
AllegroGraph Replication on
Amazon’s AWS using Terraform

Introduction
In this document we describe how to setup an AllegroGraph
replication cluster on AWS using the terraform program. The
cluster will have one controlling instance and a set of
instances controlled by an Auto Scaling Group and reached via
a Load Balancer.

Controlling instance

Replicas

Load Balancer

Application/Users

Creating such a system on AWS takes a long time if done
manually through their web interface. We have another document
that takes you through the steps. Describing the system in
terraform first takes a little time but once that’s done the
cluster can be started in less than five minutes.

https://allegrograph.com/allegrograph-replication-on-amazons-aws-using-terraform/
https://allegrograph.com/allegrograph-replication-on-amazons-aws-using-terraform/
https://franz.com/agraph/support/documentation/current/multi-master.html
https://franz.com/agraph/support/documentation/current/multi-master.html
https://www.terraform.io/
https://docs.aws.amazon.com/autoscaling/
https://docs.aws.amazon.com/elasticloadbalancing/
https://github.com/franzinc/agraph-examples/blob/master/clustering/terraform-elb/agraph_mmr_elb.svg

Steps
Obtain an AMI with AllegroGraph and aws-repl (our1.
support code for aws) installed.
Edit the terraform file we supply to suit your needs2.
Run terraform to build the cluster3.

Obtain an AMI with AllegroGraph and
aws-repl
An AMI is an image of a virtual machine. You create an AMI by
launching an ec2 instance using an AMI, altering the root disk
of that instance and then telling AWS to create an AMI based
on your instance. You can repeat this process until you create
the AMI you need.

We have a prebuild AMI with all the code installed. It uses
AllegroGraph 6.5.0 and doesn’t contain a license code so it’s
limited to 5 million triples. You can use this AMI to test the
load balancer or you can use this image as the starting off
point for building your own image.

Alternatively you start from a fresh AMI and install
everything yourself as described next.

We will create an AMI to run AllegroGraph with Replication
with the following features

When an EC2 instance running this AMI is started it1.
starts AllegroGraph and joins the cluster of nodes
serving a particular repository.
When the the EC2 instance is terminated the instance2.
sends a message to the controlling instance to ensure
that the terminating instance is removed from the
cluster
If the EC2 instance is started at a particular IP3.
address it creates the cluster and acts as the

controlling instance of the cluster

This is a very simple setup but will serve many applications.
For more complex needs you’ll need to write your own tools.
Contact support@franz.com to discuss support options.

The choice of AMI on which to build our AMI is not important
except that our scripts assume that the initial account name
of the image is ec2-user. Thus we suggest that you use one of
the Amazon Linux images. If you use another kind of image
you’ll need to do extra work (as an example we describe below
how to use a Centos AMI). Since the instance we’ll build with
the AMI are used only for AllegroGraph and not for other uses
there’s no point in running a different version of Linux that
you may use in your development work.

These are the steps to build an AMI:

Start an instance using an Amazon Linux AMI with EBS support.

We can’t specify the exact name of the image to start as the
names change over time and depending on the region. We will
usually pick one of the first images listed.

You don’t need to start a large virtual machine. A t2.micro
will do.

You’ll need to specify a VPC and subnet. There should be a
default VPC available. If not you’ll have to create one.

Make sure that when you specify that subnet that you want to
external IP address.

Copy an agraph distribution (tar.gz format) to the ec2
instance into the home directory of ec2-user. Also copy the
file aws-repl/aws-repl.tar to the home directory of ec2-user
on the instance. aws-repl.tar contains scripts to support
replication setup on AWS.

Extract the agraph repo in a temporary spot and run install-

mailto:support@franz.com

agraph in it, specifying the root of the agraph distribution.

I put it in /home/ec2-user/agraph

For example:

% mkdir tmp
% cd tmp
% tar xfz ../agraph-6.5.0-linuxamd64.64.tar.gz
% cd agraph-6.5.0
% ./install-agraph ~/agraph

Edit the file ~/agraph/lib/agraph.cfg and add the line

UseMainPortForSessions yes

This will allow sessions to be tracked through the Load
Balancer.

If you have an agraph license key you should add it to the
agraph.cfg file.

Unpack and install the aws-repl code:

% tar xf aws-repl.tar
% cd aws-repl
% sudo ./install.sh

You can delete aws-repl.tar but don’t delete the aws-repl
directory. It will be used on startup.

Look at aws-repl/var.sh to see the parameter values. You’ll
see an agraphroot parameter which should match where you
installed agraph.

At this point the instance is setup.

You should go to the aws console, select this instance, and
from the Action menu select “Image / Create Image”. Wait for
the AMI to be built. At this time you can terminate the ec2
instance.

Using a CentOS 7 image:
If you wish to install on top of CentOS then you’ll need
additional steps. The initial user on CentOS is called
‘centos’ rather than ‘ec2-user’. In order to keep things
consistent we’ll create the ec2-user account and use that for
running agraph just as we do for the Amazon AMI.

ssh to the ec2 vm as centos and do the following to create the
ec2-user account and to allow ssh access to it just like the
centos account

[centos@ip-10-0-1-227 ~]$ sudo sh

sh-4.2# adduser ec2-user
sh-4.2# cp -rp .ssh ~ec2-user
sh-4.2# chown -R ec2-user ~ec2-user/.ssh
sh-4.2# exit

[centos@ip-10-0-1-227 ~]

$

At this point you can copy the agraph distribution to the ec2
vm. Scp to ec2-user@x.x.x.x rather than centos@x.x.x.x. Also
copy the aws-repl.tar file.

The only change to the procedure is when you must run
install.sh in the aws-repl directory.

The ec2-user account does not have the ability to sudo. So
this command must be run

when logged in as the user centos;

centos@ip-10-0-1-227 ~]$ sudo sh
sh-4.2# cd ~ec2-user/aws-repl
sh-4.2# ./install.sh
+ cp joincluster /etc/rc.d/init.d
+ chkconfig --add joincluster
sh-4.2# exit

mailto:ec2-user@x.x.x.x
mailto:centos@x.x.x.x

[centos@ip-10-0-1-227 ~]

$

Edit the terraform file we supply
to suit your needs
Edit the file agelb.tf. This file contains directives to
terraform to create the cluster with load balancer. At the top
are the variables you can easily change. Other values are
found inside the directives and you can change those as well.

Two variables you definitely need to change are

“ag-elb-ami” – this is the name of the AMI you created1.
in the previous step or the AMI we supply.
“ssh-key” – this is the name of the ssh key pair you2.
want to use in the instances created.

You may wish to change the region where you want the instances
built (that value is in the provider clause at the top of the
file) and if you do you’ll need to change the variable “azs”.

We suggest you try building the cluster with the minimum
changes to verify it works and then customize it to your
liking.

Run terraform to build the cluster
To build the cluster make sure your have an ~/.aws/config file
with a default entry, such as

[default]
aws_access_key_id = AKIAIXXXXXXXXXXXXXXX
aws_secret_access_key = o/dyrxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

This is what terraform uses as credentials when it contacts
AWS.

In order to use terraform the first time (or any time you
change the provider clause in agelb.tf) run this command

% terraform init

Terraform will download the files appropriate for the provider
you specified.

After that you can build your cluster with

% terraform apply

And watch the messages. If there are no errors terraform will
wait for confirmation from you to proceed. Type yes to
proceed, anything else to abort.

After terraform is finished you’ll see the address of the load
balancer printed.

You can make changes the agelb.tf file and again ‘terraform
apply ‘ and terraform will tell you what it needs to do to
change things from how they are now to what the agelb.tf file
specifies.

To delete everything terraform added type the command

% terraform destroy

And type yes when prompted.

