AllegroGraph Semantic Layer
for Databricks (Delta Lake)

This AllegroGraph tutorial is available on our Github Examples
page.

Databricks is a popular choice for hosting lakehouses — a new
architecture that unifies data storage, analytics, and AI on
one platform. On the other hand, as an enterprise knowledge
graph platform, AllegroGraph provides quick semantic layer
integration with Databricks transparently through our advanced
VKG (virtual knowledge graph) interface.

In this tutorial, we will show you how to load RDF triples
directly from your Delta Tables that are hosted in Databricks,
and we assume the readers have prior experience with
AllegroGraph and our agtool facility.

For users starting with the open-source Delta Lake but not
hosted on Databricks, this tutorial may still apply, as long
as your platform exposes a JDBC connection and enables SQL as
(one of) its query interface.

Requirements

Obviously, you will need to have a running cluster or a SQL
warehouse 1in your Databricks workspace as well as an
AllegroGraph server. This tutorial uses a cluster to
demonstrate.

Note that Databricks provides trial clusters and one can start
from here. If all is successfully set up, the cluster’s
dashboard should look similar to this:

https://allegrograph.com/allegrograph-semantic-layer-for-databricks-delta-lake/
https://allegrograph.com/allegrograph-semantic-layer-for-databricks-delta-lake/
https://github.com/franzinc/agraph-examples
https://www.databricks.com/
https://www.databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html
https://docs.databricks.com/delta/index.html
https://franz.com/agraph/support/documentation/current/agtool.html
https://delta.io/
https://github.com/franzinc/agraph-examples/blob/master/databricks/README.md#requirements
https://docs.databricks.com/clusters/index.html
https://docs.databricks.com/sql/admin/create-sql-warehouse.html#what-is-a-sql-warehouse
https://docs.databricks.com/sql/admin/create-sql-warehouse.html#what-is-a-sql-warehouse
https://www.databricks.com/try-databricks?itm_data=NavBar-TryDatabricks-Trial#account

Franzinc's Demo Cluster @ More = Terminate m

Configuration Notebooks (0) Libraries Event log Spark Ul Driver logs Metrics Apps Spark cluster Ul - Master »

Policy @ ul | JSON
Unrestricted
Summary
Multi node Single node
2-8 Workers 61-244 GB Memory
Access mode @ Single user access @ 8-32 Cores
Single user Tianyu Gu (gty@franz.com) 1 Driver 30.5 GB Memory, 4 Cores
Runtime 12.2.x-scala2.12

Performance m m 6-18 DBU/h

Databricks Runtime Version

12.2 LTS (includes Apache Spark 3.3.2, Scala 2.12)

Use Photon Acceleration @

Worker type © Min workers Max workers Current
i3.xlarge 30.5 GB Memory, 4 Cores 2 8 2
Driver type
i3.xlarge 30.5 GB Memory, 4 Cores

Enable autoscaling @
[Enable autoscaling local storage @

Terminate after 120 C | minutes of inactivity @

Instance profile ®

None

Tags ©
No custom tags

> Automatically added tags

» Advanced options

Create a table and load a sample
dataset

We use a sample dataset called peoplelOm for this tutorial.
As documented by Databricks, we can load it into a table by
executing this SQL query:

CREATE TABLE default.peoplelOm OPTIONS (PATH
‘dbfs:/databricks-datasets/learning-spark-
v2/people/people-10m.delta’)

After being successfully loaded, you can find the table in the
Data Explorer:

https://github.com/franzinc/agraph-examples/blob/master/databricks/img/cluster-main.png
https://github.com/franzinc/agraph-examples/blob/master/databricks/README.md#create-a-table-and-load-a-sample-dataset
https://github.com/franzinc/agraph-examples/blob/master/databricks/README.md#create-a-table-and-load-a-sample-dataset
https://docs.databricks.com/dbfs/databricks-datasets.html#create-a-table-based-on-a-databricks-dataset

Data Explorer + Add © Franzinc's De... 91.5 GB, 12 Cores v

& hive_metastore > B default default >

default.people1Om

&5 people10m fBTable ADelta 2 v 21MiB, 8files (® Add comment :

Columns Sample Data Details Permissions History

Column Type Comment
id int

firstName string

middleName string

lastName string

gender string

birthDate timestamp

ssn string

salary int

as well as a few sample data rows:

https://github.com/franzinc/agraph-examples/blob/master/databricks/img/data-explorer.png

default >

BB Table

Columns

id

3766824

3766825

3766826

3766827

3766828

3766829

3766830

3766831

3766832

3766833

3766834

3766835

3766836

3766837

3766838

3766839

3766840

3766841

3766842

3766843

Data Explorer

default.people10m

ADelta &

Sample Data

firstName
Hisako
Daisy
Caren
Darleen
Kyle
Melia
Yevette
Delpha
Mikaela
Cindi
Rosana
Leena
Eleonore
Olga
Chandra
Vania
Dagmar
Marta
Danae

Fredda

v 211MiB, 8 files

(® Add comment

Details Permissions History

middleName
Isabella
Merissa
Blossom
Gertie

Lu

Kristy
Faye
Kenisha
Jenifer
Renita
Sari
Vanita
Stephany
Jona
Sherrill
Lashon
Misti

Joel
Darline

Shawn

lastName
Malitrott
Fibben
Henner
Goodinson
Habben
Bonhill
Bebbell
Gillison
Hallan
Cousin
Griston
Cajkler
Goldhill
Klos
Kelsey
Clixby
Poole
Copelli
Mithun

Denness

gender
F

F

+ Add

birthDate

1961-02-12T05:00:00.000+0000
1998-05-19T04:00:00.000+0000
1962-08-06T04:00:00.000+0000
1980-03-12T05:00:00.000+0000
1974-02-15T04:00:00.000+0000
1970-09-13T04:00:00.000+0000
1972-09-07T04:00:00.000+0000
1979-06-25T04:00:00.000+0000
1973-05-23T04:00:00.000+0000
1979-03-19T05:00:00.000+0000
1956-10-25T04:00:00.000+0000
1971-08-15T04:00:00.000+0000
1987-12-15T05:00:00.000+0000
1978-05-26T04:00:00.000+0000
1962-11-18T05:00:00.000+0000
1975-10-31T05:00:00.000+0000
1962-05-30T04:00:00.000+0000
1953-01-23T05:00:00.000+0000
1993-08-07T04:00:00.000+0000

1956-06-03T04:00:00.000+0000

@Franzlnc's De.. 915G

ssn

938-80-1874

971-14-3755

954-19-8973

981-65-5269

936-95-3240

960-91-9232

987-72-3701

962-66-5404

911-38-3114

666-50-3216

998-70-9023

954-81-8367

978-64-1528

961-27-8570

910-53-2697

985-43-1411

916-94-8252

929-52-3074

957-79-3027

946-20-3144

=

salary
58862
66221
54376
69954
56681
73995
92888
51206
98887
63646
19255
74760
67942
52484
65929
73756
85176
82347
62469

92998

20/page V

Prepare Databricks JDBC Connection

Now we need to prepare the Databricks JDBC connection details.

You may follow these steps to retrieve the JDBC URL, which may
look similar to:

jdbc:databricks://dbc-0bf1f204-2226.cloud.databricks.com:443/d
efault;transportMode=http;ssl=1;httpPath=sql/protocolvl/0/3267

754737859861/0405-070225-
tumf7a9c;AuthMech=3;UID=token;PWD=<personal-access-token>

A personal access token 1s needed,

generate one.

see here for how to

https://github.com/franzinc/agraph-examples/blob/master/databricks/img/sample-data.png
https://github.com/franzinc/agraph-examples/blob/master/databricks/README.md#prepare-databricks-jdbc-connection
https://docs.databricks.com/integrations/jdbc-odbc-bi.html#get-connection-details-for-a-cluster
https://docs.databricks.com/dev-tools/api/latest/authentication.html#generate-a-personal-access-token

Last but not least, we will need to download the Databricks
JDBC driver from here. This tutorial uses version 2.6.32. Both
the URL and the driver are needed by AllegroGraph’s virtual
knowledge graph interface, as we will see later.

vioad - Load RDF triples from
Databricks

The vload facility of agtool is able to load data from
relational databases as RDF triples. For a tutorial for vload
itself, please refer to this page.

To configure vload, we need 2 files:

demo.properties

This file contains information about the Databricks JDBC
connection details as what we have shown in the previous
section:

jdbc.url=<your-JDBC-url>
jdbc.driver=com.databricks.client.jdbc.Driver

Note that the downloaded Databricks JDBC driver also needs to
be properly installed. See more details here.

demo.mapping.obda

This file defines the rules of how to map the columns from the
peoplelOm table between our expected RDF triples. As the
target and source sections indicate, we will
map id, firstName, lastName, gender, and salary into RDF
triples by executing a SQL query.

[PrefixDeclaration]
: http://example.org/
rdf: http://www.w3.0rg/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.0rg/2000/01/rdf-schema#

https://www.databricks.com/spark/jdbc-drivers-download
https://databricks-bi-artifacts.s3.us-east-2.amazonaws.com/simbaspark-drivers/jdbc/2.6.32/docs/release-notes.txt
https://github.com/franzinc/agraph-examples/blob/master/databricks/README.md#vload---load-rdf-triples-from-databricks
https://github.com/franzinc/agraph-examples/blob/master/databricks/README.md#vload---load-rdf-triples-from-databricks
https://franz.com/agraph/support/documentation/current/vgraph-interface.html
https://franz.com/agraph/support/documentation/current/agtool.html
https://github.com/franzinc/agraph-examples/blob/master/ontop/README.md
https://github.com/franzinc/agraph-examples/blob/master/databricks/README.md#demoproperties
https://ontop-vkg.org/guide/cli.html#jdbc-configuration
https://github.com/franzinc/agraph-examples/blob/master/databricks/README.md#demomappingobda

owl: http://www.w3.0rg/2002/07/owl#
xsd: http://www.w3.0rg/2001/XMLSchema#
obda: https://w3id.org/obda/vocabulary#

[MappingDeclaration] @collection [[

mappingIld peoplelOm

target :{id} a :Person ; rdfs:label "{firstName}
{lastName}" ; :gender "{gender}"; :salary "{salary}"""xsd:int
source SELECT * FROM

"hive metastore . default . peoplelOm LIMIT 1000

11

By using this mapping, a row of such data:

id firstName | middleName| lastName |gender birthDate ssn salary
3766824 | Hisako Isabella |Malitrott F 1961-02-12T05:00:00.000+0000 |938-80-1874| 58863

will be mapped to these RDF triples (in Turtle syntax):

@prefix : <http://example.org/> .

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

:3766824 a :Person ;
rdfs:label "Hisako Malitrott" ;
:gender "F" o,
:salary "58863"""xsd:int .

For more details on creating mappings, please refer to
this page.

Finally, we can start vloading by running this command:

agtool vload --ontop-home /path/to/ontop --properties
/path/to/your/demo.properties --mapping
/path/to/your/demo.mapping.obda people

2023-04-12T19:04:13| Creating a temporary workspace

https://github.com/franzinc/agraph-examples/blob/master/ontop/README.md#31-ontologies-and-mappings

2023-04-12T19:04:13| Temporary workspace successfully created:
"/tmp/agtool-vload-1dfd731d-4862-e844-fde6-0242164d5260/"
2023-04-12T19:04:13| Mapping file is given, skip bootstrapping
2023-04-12T19:04:13| Starting materialization
2023-04-12T19:04:16| Materialization - OBTAINED FROM SPARK
JDBC DRIVER: hive metastore, default

2023-04-12T19:04:18| Materialization - 19:04:18.398 |-INFO in
i.u.i.o.a.r.impl.QuestQueryProcessor - Ontop has completed the
setup and it is ready for query answering!
2023-04-12T19:04:30| Materialization - WARNING:
sun.reflect.Reflection.getCallerClass is not supported. This
will impact performance.

2023-04-12T19:04:31| Materialization - NR of TRIPLES: 1000
2023-04-12T19:04:31| Materialization - Elapsed time to
materialize: 13218 {ms}

2023-04-12T19:04:34| Materialization - NR of TRIPLES: 1000
2023-04-12T19:04:34| Materialization - Elapsed time to
materialize: 2786 {ms}

2023-04-12T19:04:35| Materialization - NR of TRIPLES: 1000
2023-04-12T19:04:35| Materialization - Elapsed time to
materialize: 1339 {ms}

2023-04-12T19:04:36| Materialization - NR of TRIPLES: 1000
2023-04-12T19:04:36| Materialization - Elapsed time to
materialize: 1210 {ms}

2023-04-12T19:05:36| Materialization successfully exited
2023-04-12T19:05:36| Start loading triples
2023-04-12T19:05:37| Load finished 4 sources in 78ms (0.08
seconds). Triples added: 4,000, Average Rate:
51,282 tps.

It will load the RDF triples into the people repository. You
may display a few sample instances through Gruff:

[Gruff 8.1.4 on AllegroGraph 7.3.1 people read/write 4,000 triples server 127.0.0.1:10035 X
File View TextSearch Display Link Remove Layout Select Edit Global Options Visual Graph Options Help
Gender _
Salary _
(N\
| Person
(Literal)
(F) (98735)
gacquelin (Fanny Ewer |
Standell \Janny =wer)
— — " Marti | P S
l}\7107124/| ‘f/l Scarff ‘\758740‘1\
(F)
http://example.org/3767681 [Person] v

Now let’s try to query all the information of 10 top-paid
people:

agtool query --output-format table people - <<EOF

PREFIX : <http://example.org/>

SELECT ?person ?name ?gender ?salary {

?person a :Person ;

rdfs:label ?name ;
:gender ?gender ;
:salary ?salary .

}

ORDER BY DESC(7?salary)

LIMIT 10

EOF

| :3767538 | Shameka Mitcham | F | 135931 |
| :3767690 | Adelia Salters | F | 134145 |

https://github.com/franzinc/agraph-examples/blob/master/databricks/img/gruff.png

:3767101	Eldora Welbeck	F	134099
:3767137	Rosalie Challenger	F	129091
:3767409	Hassie Sides	F	127972
:3767659	Bridget Inwood	F	126424
:3767771	Lovie Dorn	F	124903
:3767631	Latoya Stogill	F	120098
:3766922	Dot Murkus	F	119509
:3767736	Ima Adnam	F	119195

Query information:

time : output: 0.001829, overall: 0.045899, parse:
0.000000, plan: 0.020477, query: 0.005075, system: 0.000072,
total: 0.027381, user: 0.042787

memory : consCells: 5829080, majorPageFaults: O,
maximumChunk: 5200000, maximumMap: 10131448, minorPageFaults:
2787

other : generation: 2, info: "bindings-set", rowCount:
10

Summary

This tutorial has shown AllegroGraph’'s capability of creating
a Semantic Layer for the Databricks lakehouse platform.

Adding a semantic layer, via AllegroGraph, ascribes business
meaning to data so end users can better understand their data
and associated metadata. A semantic layer provides a number of
advantages in terms of Enterprise-wide data management. Users
can define business concepts and connections which add meaning
to their desired use-case. Some specific advantages of a
semantic layer include: improved data integration, enhanced
data accessibility, improved data governance, enhanced data
quality, and enhanced data security.

https://github.com/franzinc/agraph-examples/blob/master/databricks/README.md#summary

What 1s a Semantic Layer?

There are several reasons why the notion of semantic layers
has reached the forefront of today’s data management
conversations. The analyst community 1is championing the data
fabric tenet. The data mesh and data lake house architectures
are gaining traction. Data lakes are widely deployed. Even
architectural-agnostic business intelligence tooling seeks to
harmonize data across sources.

Each of these frameworks requires a semantic layer to ascribe
business meaning to data — via metadata — so end users can
understand data for their purposes and streamline data
integration. This layer sits between users and sources, so the
former can comprehend data without knowing the underlying data
formats.

What are the advantages of a semantic layer in your data
infrastructure?

A semantic layer is an intermediate layer in an Enterprise
architecture that sits between the data

sources and the applications that use the data. It provides a
number of advantages in terms

of data management, integration, and accessibility. Some
specific advantages of a semantic

layer include:

1. Improved data integration: A semantic layer can help to
integrate data from multiple sources by providing a common
data model and set of APls that can be used to access the
data. This makes it easier to build applications that work
with data from multiple sources.

2. Enhanced data accessibility: A semantic layer can
provide a higher level of abstraction over the data
sources, making it easier for users to access and work with
the data. This can be particularly useful for users who are

https://allegrograph.com/what-is-a-semantic-layer/

not technical experts or who do not have in-depth knowledge
of the underlying data sources.

3. Better data governance: A semantic layer can help to
enforce data governance policies by providing a centralized
point of control for data access and management. This can
help to ensure that data is used in a consistent and
controlled manner.

4. Upgraded data quality: A semantic layer can help to
improve the quality of the data by providing tools and
processes for data cleansing, validation, and
transformation. This can help to ensure that the data 1is
accurate and consistent.

5. Advanced data security: A semantic layer can provide an
additional layer of security by controlling access to the
data sources and enforcing security policies. This can help
to protect sensitive data and ensure that it is only
accessed by authorized users.

Overall, a semantic layer can provide a number of benefits in
terms of data integration, accessibility, governance, quality,
and security, making it a valuable component of a data
infrastructure.

Semantic Layers with W3C’s Semantic Technologies

Semantic Technology refers to a set of tools and technologies
that are used to represent, store, and manipulate data in a
way that allows it to be understood and interpreted by
computers. Some examples of semantic technology include graph
databases, ontologies, and semantic web standards such as RDF
and OWL.

While semantic technology is the preferred way to implement a
semantic layer, some other players have tried other
technologies including traditional relational databases, data
warehousing tools, or even flat files. The key is to provide a

common data model and set of APIs that can be used to access
the data in a consistent and predictable manner.

That being said, Standards based W3C Semantic Technology, like
that offered by AllegroGraph, has a huge advantage when it
comes to implementing a semantic layer. In particular,
Semantic Technology is well-suited for representing complex,
interconnected data relationships, and it can provide a high
level of flexibility and adaptability when it comes to working
with different data sources and structures. As such, semantic
technology can be a particularly useful choice for
organizations that need to integrate and work with large
volumes of complex data.

There are rare cases where a proprietary semantic layer may
work and the organization might not mind getting locked into
the ecosystem of a vendor for their metadata management needs.
But for the majority of use cases, the best way to future-
proof the enterprise is to adopt a standardized semantic layer
with semantic technologies. This method provides a seamless
business understanding of data that complements any current or
future IT needs, while reinforcing data integration,
analytics, and data governance.

