AllegroGraph Semantic Layer for Databricks (Delta Lake)

This AllegroGraph tutorial is available on our Github Examples page.

Databricks is a popular choice for hosting lakehouses – a new architecture that unifies data storage, analytics, and AI on one platform. On the other hand, as an enterprise knowledge graph platform, AllegroGraph provides quick semantic layer integration with Databricks transparently through our advanced VKG (virtual knowledge graph) interface.

In this tutorial, we will show you how to load RDF triples directly from your Delta Tables that are hosted in Databricks, and we assume the readers have prior experience with AllegroGraph and our agtool facility.

For users starting with the open-source Delta Lake but not hosted on Databricks, this tutorial may still apply, as long as your platform exposes a JDBC connection and enables SQL as (one of) its query interface.

Requirements

Obviously, you will need to have a running cluster or a SQL warehouse in your Databricks workspace as well as an AllegroGraph server. This tutorial uses a cluster to demonstrate.

Note that Databricks provides trial clusters and one can start from here. If all is successfully set up, the cluster's dashboard should look similar to this:

Configuration Notebooks (0)	er 	Spark UI D	river logs	Metrics Ap	ops Spa	ark cluster UI - I	More ••• Terminate
Policy 🕑							UI <u>JSON</u>
Unrestricted						Cummer	
Multi node Single node						Summar	y
Access mode 😧 Single user ac	cess 🔞					2-8 Workers	61-244 GB Memory 8-32 Cores
Single user Tianyu Gu (g	ty@franz.com)					1 Driver	30.5 GB Memory, 4 Cores
						Runtime	12.2.x-scala2.12
Performance						Photon	3.xlarge 6–18 DBU/h
Databricks Runtime Version							
12.2 LTS (includes Apache Spark 3.3	.2, Scala 2.12)						
✓ Use Photon Acceleration ⑧							
Worker type 🕜		Min workers	Max workers	Current			
i3.xlarge	30.5 GB Memory, 4 Cores	2	8	2			
Driver type							
i3.xlarge	30.5 GB Memory, 4 Cores						
Enable autoscaling 🙆							
Enable autoscaling local storage) An of inactivity (0)						
Instance profile 🚱							
None							
Tags 🔞							
No custom tags							
> Automatically added tags							
Advanced entions							
Advanced options							

Create a table and load a sample dataset

We use a sample dataset called *people10m* for this tutorial. As documented by Databricks, we can load it into a table by executing this SQL query:

CREATE TABLE default.people10m OPTIONS (PATH 'dbfs:/databricks-datasets/learning-sparkv2/people/people-10m.delta')

After being successfully loaded, you can find the table in the Data Explorer:

•	Data Explorer		+ Add	⊘ FranzInc's De 91.5 GB, 12 Cores Υ
Ð	\Box hive_metastore \rightarrow Θ default	default >		
Ð	Filter tables	default.people10m		
يم م	∰ people10m	Image: Table ▲ Delta ▲ Not set →	211MiB, 8 files (+) Add comment	Create 🗸
\bigcirc		Columns Sample Data Detai	s Permissions History	
£				
≝		Column	🗘 Туре	Comment
		id	int	
		firstName	string	Ð
		middleName	string	(\mathbf{f})
		lastName	string	
		gender	string	
		birthDate	timestamp	
		ssn	string	\odot
		salary	int	\odot
		middleName lastName gender birthDate ssn salary	string string string timestamp string int	 ● ● ● ● ● ● ● ● ●

as well as a few sample data rows:

ata Expl	orer				+ Add	SFranzInc's De 91.5 GB,	12 Cores
default⇒ default.	people10m						
⊞ Table	A Delta	et 🗠 211MiB, 8 fi	iles 🕒 Add cor	nment		:	Create
Columns	Sample Data	Details Permiss	ions History				
id	firstName	middleName	lastName	gender	birthDate	ssn	salary
3766824	Hisako	Isabella	Malitrott	F	1961-02-12T05:00:00.000+0000	938-80-1874	58862
3766825	Daisy	Merissa	Fibben	F	1998-05-19T04:00:00.000+0000	971-14-3755	66221
3766826	Caren	Blossom	Henner	F	1962-08-06T04:00:00.000+0000	954-19-8973	54376
3766827	Darleen	Gertie	Goodinson	F	1980-03-12T05:00:00.000+0000	981-65-5269	69954
3766828	Kyle	Lu	Habben	F	1974-02-15T04:00:00.000+0000	936-95-3240	5668
3766829	Melia	Kristy	Bonhill	F	1970-09-13T04:00:00.000+0000	960-91-9232	7399
3766830	Yevette	Faye	Bebbell	F	1972-09-07T04:00:00.000+0000	987-72-3701	9288
3766831	Delpha	Kenisha	Gillison	F	1979-06-25T04:00:00.000+0000	962-66-5404	5120
3766832	Mikaela	Jenifer	Hallan	F	1973-05-23T04:00:00.000+0000	911-38-3114	9888
3766833	Cindi	Renita	Cousin	F	1979-03-19T05:00:00.000+0000	666-50-3216	6364
3766834	Rosana	Sari	Griston	F	1956-10-25T04:00:00.000+0000	998-70-9023	1925
3766835	Leena	Vanita	Cajkler	F	1971-08-15T04:00:00.000+0000	954-81-8367	7476
3766836	Eleonore	Stephany	Goldhill	F	1987-12-15T05:00:00.000+0000	978-64-1528	6794
3766837	Olga	Jona	Klos	F	1978-05-26T04:00:00.000+0000	961-27-8570	5248
3766838	Chandra	Sherrill	Kelsey	F	1962-11-18T05:00:00.000+0000	910-53-2697	6592
3766839	Vania	Lashon	Clixby	F	1975-10-31T05:00:00.000+0000	985-43-1411	7375
3766840	Dagmar	Misti	Poole	F	1962-05-30T04:00:00.000+0000	916-94-8252	8517
3766841	Marta	Joel	Copelli	F	1953-01-23T05:00:00.000+0000	929-52-3074	8234
3766842	Danae	Darline	Mithun	F	1993-08-07T04:00:00.000+0000	957-79-3027	62469
3766843	Fredda	Shawn	Denness	F	1956-06-03T04:00:00.000+0000	946-20-3144	92998

Υς,

Prepare Databricks JDBC Connection

Now we need to prepare the Databricks JDBC connection details. You may follow these steps to retrieve the JDBC URL, which may look similar to:

1 2 3 4 5 > 20/page ∨

jdbc:databricks://dbc-0bf1f204-2226.cloud.databricks.com:443/d efault;transportMode=http;ssl=1;httpPath=sql/protocolv1/o/3267 754737859861/0405-070225tumf7a9c;AuthMech=3;UID=token;PWD=<personal-access-token>

A personal access token is needed, see here for how to generate one.

Last but not least, we will need to download the Databricks JDBC driver from here. This tutorial uses version 2.6.32. Both the URL and the driver are needed by AllegroGraph's virtual knowledge graph interface, as we will see later.

vload – Load RDF triples from Databricks

The vload facility of agtool is able to load data from relational databases as RDF triples. For a tutorial for vload itself, please refer to this page.

To configure vload, we need 2 files:

demo.properties

This file contains information about the Databricks JDBC connection details as what we have shown in the previous section:

jdbc.url=<your-JDBC-url>
jdbc.driver=com.databricks.client.jdbc.Driver

Note that the downloaded Databricks JDBC driver also needs to be properly installed. See more details here.

demo.mapping.obda

This file defines the rules of how to map the columns from the people10m table between our expected RDF triples. As the target and source sections indicate, we will map id, firstName, lastName, gender, and salary into RDF triples by executing a SQL query.

```
[PrefixDeclaration]
: http://example.org/
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#
```

owl:http://www.w3.org/2002/07/owl#xsd:http://www.w3.org/2001/XMLSchema#obda:https://w3id.org/obda/vocabulary#

[MappingDeclaration] @collection [[

```
mappingId people10m
target :{id} a :Person ; rdfs:label "{firstName}
{lastName}" ; :gender "{gender}"; :salary "{salary}"^^xsd:int
.
source SELECT * FROM
`hive metastore`.`default`.`people10m` LIMIT 1000
```

]]

By using this mapping, a row of such data:

id	firstName	middleName	lastName	gender	birthDate	ssn	salary
3766824	Hisako	Isabella	Malitrott	F	1961-02-12T05:00:00.000+0000	938-80-1874	58863
will be mapped to these RDF triples (in Turtle syntax):							

```
@prefix : <http://example.org/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
```

:3766824 a	:Person ;
rdfs:label	"Hisako Malitrott" ;
:gender	"F" ;
:salary	"58863"^^xsd:int .

For more details on creating mappings, please refer to this page.

Finally, we can start vloading by running this command:

agtool vload --ontop-home /path/to/ontop --properties /path/to/your/demo.properties --mapping /path/to/your/demo.mapping.obda people

2023-04-12T19:04:13| Creating a temporary workspace

2023-04-12T19:04:13 | Temporary workspace successfully created: "/tmp/agtool-vload-1dfd731d-4862-e844-fde6-0242164d5260/" 2023-04-12T19:04:13 | Mapping file is given, skip bootstrapping 2023-04-12T19:04:13| Starting materialization 2023-04-12T19:04:16 Materialization - OBTAINED FROM SPARK JDBC DRIVER: hive metastore, default 2023-04-12T19:04:18 | Materialization - 19:04:18.398 |-INF0 in i.u.i.o.a.r.impl.QuestQueryProcessor - Ontop has completed the setup and it is ready for guery answering! 2023-04-12T19:04:30 Materialization -WARNING: sun.reflect.Reflection.getCallerClass is not supported. This will impact performance. 2023-04-12T19:04:31 | Materialization - NR of TRIPLES: 1000 2023-04-12T19:04:31 Materialization - Elapsed time to materialize: 13218 {ms} 2023-04-12T19:04:34 | Materialization - NR of TRIPLES: 1000 2023-04-12T19:04:34 | Materialization - Elapsed time to materialize: 2786 {ms} 2023-04-12T19:04:35 | Materialization - NR of TRIPLES: 1000 2023-04-12T19:04:35 | Materialization - Elapsed time to materialize: 1339 {ms} 2023-04-12T19:04:36 | Materialization - NR of TRIPLES: 1000 2023-04-12T19:04:36 Materialization - Elapsed time to materialize: 1210 {ms} 2023-04-12T19:05:36| Materialization successfully exited 2023-04-12T19:05:36| Start loading triples 2023-04-12T19:05:37 | Load finished 4 sources in 78ms (0.08 4,000, Average Rate: Triples added: seconds). 51,282 tps.

It will load the RDF triples into the people repository. You may display a few sample instances through Gruff:

Now let's try to query all the information of 10 top-paid people:

I F

134145 |

I

```
agtool query --output-format table people - <<EOF
PREFIX : <http://example.org/>
SELECT ?person ?name ?gender ?salary {
  ?person a :Person ;
        rdfs:label ?name ;
        :gender ?gender ;
        :salary ?salary .
}
ORDER BY DESC(?salary)
LIMIT 10
EOF
                                  | gender | salary |
  person
           | name
  :3767538 | Shameka Mitcham
                                             135931
                                   F
```

:3767690 | Adelia Salters

:3767101	Eldora Welbeck	F	134099
:3767137	Rosalie Challenger	F	129091
:3767409	Hassie Sides	F	127972
:3767659	Bridget Inwood	F	126424
:3767771	Lovie Dorn	F	124903
:3767631	Latoya Stogill	F	120098
:3766922	Dot Murkus	F	119509
:3767736	Ima Adnam	F	119195

Query information: time : output: 0.001829, overall: 0.045899, parse:

0.000000, plan: 0.020477, query: 0.005075, system: 0.000072, total: 0.027381, user: 0.042787

other : generation: 2, info: "bindings-set", rowCount: 10

Summary

This tutorial has shown AllegroGraph's capability of creating a Semantic Layer for the Databricks lakehouse platform.

Adding a semantic layer, via AllegroGraph, ascribes business meaning to data so end users can better understand their data and associated metadata. A semantic layer provides a number of advantages in terms of Enterprise-wide data management. Users can define business concepts and connections which add meaning to their desired use-case. Some specific advantages of a semantic layer include: improved data integration, enhanced data accessibility, improved data governance, enhanced data quality, and enhanced data security.