.franz.com/simple#birth-year> ?birth_year
;
 rdf:type <http://www.franz.com/simple#person> ;
 <http://www.franz.com/simple#last-name> ?last_name .
}
order by desc(?birth_year)"""

result = CreatePOSTquery(query)
print(result)

This gives us the following result:

5. Within Power BI Desktop we go to ‘Get data’ and create a
‘Blank query’ and go into the ‘Advanced Editor’ window. Using
the following format we will get our desired results (please
note that due to the length of the url-encoded request, it did
not all fit in the image. Copy and pasting into the url field
works fine. The ‘url’ variable needs to be in quotes and have
a comma at the end):

We see the following results:

6. One last step is to turn the top row into the column
names, which can be achieved by pressing the ‘Use first row as
headers’:

The best part about both of these methods is that once the
query has been created, Power BI can refresh the visuals using
the same queries if your data changed. This can be achieved by

scheduling refreshes within the Power BI Desktop interface
(https://docs.microsoft.com/en-us/power-bi/connect-data/refres
h-data#configure-scheduled-refresh)

Please send any questions or issues to: support@franz.com

Using JSON-LD in AllegroGraph
– Python Example

The following is example #19
from our AllegroGraph Python
Tutorial.

JSON-LD is described pretty well at https://json-ld.org/ and
the specification can be found
at https://json-ld.org/latest/json-ld/ .

The website https://json-ld.org/playground/ is also useful.

There are many reasons for working with JSON-LD. The major
search engines such as Google require ecommerce companies to
mark up their websites with a systematic description of their
products and more and more companies use it as an easy
serialization format to share data.

The benefit for your organization is that you can now combine
your documents with graphs, graph search and graph algorithms.
Normally when you store documents in a document store you set
up your documents in such a way that it is optimized for
direct retrieval queries. Doing complex joins for multiple

https://docs.microsoft.com/en-us/power-bi/connect-data/refresh-data#configure-scheduled-refresh
https://docs.microsoft.com/en-us/power-bi/connect-data/refresh-data#configure-scheduled-refresh
mailto:support@franz.com
https://allegrograph.com/using-json-ld-in-allegrograph-python-example/
https://allegrograph.com/using-json-ld-in-allegrograph-python-example/
https://franz.com/agraph/support/documentation/current/python/tutorial.html
https://franz.com/agraph/support/documentation/current/python/tutorial.html
https://json-ld.org/
https://json-ld.org/latest/json-ld/
https://json-ld.org/playground/

types of documents or even doing a shortest path through a
mass of object (types) is however very complicated. Storing
JSON-LD objects in AllegroGraph gives you all the benefits of
a document store and you can semantically link objects
together, do complex joins and even graph search.

A second benefit is that, as an application developer, you do
not have to learn the entire semantic technology stack,
especially the part where developers have to create individual
triples or edges. You can work with the JSON data
serialization format that application developers usually
prefer.

In the following you will first learn about JSON-LD as a
syntax for semantic graphs. After that we will talk more about
using JSON-LD with AllegroGraph as a document-graph-store.

Setup
You can use Python 2.6+ or Python 3.3+. There are small setup
differences which are noted. You do need agraph-
python-101.0.1 or later.

Mimicking instructions in the Installation document, you
should set up the virtualenv environment.

Create an environment named jsonld:1.

python3 -m venv jsonld

or

python2 -m virtualenv jsonld

Activate it:2.

Using the Bash shell:

source jsonld/bin/activate

Using the C shell:

source jsonld/bin/activate.csh

Install agraph-python:3.

pip install agraph-python

And start python:

python
[various startup and copyright messages]
>>>

We assume you have an AllegroGraph 6.5.0 server running. We
call ag_connect. Modify the host, port, user, and password in
your call to their correct values:

from franz.openrdf.connect import ag_connect
with ag_connect('repo', host='localhost', port='10035',
 user='test', password='xyzzy') as conn:
 print (conn.size())

If the script runs successfully a new repository
named repo will be created.

JSON-LD setup
We next define some utility functions which are somewhat
different from what we have used before in order to work
better with JSON-LD. createdb() creates and opens a new
repository and opendb() opens an existing repo (modify the
values of host, port, user, and password arguments in the
definitions if necessary). Both return repository connections
which can be used to perform repository
operations. showtriples() displays triples in a repository.

import os
import json, requests, copy

from franz.openrdf.sail.allegrographserver import
AllegroGraphServer
from franz.openrdf.connect import ag_connect
from franz.openrdf.vocabulary.xmlschema import XMLSchema
from franz.openrdf.rio.rdfformat import RDFFormat

Functions to create/open a repo and return a
RepositoryConnection
Modify the values of HOST, PORT, USER, and PASSWORD if
necessary

def createdb(name):
 return

ag_connect(name,host="localhost",port=10035,user="test",passwo
rd="xyzzy",create=True,clear=True)

def opendb(name):
 return

ag_connect(name,host="localhost",port=10035,user="test",passwo
rd="xyzzy",create=False)

def showtriples(limit=100):
 statements = conn.getStatements(limit=limit)
 with statements:
 for statement in statements:
 print(statement)

Finally we call our createdb function to create a repository
and return a RepositoryConnection to it:

conn=createdb('jsonplay')

Some Examples of Using JSON-LD
In the following we try things out with some JSON-LD objects
that are defined in json-ld playground: jsonld

https://json-ld.org/playground/

The first object we will create is an event dict. Although it
is a Python dict, it is also valid JSON notation. (But note
that not all Python dictionaries are valid JSON. For example,
JSON uses null where Python would use None and there is no
magic to automatically handle that.) This object has one key
called @context which specifies how to translate keys and
values into predicates and objects. The
following @context says that every time you see ical: it
should be replaced
by http://www.w3.org/2002/12/cal/ical#, xsd: by http://www.w3.
org/2001/XMLSchema#, and that if you see ical:dtstart as a key
than the value should be treated as an xsd:dateTime.

event = {
 "@context": {
 "ical": "http://www.w3.org/2002/12/cal/ical#",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "ical:dtstart": { "@type": "xsd:dateTime" }
 },
 "ical:summary": "Lady Gaga Concert",
 "ical:location": "New Orleans Arena, New Orleans,
Louisiana, USA",
 "ical:dtstart": "2011-04-09T20:00:00Z"
}

Let us try it out (the subjects are blank nodes so you will
see different values):

>>> conn.addData(event)
>>> showtriples()
(_:b197D2E01x1, <http://www.w3.org/2002/12/cal/ical#summary>,
"Lady Gaga Concert")
(_:b197D2E01x1, <http://www.w3.org/2002/12/cal/ical#location>,
"New Orleans Arena, New Orleans, Louisiana, USA")
(_:b197D2E01x1, <http://www.w3.org/2002/12/cal/ical#dtstart>,
"2011-04-09T20:00:00Z"^^<http://www.w3.org/2001/XMLSchema#date
Time>)

Adding an @id and @type to Objects
In the above we see that the JSON-LD was correctly translated
into triples but there are two immediate problems: first each
subject is a blank node, the use of which is problematic when
linking across repositories; and second, the object does not
have an RDF type. We solve these problems by adding an @id to
provide an IRI as the subject and adding a @type for the
object (those are at the lines just after
the @context definition):

>>> event = {
 "@context": {
 "ical": "http://www.w3.org/2002/12/cal/ical#",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "ical:dtstart": { "@type": "xsd:dateTime" }
 },
 "@id": "ical:event-1",
 "@type": "ical:Event",
 "ical:summary": "Lady Gaga Concert",
 "ical:location": "New Orleans Arena, New Orleans,
Louisiana, USA",
 "ical:dtstart": "2011-04-09T20:00:00Z"
 }

We also create a test function to test our JSON-LD objects. It
is more powerful than needed right now (here we just
need conn,addData(event) and showTriples() but test will be
useful in most later examples. Note
the allow_external_references=True argument to addData().
Again, not needed in this example but later examples use
external contexts and so this argument is required for those.

def
test(object,json_ld_context=None,rdf_context=None,maxPrint=100
,conn=conn):
 conn.clear()
 conn.addData(object, allow_external_references=True)
 showtriples(limit=maxPrint)

>>> test(event)
(<http://www.w3.org/2002/12/cal/ical#event-1>,
<http://www.w3.org/2002/12/cal/ical#summary>, "Lady Gaga
Concert")
(<http://www.w3.org/2002/12/cal/ical#event-1>,
<http://www.w3.org/2002/12/cal/ical#location>, "New Orleans
Arena, New Orleans, Louisiana, USA")
(<http://www.w3.org/2002/12/cal/ical#event-1>,
<http://www.w3.org/2002/12/cal/ical#dtstart>,
"2011-04-09T20:00:00Z"^^<http://www.w3.org/2001/XMLSchema#date
Time>)
(<http://www.w3.org/2002/12/cal/ical#event-1>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://www.w3.org/2002/12/cal/ical#Event>)

Note in the above that we now have a proper subject and a
type.

Referencing a External Context Via a URL
The next object we add to AllegroGraph is a person object.
This time the @context is not specified as a JSON object but
as a link to a context that is stored at http://schema.org/.
Also in the definition of the function test above we had this
parameter in addData:allow_external_references=True. Requiring
that argument explicitly is a security feature. One should use
external references only that context at that URL is trusted
(as it is in this case).

person = {
 "@context": "http://schema.org/",
 "@type": "Person",
 "@id": "foaf:person-1",
 "name": "Jane Doe",
 "jobTitle": "Professor",
 "telephone": "(425) 123-4567",
 "url": "http://www.janedoe.com"
}

http://schema.org/

>>> test(person)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://schema.org/name>, "Jane Doe")
(<http://xmlns.com/foaf/0.1/person-1>,
<http://schema.org/jobTitle>, "Professor")
(<http://xmlns.com/foaf/0.1/person-1>,
<http://schema.org/telephone>, "(425) 123-4567")
(<http://xmlns.com/foaf/0.1/person-1>,
<http://schema.org/url>, <http://www.janedoe.com>)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://schema.org/Person>)

Improving Performance by Adding Lists
Adding one person at a time requires doing an interaction with
the server for each person. It is much more efficient to add
lists of objects all at once rather than one at a time. Note
that addData will take a list of dicts and still do the right
thing. So let us add a 1000 persons at the same time, each
person being a copy of the above person but with a
different @id. (The example code is repeated below for ease of
copying.)

>>> x = [copy.deepcopy(person) for i in range(1000)]
>>> len(x)
1000
>>> c = 0
>>> for el in x:
 el['@id']= "http://franz.com/person-" + str(c)
 c= c + 1
>>> test(x,maxPrint=10)
(<http://franz.com/person-0>, <http://schema.org/name>, "Jane
Doe")
(<http://franz.com/person-0>, <http://schema.org/jobTitle>,
"Professor")
(<http://franz.com/person-0>, <http://schema.org/telephone>,
"(425) 123-4567")
(<http://franz.com/person-0>, <http://schema.org/url>,

<http://www.janedoe.com>)
(<http://franz.com/person-0>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://schema.org/Person>)
(<http://franz.com/person-1>, <http://schema.org/name>, "Jane
Doe")
(<http://franz.com/person-1>, <http://schema.org/jobTitle>,
"Professor")
(<http://franz.com/person-1>, <http://schema.org/telephone>,
"(425) 123-4567")
(<http://franz.com/person-1>, <http://schema.org/url>,
<http://www.janedoe.com>)
(<http://franz.com/person-1>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://schema.org/Person>)
>>> conn.size()
5000
>>>

x = [copy.deepcopy(person) for i in range(1000)]
len(x)

c = 0
for el in x:
 el['@id']= "http://franz.com/person-" + str(c)
 c= c + 1

test(x,maxPrint=10)

conn.size()

Adding a Context Directly to an Object
You can download a context directly in Python, modify it and
then add it to the object you want to store. As an
illustration we load a person context from json-ld.org
(actually a fragment of the schema.org context) and insert it
in a person object. (We have broken and truncated some output
lines for clarity and all the code executed is repeated below
for ease of copying.)

>>>
context=requests.get("https://json-ld.org/contexts/person.json
ld").json()['@context']
>>> context
{'Person': 'http://xmlns.com/foaf/0.1/Person',
 'xsd': 'http://www.w3.org/2001/XMLSchema#',
 'name': 'http://xmlns.com/foaf/0.1/name',
 'jobTitle': 'http://xmlns.com/foaf/0.1/title',
 'telephone': 'http://schema.org/telephone',
 'nickname': 'http://xmlns.com/foaf/0.1/nick',
 'affiliation': 'http://schema.org/affiliation',
 'depiction': {'@id': 'http://xmlns.com/foaf/0.1/depiction',
'@type': '@id'},
 'image': {'@id': 'http://xmlns.com/foaf/0.1/img', '@type':
'@id'},
 'born': {'@id': 'http://schema.org/birthDate', '@type':
'xsd:date'},
 ...}
>>> person = {
 "@context": context,
 "@type": "Person",
 "@id": "foaf:person-1",
 "name": "Jane Doe",
 "jobTitle": "Professor",
 "telephone": "(425) 123-4567",
}
>>> test(person)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://xmlns.com/foaf/0.1/name>, "Jane Doe")
(<http://xmlns.com/foaf/0.1/person-1>,
<http://xmlns.com/foaf/0.1/title>, "Professor")
(<http://xmlns.com/foaf/0.1/person-1>,
<http://schema.org/telephone>, "(425) 123-4567")
(<http://xmlns.com/foaf/0.1/person-1>,
 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
 <http://xmlns.com/foaf/0.1/Person>)
>>>

context=requests.get("https://json-ld.org/contexts/person.json
ld").json()['@context']
The next produces lots of output, uncomment if desired

#context

person = {
 "@context": context,
 "@type": "Person",
 "@id": "foaf:person-1",
 "name": "Jane Doe",
 "jobTitle": "Professor",
 "telephone": "(425) 123-4567",
}
test(person)

Building a Graph of Objects
We start by forcing a key’s value to be stored as a resource.
We saw above that we could specify the value of a key to be a
date using the xsd:dateTime specification. We now do it again
for foaf:birthdate. Then we created several linked objects and
show the connections using Gruff.

context = { "foaf:child": {"@type":"@id"},
 "foaf:brotherOf": {"@type":"@id"},
 "foaf:birthdate": {"@type":"xsd:dateTime"}}

p1 = {
 "@context": context,
 "@type":"foaf:Person",
 "@id":"foaf:person-1",
 "foaf:birthdate": "1958-04-09T20:00:00Z",
 "foaf:child": ['foaf:person-2', 'foaf:person-3']
}

p2 = {
 "@context": context,
 "@type":"foaf:Person",
 "@id":"foaf:person-2",
 "foaf:brotherOf": "foaf:person-3",
 "foaf:birthdate": "1992-04-09T20:00:00Z",
}

p3 = {"@context": context,
 "@type":"foaf:Person",
 "@id":"foaf:person-3",
 "foaf:birthdate": "1994-04-09T20:00:00Z",
}

test([p1,p2,p3])

>>> test([p1,p2,p3])
(<http://xmlns.com/foaf/0.1/person-1>,
<http://xmlns.com/foaf/0.1/birthdate>,
"1958-04-09T20:00:00Z"^^<http://www.w3.org/2001/XMLSchema#date
Time>)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://xmlns.com/foaf/0.1/child>,
<http://xmlns.com/foaf/0.1/person-2>)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://xmlns.com/foaf/0.1/child>,
<http://xmlns.com/foaf/0.1/person-3>)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://xmlns.com/foaf/0.1/Person>)
(<http://xmlns.com/foaf/0.1/person-2>,
<http://xmlns.com/foaf/0.1/brotherOf>,
<http://xmlns.com/foaf/0.1/person-3>)
(<http://xmlns.com/foaf/0.1/person-2>,
<http://xmlns.com/foaf/0.1/birthdate>,
"1992-04-09T20:00:00Z"^^<http://www.w3.org/2001/XMLSchema#date
Time>)
(<http://xmlns.com/foaf/0.1/person-2>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://xmlns.com/foaf/0.1/Person>)
(<http://xmlns.com/foaf/0.1/person-3>,
<http://xmlns.com/foaf/0.1/birthdate>,
"1994-04-09T20:00:00Z"^^<http://www.w3.org/2001/XMLSchema#date
Time>)
(<http://xmlns.com/foaf/0.1/person-3>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://xmlns.com/foaf/0.1/Person>)

The following shows the graph that we created in Gruff. Note

that this is what JSON-LD is all about: connecting objects
together.

JSON-LD Keyword Directives can be Added
at any Level
Here is an example from the wild. The
URL https://www.ulta.com/antioxidant-facial-oil?productId=xlsI
mpprod18731241 goes to a web page advertising a facial oil.
(We make no claims or recommendations about this product. We
are simply showing how JSON-LD appears in many places.) Look
at the source of the page and you’ll find a JSON-LD object
similar to the following. Note that @ directives go to any
level. We added an @id key.

hippieoil = {"@context":"http://schema.org",
 "@type":"Product",
 "@id":"http://franz.com/hippieoil",

https://franz.com/agraph/support/documentation/current/python/_images/person-graph.png

 "aggregateRating":
 {"@type":"AggregateRating",
 "ratingValue":4.6,
 "reviewCount":73},
 "description":"""Make peace with your inner hippie while
hydrating & protecting against photoaging....Mad Hippie's
preservative-free Antioxidant Facial Oil is truly the most
natural way to moisturize.""",
 "brand":"Mad Hippie",
 "name":"Antioxidant Facial Oil",
 "image":"https://images.ulta.com/is/image/Ulta/2530018",
 "productID":"2530018",
 "offers":
 {"@type":"Offer",
 "availability":"http://schema.org/InStock",
 "price":"24.99",
 "priceCurrency":"USD"}}

test(hippieoil)

JSON-LD @graphs
One can put one or more JSON-LD objects in an RDF named graph.
This means that the fourth element of each triple generated
from a JSON-LD object will have the specified graph name.
Let’s show in an example.

context = {
 "name": "http://schema.org/name",
 "description": "http://schema.org/description",
 "image": {
 "@id": "http://schema.org/image", "@type": "@id"
},

https://franz.com/agraph/support/documentation/current/python/_images/hippieoil.png

 "geo": "http://schema.org/geo",
 "latitude": {
 "@id": "http://schema.org/latitude", "@type":
"xsd:float" },
 "longitude": {
 "@id": "http://schema.org/longitude", "@type":
"xsd:float" },
 "xsd": "http://www.w3.org/2001/XMLSchema#"
 }

place = {
 "@context": context,
 "@id": "http://franz.com/place1",
 "@graph": {
 "@id": "http://franz.com/place1",
 "@type": "http://franz.com/Place",
 "name": "The Empire State Building",
 "description": "The Empire State Building is a 102-
story landmark in New York City.",

 "image":
"http://www.civil.usherbrooke.ca/cours/gci215a/empire-state-bu
ilding.jpg",
 "geo": {
 "latitude": "40.75",
 "longitude": "73.98" }
 }}

and here is the result:

>>> test(place, maxPrint=3)
(<http://franz.com/place1>, <http://schema.org/name>, "The
Empire State Building", <http://franz.com/place1>)
(<http://franz.com/place1>, <http://schema.org/description>,
"The Empire State Building is a 102-story landmark in New York
City.", <http://franz.com/place1>)
(<http://franz.com/place1>, <http://schema.org/image>,
<http://www.civil.usherbrooke.ca/cours/gci215a/empire-state-bu
ilding.jpg>, <http://franz.com/place1>)
>>>

Note that the fourth element (graph) of each of the triples is

<http://franz.com/place1>. If you don’t add the @id the
triples will be put in the default graph.

Here a slightly more complex example:

library = {
 "@context": {
 "dc": "http://purl.org/dc/elements/1.1/",
 "ex": "http://example.org/vocab#",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "ex:contains": {
 "@type": "@id"
 }
 },
 "@id": "http://franz.com/mygraph1",
 "@graph": [
 {
 "@id": "http://example.org/library",
 "@type": "ex:Library",
 "ex:contains": "http://example.org/library/the-republic"
 },
 {
 "@id": "http://example.org/library/the-republic",
 "@type": "ex:Book",
 "dc:creator": "Plato",
 "dc:title": "The Republic",

 "ex:contains":
"http://example.org/library/the-republic#introduction"
 },
 {

 "@id":
"http://example.org/library/the-republic#introduction",
 "@type": "ex:Chapter",
 "dc:description": "An introductory chapter on The
Republic.",
 "dc:title": "The Introduction"
 }
]
}

With the result:

>>> test(library, maxPrint=3)
(<http://example.org/library>,
<http://example.org/vocab#contains>,
<http://example.org/library/the-republic>,
<http://franz.com/mygraph1>) (<http://example.org/library>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://example.org/vocab#Library>,
<http://franz.com/mygraph1>)
(<http://example.org/library/the-republic>,
<http://purl.org/dc/elements/1.1/creator>,
"Plato",<http://franz.com/mygraph1>)
>>>

JSON-LD as a Document Store
So far we have treated JSON-LD as a syntax to create triples.
Now let us look at the way we can start using AllegroGraph as
a combination of a document store and graph database at the
same time. And also keep in mind that we want to do it in such
a way that you as a Python developer can add documents such as
dictionaries and also retrieve values or documents as
dictionaries.

https://franz.com/agraph/support/documentation/current/python/_images/library-graph.png

Setup
The Python source file jsonld_tutorial_helper.py contains
various definitions useful for the remainder of this example.
Once it is downloaded, do the following (after adding the path
to the filename):

conn=createdb("docugraph")
from jsonld_tutorial_helper import *
addNamespace(conn,"jsonldmeta","http://franz.com/ns/allegrogra
ph/6.4/load-meta#")
addNamespace(conn,"ical","http://www.w3.org/2002/12/cal/ical#"
)

Let’s use our event structure again and see how we can store
this JSON document in the store as a document. Note that
the addData call includes the
keyword: json_ld_store_source=True.

event = {
 "@context": {
 "@id": "ical:event1",
 "@type": "ical:Event",
 "ical": "http://www.w3.org/2002/12/cal/ical#",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "ical:dtstart": { "@type": "xsd:dateTime" }
 },
 "ical:summary": "Lady Gaga Concert",
 "ical:location":
 "New Orleans Arena, New Orleans, Louisiana, USA",
 "ical:dtstart": "2011-04-09T20:00:00Z"
}

>>> conn.addData(event,
allow_external_references=True,json_ld_store_source=True)

The jsonld_tutorial_helper.py file defines the
function store as simple wrapper around addDatathat always
saves the JSON source. For experimentation reasons it also has
a parameter fresh to clear out the repository first.

>>> store(conn,event, fresh=True)

If we look at the triples in Gruff we see that the JSON source
is stored as well, on the root (top-level @id) of the JSON
object.

For the following part of the tutorial we want a little bit
more data in our repository so please look at the helper
file jsonld_tutorial_helper.py where you will see that at the
end we have a dictionary named obs with about 9 diverse
objects, mostly borrowed from the json-ld.org site: a person,
an event, a place, a recipe, a group of persons, a product,
and our hippieoil.

First let us store all the objects in a fresh repository. Then
we check the size of the repo. Finally, we create a freetext
index for the JSON sources.

>>> store(conn,[v for k,v in obs.items()], fresh=True)
>>> conn.size()
86
>>>
conn.createFreeTextIndex("source",['<http://franz.com/ns/alleg

https://franz.com/agraph/support/documentation/current/python/_images/event-store-source.png

rograph/6.4/load-meta#source>'])
>>>

Retrieving values with SPARQL
To simply retrieve values in objects but not the objects
themselves, regular SPARQL queries will suffice. But because
we want to make sure that Python developers only need to deal
with regular Python structures as lists and dictionaries, we
created a simple wrapper around SPARQL (see helper file). The
name of the wrapper is runSparql.

Here is an example. Let us find all the roots (top-level @ids)
of objects and their types. Some objects do not have roots,
so None stands for a blank node.

>>> pprint(runSparql(conn,"select ?s ?type { ?s a ?type }"))
[{'s': 'cocktail1', 'type': 'Cocktail'},
 {'s': None, 'type': 'Individual'},
 {'s': None, 'type': 'Vehicle'},
 {'s': 'tesla', 'type': 'Offering'},
 {'s': 'place1', 'type': 'Place'},
 {'s': None, 'type': 'Offer'},
 {'s': None, 'type': 'AggregateRating'},
 {'s': 'hippieoil', 'type': 'Product'},
 {'s': 'person-3', 'type': 'Person'},
 {'s': 'person-2', 'type': 'Person'},
 {'s': 'person-1', 'type': 'Person'},
 {'s': 'person-1000', 'type': 'Person'},
 {'s': 'event1', 'type': 'Event'}]
>>>

We do not see the full URIs for ?s and ?type. You can see them
by adding an appropriate formatargument to runSparql, but the
default is terse.

>>> pprint(runSparql(conn,"select ?s ?type { ?s a ?type }
limit 2",format='ntriples'))
[{'s': '<http://franz.com/cocktail1>', 'type':

'<http://franz.com/Cocktail>'},
 {'s': None, 'type':

'<http://purl.org/goodrelations/v1#Individual>'}]
>>>

Retrieving a Dictionary or Object
retrieve is another function defined
(in jsonld_tutorial_helper.py) for this tutorial. It is a
wrapper around SPARQL to help extract objects. Here we see how
we can use it. The sole purpose of retrieve is to retrieve the
JSON-LD/dictionary based on a SPARQL pattern.

>>> retrieve(conn,"{?this a ical:Event}")
[{'@type': 'ical:Event', 'ical:location': 'New Orleans Arena,
New Orleans, Louisiana, USA', 'ical:summary': 'Lady Gaga
Concert', '@id': 'ical:event1', '@context': {'xsd':
'http://www.w3.org/2001/XMLSchema#', 'ical':
'http://www.w3.org/2002/12/cal/ical#', 'ical:dtstart':
{'@type': 'xsd:dateTime'}}, 'ical:dtstart':
'2011-04-09T20:00:00Z'}]
>>>

Ok, for a final fun (if you like expensive cars) example: Let
us find a thing that is “fast and furious”, that is worth more
than $80,000 and that we can pay for in cash:

>>>
addNamespace(conn,"gr","http://purl.org/goodrelations/v1#")
>>> x = retrieve(conn, """{ ?this fti:match 'fast furious*';
 gr:acceptedPaymentMethods gr:Cash ;
 gr:hasPriceSpecification ?price .
 ?price gr:hasCurrencyValue ?value ;
 gr:hasCurrency "USD" .
 filter (?value > 80000.0) }""")
>>> pprint(x)
[{'@context': {'foaf': 'http://xmlns.com/foaf/0.1/',
 'foaf:page': {'@type': '@id'},
 'gr': 'http://purl.org/goodrelations/v1#',

 'gr:acceptedPaymentMethods': {'@type': '@id'},
 'gr:hasBusinessFunction': {'@type': '@id'},
 'gr:hasCurrencyValue': {'@type': 'xsd:float'},
 'pto': 'http://www.productontology.org/id/',
 'xsd': 'http://www.w3.org/2001/XMLSchema#'},
 '@id': 'http://example.org/cars/for-sale#tesla',
 '@type': 'gr:Offering',
 'gr:acceptedPaymentMethods': 'gr:Cash',
 'gr:description': 'Need to sell fast and furiously',
 'gr:hasBusinessFunction': 'gr:Sell',
 'gr:hasPriceSpecification': {'gr:hasCurrency': 'USD',
 'gr:hasCurrencyValue':
'85000'},
 'gr:includes': {'@type': ['gr:Individual', 'pto:Vehicle'],
 'foaf:page':

'http://www.teslamotors.com/roadster',
 'gr:name': 'Tesla Roadster'},
 'gr:name': 'Used Tesla Roadster'}]
>>> x[0]['@id']
'http://example.org/cars/for-sale#tesla'

ГРАФОВЫЕ БАЗЫ: ПРИНЦИП РАБОТЫ
И ПРИМЕНЕНИЕ – GRAPH BASES:
PRINCIPLE OF OPERATION AND
APPLICATION
Всеволод Дёмкин удаленно работает во Franz Inc. над графовой
базой AllegroGraph. Преподает в Projector курс «Natural
Language Processing». В свободное время делаетопен-сорс для
обработки природных текстов на Lisp’е.

Мы рассмотрим создание программы для агрегации текстов из
разных источников, таких как twitter, блоги, reddit и т.д., —

https://allegrograph.com/event/%d0%b3%d1%80%d0%b0%d1%84%d0%be%d0%b2%d1%8b%d0%b5-%d0%b1%d0%b0%d0%b7%d1%8b-%d0%bf%d1%80%d0%b8%d0%bd%d1%86%d0%b8%d0%bf-%d1%80%d0%b0%d0%b1%d0%be%d1%82%d1%8b-%d0%b8-%d0%bf%d1%80%d0%b8%d0%bc%d0%b5%d0%bd/
https://allegrograph.com/event/%d0%b3%d1%80%d0%b0%d1%84%d0%be%d0%b2%d1%8b%d0%b5-%d0%b1%d0%b0%d0%b7%d1%8b-%d0%bf%d1%80%d0%b8%d0%bd%d1%86%d0%b8%d0%bf-%d1%80%d0%b0%d0%b1%d0%be%d1%82%d1%8b-%d0%b8-%d0%bf%d1%80%d0%b8%d0%bc%d0%b5%d0%bd/
https://allegrograph.com/event/%d0%b3%d1%80%d0%b0%d1%84%d0%be%d0%b2%d1%8b%d0%b5-%d0%b1%d0%b0%d0%b7%d1%8b-%d0%bf%d1%80%d0%b8%d0%bd%d1%86%d0%b8%d0%bf-%d1%80%d0%b0%d0%b1%d0%be%d1%82%d1%8b-%d0%b8-%d0%bf%d1%80%d0%b8%d0%bc%d0%b5%d0%bd/
https://allegrograph.com/event/%d0%b3%d1%80%d0%b0%d1%84%d0%be%d0%b2%d1%8b%d0%b5-%d0%b1%d0%b0%d0%b7%d1%8b-%d0%bf%d1%80%d0%b8%d0%bd%d1%86%d0%b8%d0%bf-%d1%80%d0%b0%d0%b1%d0%be%d1%82%d1%8b-%d0%b8-%d0%bf%d1%80%d0%b8%d0%bc%d0%b5%d0%bd/
https://www.facebook.com/vseloved
https://www.facebook.com/FranzAllegroGraph/
https://prjctr.com.ua/natural-language-processing.html
https://prjctr.com.ua/natural-language-processing.html

их автоматической, а затем ручной обработки для формирования
дайджеста новостей по определенной теме. На этом примере мы
проанализируем, какие преимущества дает использование графовых
баз данных, обсудим их возможности и ограничения.

В качестве конкретной БД будет использована система Franz
AllegroGraph и мы ознакомимся с ее экосистемой, включающей
возможности построение API и веб-приложений, а также со средой
Allegro Common Lisp, на которой она построена. Особое внимание
будет уделено использованию машинного обучения и NLP при
решении задач работы с текстом, в частности, внутри
AllegroGraph.

Обсудим:

— В чем особенности, как работают, преимущества/недостатки
графовых БД;

— Как решать базовые задачи обработки текстов с использованием
инструментария ML/NLP;

— Как построить полноценное приложение с ядром обработки
текста на основе графовой БД и ML/NLP технологий;

— Как устроена экосистема Common Lisp и как можно
задействовать ее для создания серверных приложений.

Лекция будет полезна: разработчикам, которые интересуются
темой графовых баз данных и/или ML/NLP.

What is the most interesting

https://allegrograph.com/what-is-the-most-interesting-use-of-a-graph-database-you-ever-seen/

use of a graph database you
ever seen? PWC responds.
From a Quora post by Alan Morrison – Sr. Research Fellow at
PricewaterhouseCoopers – November 2018

The most interesting use is the most powerful: standard RDF
graphs for large-scale knowledge graph integration.

From my notes on a talk Parsa Mirhaji of Montefiore Health
System gave in 2017. Montefiore uses Franz AllegroGraph, a
distributed RDF graph database. He modeled a core patient-
centric hospital knowledge need using a simple standard
ontology with a 1,000 or so concepts total.

That model integrated data from lots of different kinds of
heterogeneous sources so that doctors could query the
knowledge graph from tablets or phones at a patient’s bedside
and get contextualized, patient-specific answers to questions
for diagnostic purposes.

Fast forward to 2018, and nine out of ten of the most value-
creating companies in the world are using standard knowledge
graphs in a comparable fashion, either as a base for multi-
domain intelligent assistants a la Siri or Alibot or Alexa,
or to integrate and contextualize business domains cross-
enterprise, or both. The method is preparatory to what John
Launchbury of DARPA described as the Third Wave of AI………….

https://allegrograph.com/what-is-the-most-interesting-use-of-a-graph-database-you-ever-seen/
https://allegrograph.com/what-is-the-most-interesting-use-of-a-graph-database-you-ever-seen/

Read the full article over at Quora

.

2019 Trends in Data
Governance: The Model
Governance Question
From an AI Business Article by Jelani Harper – November 2018

The propagation of the enterprise’s ability to capitalize on
data-driven processes—to effectively reap data’s yield as an
organizational asset, much like any other—hinges on data
governance, which arguably underpins the foundation of data
management itself.

There are numerous trends impacting that foundation, many of
which have always had, and will continue to have, relevance
as 2019 looms. Questions of regulatory compliance, data

https://www.quora.com/What-is-the-most-interesting-use-of-a-graph-database-you-ever-seen/answer/Alan-Morrison?ch=2&srid=Mru
https://allegrograph.com/2019-trends-in-data-governance-the-model-governance-question/
https://allegrograph.com/2019-trends-in-data-governance-the-model-governance-question/
https://allegrograph.com/2019-trends-in-data-governance-the-model-governance-question/

lineage, metadata management, and even data governance will
all play crucial roles.

Franz’s CEO, Dr. Jans Aasman was quoted:

Still, as Aasman denoted, “It’s extremely complicated to make
fair [machine learning] models with all the context around
them.” Both rules and human supervision of models can furnish
a fair amount of context for them, serving as starting points
for their consistent governance.

Read the full article at AI Business.

AI Requires More Than Machine
Learning
From Forbes Technology Council – October 2018

This article discusses the facets of machine learning and AI:

Lauded primarily for its automation and decision support,
machine learning is undoubtedly a vital component of
artificial intelligence. However, a small but growing number
of thought leaders throughout the industry are acknowledging
that the breadth of AI’s upper cognitive capabilities
involves more than just machine learning.

Machine learning is all about sophisticated pattern
recognition. It’s virtually unsurpassable at determining
relevant, predictive outputs from a series of data-driven
inputs. Nevertheless, there is a plethora of everyday,
practical business problems that cannot be solved with
input/output reasoning alone. The problems also require the

https://aibusiness.com/2019-trends-data-governance-model-governance-question-answer/
https://allegrograph.com/ai-requires-more-than-machine-learning/
https://allegrograph.com/ai-requires-more-than-machine-learning/
https://aibusiness.com/semantic-reasoning-ai/
https://aibusiness.com/semantic-reasoning-ai/

multistep, symbolic reasoning of rules-based systems.

Whereas machine learning is rooted in a statistical approach,
symbolic reasoning is predicated on the symbolic
representation of a problem usually rooted in a knowledge
base. Most rules-based systems involve multistep reasoning,
including those powered by coding languages such as Prolog.

Read the full article over at Forbes

.

Transmuting Machine Learning
into Verifiable Knowledge
From AI Business – August 2018

This article covers machine learning and AI:

According to Franz CEO Jans Aasman, these machine learning
deployments not only maximize organizational investments in
them by driving business value, but also optimize the most
prominent aspects of the data systems supporting them.

“You start with the raw data…do analytics on it, get
interesting results, then you put the results of the machine
learning back in the database, and suddenly you have a far
more powerful database,” Aasman said.

Dr. Aasman is further quoted:

https://dzone.com/articles/ai-programming-5-most-popular-ai-programming-langu
https://www.forbes.com/sites/forbestechcouncil/2018/10/16/ai-requires-more-than-machine-learning
https://allegrograph.com/transmuting-machine-learning-into-verifiable-knowledge/
https://allegrograph.com/transmuting-machine-learning-into-verifiable-knowledge/

For internal applications, organizations can use machine
learning concepts (such as co-occurrence—how often defined
concepts occur together) alongside other analytics to monitor
employee behavior, efficiency, and success with customers or
certain types of customers. Aasman mentioned a project
management use case for a consultancy company in which these
analytics were used to “compute for every person, or every
combination of persons, whether or not the project was
successful: meaning, done on time to the satisfaction of the
customer.”

Organizations can use whichever metrics are relevant for
their businesses to qualify success. This approach is useful
for determining a numerical rating for employees “and you
could put that rating back in the database,” Aasman said.
“Now you can do a follow up query where you say how much
money did I make on the top 10 successful people; how much
money did I lose on the top 10 people I don’t make a profit
on.”

Read the full article over at AI Business.

https://aibusiness.com/machine-learning-verifiable-knowledge/

