
Gartner Case Study: Entity-
Event Knowledge Graph for
Powering AI Solutions
(Montefiore)
Gartner featured Franz’s customer, Montefiore Medical Center,
in a research report on Montefiore’s Entity-Event Knowledge
Graph:

“AI solutions are often hindered by fragmented data and siloed
point solutions,” according to Gartner’s Chief Data and
Analytics Officer Research Team. “Montefiore’s data and
analytics leader used semantic knowledge graphs to power its
AI solutions and achieved considerable cost savings as well as
improvements in timeliness and the prediction accuracy of AI
models.” Source: Gartner Case Study: Entity-Event Knowledge
Graph for Powering AI Solutions (Montefiore) – Subscription
required.

Copy Available from Montefiore/Einstein.

Document Knowledge Graphs
with NLP and ML
A core competency for Franz Inc is turning text and documents
into Knowledge Graphs (KG) using Natural Language Processing
(NLP) and Machine Learning (ML) techniques in combination with
AllegroGraph. In this document we discuss how the techniques
described in [NLP and ML components of AllegroGraph] can be

https://allegrograph.com/gartner-case-study-entity-event-knowledge-graph-for-powering-ai-solutions-montefiore/
https://allegrograph.com/gartner-case-study-entity-event-knowledge-graph-for-powering-ai-solutions-montefiore/
https://allegrograph.com/gartner-case-study-entity-event-knowledge-graph-for-powering-ai-solutions-montefiore/
https://allegrograph.com/gartner-case-study-entity-event-knowledge-graph-for-powering-ai-solutions-montefiore/
https://blogs.gartner.com/jitendra-subramanyam/new-publications-march-2021/
https://blogs.gartner.com/jitendra-subramanyam/new-publications-march-2021/
https://www.einsteinmed.edu/uploadedFiles/centers/ICTR/new/case-study-entity-event-knowledge-graph-for-powering-ai-solutions.pdf
https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/
https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/
https://allegrograph.com/natural-language-processing-and-machine-learning-in-allegrograph/

combined with popular software tools to create a robust
Document Knowledge Graph pipeline.

We have applied these techniques for several Knowledge Graphs
but in this document we will primarily focus on three
completely different examples that we summarize below. First
is the Chomsky Legacy Project where we have a large set of
very dense documents and very different knowledge sources,
Second is a knowledge graph for an intelligent call center
where we have to deal with high volume dynamic data and real-
time decision support and finally, a large government
organization where it is very important that people can do a
semantic search against documents and policies that steadily
change over time and where it is important that you can see
the history of documents and policies.

Example [1] Chomsky Knowledge Graph
The Chomsky Legacy Project is a project run by a group of
admirers of Noam Chomsky with the primary goal to preserve all
his written work, including all his books, papers and
interviews but also everything written about him. Ultimately
students, researchers, journalists, lobbyists, people from the
AI community, and linguists can all use this knowledge graph
for their particular goals and questions.

The biggest challenges for this project are finding causal
relationships in his work using event and relationship
extraction. A simple example we extracted from an author
quoting Chomsky is that neoliberalism ultimately causes
childhood death.

Example 2: N3 Results and the Intelligent Call Center
This is a completely different use case (See a recent KMWorld
Articlehttps://allegrograph.com/knowledge-graphs-enhance-custo
mer-experience-through-speed-and-accuracy/). Whereas the
previous use case was very static, this one is highly dynamic.
We analyze in real-time the text chats and spoken
conversations between call center agents and customers. Our
knowledge graph software provides real-time decision support
to make the call center agents more efficient. N3 Results
helps big tech companies to sell their high tech solutions,
mostly cloud-based products and services but also helps their
clients sell many other technologies and services.

The main challenge we tackle is to really deeply understand
what the customer and agent are talking about. None of this
can be solved by only simple entity extraction but requires
elaborate rule-based and machine learning techniques. Just to
give a few examples. We want to know if the agent talked about
their most important talking points: that is, did the agent
ask if the customer has a budget, or the authority to make a
decision or a timeline about when they need the new technology
or whether they actually have expressed their need. But also
whether the agent reached the right person, and whether the
agent talked about the follow-up. In addition, if the customer
talks about competing technology we need to recognize that and
provide the agent in real-time with a battle card specific to
the competing technology. And in order to be able to do the

latter, we also analyzed the complicated marketing materials
of the clients of N3.

Example 3: Complex Government Documents
Imagine a regulatory body with tens of thousands of documents.
Where nearly every paragraph has reference to other paragraphs
in the same document or other documents and the documents
change over time. The goal here is to provide the end-users in
the government with the right document given their current
task at hand. The second goal is to keep track of all the
changes in the documents (and the relationship between
documents) over time.

The Document to Knowledge Graph Pipeline

Let us first give a quick summary in words of how we turn
documents into a Knowledge Graph.

[1] Taxonomy Creation

Taxonomy of all the concepts important to the business using
open source or commercial taxonomy builders. An available
industry taxonomy is a good starting point for additional
customizations.

[2] Document Preparation

We then take a document and turn it into an intermediate XML
using Apache Tika. Apache Tika supports more than 1000
document types and although Apache Tika is a fantastic tool,
the output is still usually not clean enough to create a graph
from, so we use Spacy rules to clean up the XML to make it as
uniform as possible.

[3] Extract Document MetaData

Most documents also contain document metadata (author, date,
version, title, etc) and Apache Tika will also deliver the
metadata for a document as a JSON object.

[4] XML to Triples

Our tools ingest the XML and metadata and transform that into
a graph-based document tree. The document is the root and from
that, it branches out into chapters, optionally sections, all
the way down to paragraphs. The ultimate text content is in
the paragraphs. In the following example we took the XML
version of Noam Chomsky’s book Media Control and turned that
into a tree. The following shows a tiny part of that tree. We
start with the Media Control node, then we show three (of the
11) chapters, for one chapter we show three (of the 6)
paragraphs, and then we show the actual text in that
paragraph. We sometimes can go even deeper to the level of
sentences and tokens but for most projects that is overkill.

[5] Entity Extractor

AllegroGraph’s entity extractor takes as input the text of
each paragraph in the document tree and one or more of the
taxonomies and returns recognized SKOS concepts based on
prefLabels and altLabels. AllegroGraph’s entity extractor is
state of the art and especially powerful when it comes to
complex terms like product names. We find that in our call
center a technical product name can sometimes have up to six
synonyms or very specific jargon. For example the Cisco
product Catalyst 9000 will also be abbreviated as the cat 9k.
Instead of developing altLabels for every possible permutation
that human beings *will* use, we have specialized heuristics
to optimize the yield from the entity extractor. The following
picture shows 4 (of the 14) concepts discovered in paragraph
16. Plus one person that was extracted by IBM’s NLU.

[6] Linked Data Enrichment

In many use cases, AllegroGraph can link extracted entities to
concepts in the linked data cloud. The most prominent being
DBpedia, wikidata, the census database, GeoNames, but also
many Linked Open Data repositories. One tool that is very
useful for this is IBM’s Natural Language Understanding
program but there are others available. In the following image
we see that the Nelson Mandela entity (Red) is linked to the
dbpedia entity for Nelson Mandela and that then links to the
DBpedia itself. We extracted some of his spouses and a child
with their pictures.

[7] Complex Relationship and Event Extraction

Entity extraction is a first good step to ‘see’ what is in
your documents but it is just the first step. For example: how
do you find in a text whether company C1 merged with company
C2. There are many different ways to express the fact that a
company fired a CEO. For example: Uber got rid of Kalanick,
Uber and Kalanick parted ways, the board of Uber kicked out
the CEO, etc. We need to write explicit symbolic rules for
this or we need a lot of training data to feed a machine
learning algorithm.

[8] NLP and Machine Learning

There are many many AI algorithms that can be applied in
Document Knowledge Graphs. We provide best practices for
topics like:

[a] Sentiment Analysis, using good/bad word lists or
training data.
[b] Paragraph or Chapter similarity using statistical
techniques like Gensim similarity or symbolic techniques
where we just the overlap of recognized entities as a
function of the size of a text.
[c] Query answering using word2vec or more advanced
techniques like BERT
[d] Semantic search using the hierarchy in SKOS taxonomies.
[e] Summarization techniques for Abstractive or Extractive
abstracts using Gensim or Spacy.

[9] Versioning and Document tracking

Several of our customers with Document Knowledge Graphs have
noted the one constant in all of these KGs is that documents
change over time. As part of our solution, we have created
best practices where we deal with these changes. A crucial
first step is to put each document in its own graph (i.e. the
fourth element of every triple in the document tree is the
document id itself). When we get a new version of a document
the document ID changes but the new document will point back
to the old version. We then compute which paragraphs stayed
the same within a certain margin (there are always changes in
whitespace) and we materialize what paragraphs disappeared in
the new version and what new paragraphs appeared compared to
the previous version. Part of the best practice is to put the
old version of a document in a historical database that at all
times can be federated with the ‘current’ set of documents.

Note that in the following picture we see the progression of a
document. On the right hand side we have a newer version of a
document 1100.161 with a chapter -> section -> paragraph ->
contents where the content is almost the same as the one in

the older version. But note that the newer one spells
‘decision making’ as one word whereas the older version said
‘decision-making’. Note that also the chapter titles and the
section titles are almost the same but not entirely. Also,
note that the new version has a back-pointer (changed-from) to
the older version.

[10] Statistical Relationships

One important analytic one can do on documents is to look at
the co-occurrence of terms. Although, given that certain words
might occur more frequently in text, we have to correct the
co-occurrence between words for the frequency of the two terms
in a co-occurrence to get a better idea of the
‘surprisingness’ of a co-occurrence. The platform offers
several techniques in Python and Lisp to compute these co-
occurrences. Note that in the following picture we computed
the odds ratios between recognized entities and so we see in

the following gruff picture that if Noam Chomsky talks about
South Africa then the chances are very high he will also talk
about Nelson Mandela.

The Knowledge Graph Cookbook
Recipes for Knowledge Graphs that Work:

Learn why and how to build knowledge graphs that help
enterprises use data to innovate, create value and
increase revenue. This practical manual is full of
recipes and knowledge on the subject.
Learn more about the variety of applications based on
knowledge graphs.
Learn how to build working knowledge graphs and which
technologies to use.
See how knowledge graphs can benefit different parts of
your organization.

https://allegrograph.com/the-knowledge-graph-cookbook/

Get ready for the next generation of enterprise data
management tools.

Dr. Jans Aasman, CEO, Franz Inc. is interviewed in the Expert
Opinion Section.

“KNOWLEDGE GRAPHS AREN’T WORTH THEIR NAME IF THEY DON’T
ALSO LEARN AND BECOME SMARTER DAY BY DAY” – Dr. Aasman

Click here to get the book as free PDF or Kindle version.

https://www.poolparty.biz/resources/the-knowledge-graph-cookbook-resource/

Franz’s 2020 Predictions in
the News
Looking to the future of AI, KnowledgeGraph and Semantics we
had a number of publications cover our views of where
AllegroGraph is headed.

Datanami

20 AI Predictions for 2020

We’re still in the midst of a fake news crisis, and with the
emergence of deep fakes, it will likely get worse. Luckily, we
have the technology available to begin to address it, says Dr.
Jans Aasman, the CEO of Franz.

“Knowledge graphs, in combination with deep learning, will be
used to identify photos and video that have been altered by
superimposing existing images and videos onto source images,”
Aasman says. “Machine learning knowledge graphs will also
unveil the origin of digital information that has been
published by a foreign source. Media outlets and social
networks will use AI knowledge graphs as a tool to determine
whether to publish information or remove it.”

DBTA

Ten Predictions for AI and Machine Learning in 2020

AI Knowledge Graphs will Debunk Fake News:“Knowledge Graphs in
combination with deep learning will be used to identify photos
and video that have been altered by superimposing existing
images and videos onto source images. Machine learning
knowledge graphs will also unveil the origin of digital

https://allegrograph.com/franzs-2020-predictions-in-the-news/
https://allegrograph.com/franzs-2020-predictions-in-the-news/
https://www.datanami.com/2019/12/30/20-ai-predictions-for-2020/
http://www.dbta.com/Editorial/News-Flashes/Ten-Predictions-for-AI-and-Machine-Learning-in-2020-135852.aspx

information that has been published by a foreign source. Media
outlets and social networks will use AI Knowledge Graphs as a
tool to determine whether to publish information or remove
it.” – Dr. Jans Aasman, CEO of Franz, Inc.

SD Times

Software predictions for 2020 from around the industry

Jans Aasman, CEO of Franz, Inc.
Digital immortality will emerge: We will see digital
immortality emerge in 2020 in the form of AI digital personas
for public figures. The combination of Artificial Intelligence
and Semantic Knowledge Graphs will be used to transform the
works of scientists, technologists, politicians and scholars
into an interactive response system that uses the person’s
actual voice to answer questions. AI digital personas will
dynamically link information from various sources – such as
books, research papers and media interviews – and turn the
disparate information into a knowledge system that people can
interact with digitally. These AI digital personas could also
be used while the person is still alive to broaden the
accessibility of their expertise.

Dataversity

Semantic Web and Semantic Technology Trends in 2020
“The big-name Silicon Valley companies (LinkedIN, Airbnd,
Apple, Uber) are all building knowledge graphs. But more
importantly, Fortune 500 companies, especially banks, are also
investing in knowledge graph solutions.”

IoT gets into the picture too. Aasman points to “digital
twins,” which can be thought of as specialized knowledge
graphs, as an exceptionally lucrative element of the

https://sdtimes.com/softwaredev/software-predictions-for-2020-from-around-the-industry/
https://www.dataversity.net/semantic-web-and-semantic-technology-trends-in-2020/

technology with an applicability easily lending itself to
numerous businesses. Its real-time streaming data, simulation
capabilities, and relationship awareness may well prove to be
the ‘killer app’ that takes the IoT mainstream, he said. As an
example, by consuming data transmitted by IoT sensors, digital
twins will inform the monitoring, diagnostics, and prognostics
of power grid assets to optimize asset performance and
utilization in near real-time.

InsideBigData

2020 Trends in Data Modeling: Unparalleled Advancement

Shapes Constraint Language (SHACL): SHACL is a framework that
assists with data modeling by describing the various shapes of
data in knowledge graph settings, which produces the desirable
downstream effect of enabling organizations to automate “the
validation of your data,” remarked Franz CEO Jans Aasman.
SHACL operates at a granular level involving classifications
and specific data properties.

Workflow

2020 Trends in CyberSecurity

Software-defined perimeter transmissions also guard
information at the data layer by utilizing Datagram Transport
Layer Security (DTLS) encryption and Public Key
Authentication. Fortifying information assets at the data
layer is likely the most dependable method of protecting them,
because it’s the layer in which the data are actually stored.
It’s important to distinguish data layer security versus
access layer security. The latter involves a process known as
security filtering in which, based on particular roles or
responsibilities, users can access data. “You can specify

https://insidebigdata.com/2019/11/29/2020-trends-in-data-modeling-unparalleled-advancement/
https://workflowotg.com/2020-trends-in-cybersecurity/

filters where for a particular user or a particular role
whether you could see or not see particular [data],” Franz CEO
Jans Aasman said. “You could say if someone has the role
administrator, we’re telling the system ‘administrators cannot
see [certain data]’.”

Moreover, triple attributes can be based on compliance needs
specific to regulations — which is immensely utilitarian in
the post-GDPR data landscape. “For the government you could
have a feature of whether you’re a foreigner or not,” Aasman
said. “HIPAA doesn’t care whether you’re a foreigner or not,
but you can do a separate mechanism for it.”

2020 Trend Setting Products –
AllegroGraph
Franz Inc. is proud to announce that it has been named to the
2020 Trend Setting Products in Data Management by Database
Trends and Application Magazine.

Database Trends and Applications (DBTA) magazine announced its
seventh annual list of trend-setting products in data
management and analysis. The list, “DBTA Trend-Setting
Products for 2020,” recognizes products in the marketplace
that are both innovative and effective in helping customers
address evolving challenges and opportunities. In all, 100
products are highlighted in the special December edition of
Database Trends and Applications magazine and on the DBTA
website, www.dbta.com.

“The world of data management and analytics continues to

https://allegrograph.com/2020-trend-setting-products-allegrograph/
https://allegrograph.com/2020-trend-setting-products-allegrograph/
http://www.dbta.com

evolve rapidly with new technologies and strategies,” remarked
Thomas Hogan, Group Publisher of Database Trends and
Applications. “Cutting through the hype and identifying
products that deliver results in the real world is more
important than ever. This list highlights products that are
truly transformative in bringing greater agility, efficiency
and innovation to market.”

“We are honored to receive this acknowledgement for our
efforts in delivering Enterprise Knowledge Graph Solutions,”
said Dr. Jans Aasman, CEO, Franz Inc. “In the past year, we
have seen demand for Enterprise Knowledge Graphs take off
across industries along with recognition from top technology
analyst firms that Knowledge Graphs provide the critical
foundation for artificial intelligence applications and
predictive analytics. Our AllegroGraph Knowledge Graph
Platform Solution offers a unique comprehensive approach for
helping companies accelerate the creation of Enterprise
Knowledge Graphs that deliver new value to their
organization.”

The Importance of FAIR Data
in Earth Science
Franz’s CEO, Jans Aasman’s recent Marine Technology News:

Data’s valuation as an enterprise asset is most acutely
realized over time. When properly managed, the same dataset

https://allegrograph.com/the-importance-of-fair-data-in-earth-science/
https://allegrograph.com/the-importance-of-fair-data-in-earth-science/

supports a plurality of use cases,
becomes almost instantly available
upon request, and is exchangeable
between departments or
organizations to systematically
increase its yield with each
deployment.

These boons of leveraging data as an enterprise asset are the
foundation of GO FAIR’s Findable Accessible Interoperable
Reusable (FAIR) principles profoundly impacting the data
management rigors of geological science. Numerous
organizations in this space have embraced these tenets to
swiftly share information among a diversity of disciplines to
safely guide the stewardship of the earth.

According to Dr. Annie Burgess, Lab Director of Earth Science
Information Partners (ESIP), the “most pressing global
challenges cannot be solved by a single organization.
Scientists require data collected across multiple disciplines,
which are often managed by many different agencies and
institutions.” As numerous members of the earth science
community are realizing, the most effectual means of managing
those disparate data according to FAIR principles is by
utilizing the semantic standards underpinning knowledge
graphs.

Read the full article at Marine Technology News

Ontology Summit 2020 –

https://www.marinetechnologynews.com/news/importance-earth-science-593757
https://allegrograph.com/ontology-summit-2020-knowledge-graphs/

Knowledge Graphs
The Ontology Summit is an annual series of events that
involves the ontology community and communities related to
each year’s theme chosen for the summit. The Ontology Summit
was started by Ontolog and NIST, and the program has been co-
organized by Ontolog, NIST, NCOR, NCBO, IAOA, NCO_NITRD along
with the co-sponsorship of other organizations that are
supportive of the Summit goals and objectives.

Knowledge graphs, closely related to ontologies and semantic
networks, have emerged in the last few years to be an
important semantic technology and research area. As structured
representations of semantic knowledge that are stored in a
graph, KGs are lightweight versions of semantic networks that
scale to massive datasets such as the entire World Wide Web.
Industry has devoted a great deal of effort to the development
of knowledge graphs, and they are now critical to the
functions of intelligent virtual assistants such as Siri and
Alexa. Some of the research communities where KGs are relevant
are Ontologies, Big Data, Linked Data, Open Knowledge Network,
Artificial Intelligence, Deep Learning, and many others.

Dr. Jans Aasman presented – “Why Knowledge Graphs Hit the Hype
Cycle and What they have in common”

Presentation Page

Presentation Slides

https://allegrograph.com/ontology-summit-2020-knowledge-graphs/
https://ontologforum.org/index.php/ConferenceCall_2019_09_04
https://ontologforum.s3.amazonaws.com/OntologySummit2020/Introduction/Why-Knowledge-Graphs-Now--JansAasman_20190904.pdf

SHACL – Shapes Constraint
Language in AllegroGraph
SHACL is a SHApe Constraint Language. It specifies a
vocabulary (using triples) to describe the shape that data
should have. The shape specifies things like the following
simple requirements:

How many triples with a specified subject and predicate
should be in the repository (e.g. at least 1, at most 1,
exactly 1).
What the nature of the object of a triple with a
specified subject and predicate should be (e.g. a
string, an integer, etc.)

See the specification for more examples.

SHACL allows you to validate that your data is conforming to
desired requirements.

For a given validation, the shapes are in the Shapes
Graph (where graph means a collection of triples) and the data
to be validated is in the Data Graph (again, a collection of
triples). The SHACL vocabularly describes how a given shape is
linked to targets in the data and also provides a way for a
Data Graph to specify the Shapes Graph that should be used for
validatation. The result of a SHACL validation describes
whether the Data Graph conforms to the Shapes Graph and, if it
does not, describes each of the failures.

Namespaces Used in this Document
Along with standard predefined namespaces (such

https://allegrograph.com/shacl-shapes-constraint-language-in-allegrograph/
https://allegrograph.com/shacl-shapes-constraint-language-in-allegrograph/
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/

as rdf: for <http://www.w3.org/1999/02/22-rdf-syntax-
ns#> and rdfs: for <http://www.w3.org/2000/01/rdf-schema#>),
the following are used in code and examples below:

prefix fr: <https://franz.com#>
prefix sh: <http://www.w3.org/ns/shacl#>
prefix franz: <https://franz.com/ns/allegrograph/6.6.0/>

A Simple Example
Suppose we have a Employee class and for each Employee
instance, there must be exactly one triple of the form

emp001 hasID "000-12-3456"

where the object is the employee’s ID Number, which has the
format is [3 digits]-[2 digits]-[4 digits].

This TriG file encapsulates the constraints above:

@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<https://franz.com#Shapes> {
 <https://franz.com#EmployeeShape>
 a sh:NodeShape ;
 sh:targetClass <https://franz.com#Employee> ;
 sh:property [
 sh:path <https://franz.com#hasID> ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:datatype xsd:string ;
 sh:pattern "^[0-9][0-9][0-9]-[0-9][0-9]-

[0-9][0-9][0-9][0-9]$" ;
] .
}

It says that for instances of fr:Employee (sh:targetClass
<https://franz.com#Employee>), there must be exactly 1 triple
with predicate (path) fr:hasID and the object of that triple

must be a string with pattern [3 digits]-[2 digits]-[4 digits]
(sh:pattern "^[0-9][0-9][0-9]-[0-9][0-9]-
[0-9][0-9][0-9][0-9]$").

This TriG file defines the Employee class and some employee
instances:

@prefix fr: <https://franz.com#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

{
 fr:Employee
 a rdfs:Class .
 fr:emp001
 a fr:Employee ;
 fr:hasID "000-12-3456" ;
 fr:hasID "000-77-3456" .
 fr:emp002
 a fr:Employee ;
 fr:hasID "00-56-3456" .
 fr:emp003
 a fr:Employee .
 }

Recalling the requirements above, we immediately see these
problems with these triples:

emp001 has two hasID triples.1.
The value of emp002‘s ID has the wrong format (two2.
leading digits rather than 3).
emp003 does not have a hasID triple.3.

We load the two TriG files into our repository, and end up
with the following triple set. Note that all the employee
triples use the default graph and the SHACL-related triples
use the graph <https://franz.com#Shapes> specified in the TriG
file.

Now we use agtool shacl-validate to validate our data:

bin/agtool shacl-validate --data-graph default --shapes-graph
https://franz.com#Shapes shacl-repo-1
Validation report: Does not conform
Created: 2019-06-27T10:24:10
Number of shapes graphs: 1
Number of data graphs: 1
Number of NodeShapes: 1
Number of focus nodes checked: 3

3 validation results:
Result:
 Focus node: <https://franz.com#emp001>
 Path: <https://franz.com#hasID>
 Source Shape: _:b7A1D241Ax1

 Constraint Component:
<http://www.w3.org/ns/shacl#MaxCountConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp002>
 Path: <https://franz.com#hasID>
 Value: "00-56-3456"
 Source Shape: _:b7A1D241Ax1

 Constraint Component:
<http://www.w3.org/ns/shacl#PatternConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Result:

 Focus node: <https://franz.com#emp003>
 Path: <https://franz.com#hasID>
 Source Shape: _:b7A1D241Ax1

 Constraint Component:
<http://www.w3.org/ns/shacl#MinCountConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

The validation fails with the problems listed above. The Focus
node is the subject of a triple that did not conform. Path is
the predicate or a property path (predicates in this
example). Value is the offending value. Source Shape is the
shape that established the constraint (you must look at the
shape triples to see exactly what Source Shape is requiring).

We revise our employee data with the following SPARQL
expresssion, deleting one of the emp001 triples, deleting
the emp002 triple and adding a new one with the correct
format, and adding an emp003 triple.

prefix fr: <https://franz.com#>

DELETE DATA {fr:emp002 fr:hasID "00-56-3456" } ;

INSERT DATA {fr:emp002 fr:hasID "000-14-1772" } ;

DELETE DATA {fr:emp001 fr:hasID "000-77-3456" } ;

INSERT DATA {fr:emp003 fr:hasID "000-54-9662" } ;

Now our employee triples are

We run the validation again and are told our data conforms:

% bin/agtool shacl-validate --data-graph default --shapes-
graph https://franz.com#Shapes shacl-repo-1

Validation report: Conforms
Created: 2019-06-27T10:32:19
Number of shapes graphs: 1
Number of data graphs: 1
Number of NodeShapes: 1
Number of focus nodes checked: 3

When we refer to this example in the remainder of this
document, it is to the un-updated (incorrect) triples.

SHACL API
The example above illustrates the SHACL steps:

Have a data set with triples that should conform to a1.
shape
Have SHACL triples that express the desired shape2.
Run SHACL validation to determine if the data conforms3.

Note that SHACL validation does not modify the data being
validated. Once you have the conformance report, you must
modify the data to fix the conformance problems and then rerun
the validation test.

The main entry point to the API is agtool shacl-validate. It
takes various options and has several output choices. Online
help for agtool shacl-validate is displayed by running agtool
shacl-validate --help.

In order to validate triples, the system must know:

What tripes to examine1.
What rules (SHACL triples) to use2.
What to do with the results3.

Specifying what triples to examine
Two arguments to agtool shacl-validate specify the triples to
evaluate: --data-graph and --focus-node. Each can be specified

multiple times.

The --data-graph argument specifies the graph value for
triples to be examined. Its value must be an IRI
or default. Only triples in the specified graphs will be
examined. default specifies the default graph. It is
also the default value of the --data-graph argument. If
no value is specified for --data-graph, only triples in
the default graph will be examined. If a value for --
data-graph is specified, triples in the default graph
will only be examined if --data-graph default is also
specified.
The --focus-node argument specifies IRIs which are
subjects of triples. If this argument is specified, only
triples with these subjects will be examined. To be
examined, triples must also have graph values specified
by --data-graph arguments. --focus-node does not have a
default value. If unspecified, all triples in the
specified data graphs will be examined. This argument
can be specified multiple times.

The --data-graph argument was used in the simple
example above. Here is how the --focus-node argument can be
used to restrict validation to triples with
subjects <https://franz.com#emp002>and <https://franz.com#emp0
03> and to ignore triples with
subject <https://franz.com#emp001> (applying agtool shacl-
validate to the orignal non-conformant data):

% bin/agtool shacl-validate --data-graph default \
 --shapes-graph https://franz.com#Shapes \
 --focus-node https://franz.com#emp003 \
 --focus-node https://franz.com#emp002 shacl-repo-1
Validation report: Does not conform
Created: 2019-06-27T11:37:49
Number of shapes graphs: 1
Number of data graphs: 1
Number of NodeShapes: 1
Number of focus nodes checked: 2

https://franz.com/agraph/support/documentation/current/shacl.html#simple-example
https://franz.com/agraph/support/documentation/current/shacl.html#simple-example

2 validation results:
Result:
 Focus node: <https://franz.com#emp003>
 Path: <https://franz.com#hasID>
 Source Shape: _:b7A1D241Ax2

 Constraint Component:
<http://www.w3.org/ns/shacl#MinCountConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp002>
 Path: <https://franz.com#hasID>
 Value: "00-56-3456"
 Source Shape: _:b7A1D241Ax2

 Constraint Component:
<http://www.w3.org/ns/shacl#PatternConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Specifying What Shape Triples to Use
Two arguments to agtool shacl-validate, analogous to the two
arguments for data described above, specify Shape triples to
use. Further, following the SHACL spec, data triples with
predicate <http://www.w3.org/ns/shacl#shapeGraph> also specify
graphs containing Shape triples to be used.

The arguments to agtool shacl-validate are the following. Each
may be specified multiple times.

The --shapes-graph argument specifies the graph value
for shape triples to be used for SHACL validation. Its
value must be an IRI or default. default specifies the
default graph. The --shapes-graph argument has no
default value. If unspecified, graphs specified by data
triples with
the <http://www.w3.org/ns/shacl#shapeGraph> predicate
will be used (they are used whether or not --shapes-
graph has a value). If --shapes-graph has no value and
there are no data triples with

the <http://www.w3.org/ns/shacl#shapeGraph> predicate,
the data graphs are used for shape graphs. (Shape
triples have a known format and so can be identified
among the data triples.)
The --shape argument specifies IRIs which are subjects
of shape nodes. If this argument is specified, only
shape triples with these subjects and subsiduary triples
to these will be used for validation. To be included,
the triples must also have graph values specified by
the --shapes-graph arguments or specified by a data
triple with
the <http://www.w3.org/ns/shacl#shapeGraph> predicate. -
-shape does not have a default value. If unspecified,
all shapes in the shapes graphs will be used.

Other APIs
There is a lisp API using the function validate-data-graph,
defined next:

validate-data-graphdb &key data-graph-iri/s shapes-graph-
iri/s shape/s focus-node/s verbose conformance-only?
function

Perform SHACL validation and return a validation-report
structure.

The validation uses data-graph-iri/s to construct the
dataGraph. This can be a single IRI, a list of IRIs or NIL, in
which case the default graph will be used. The shapesGraph can
be specified using the shapes-graph-iri/s parameter which can
also be a single IRI or a list of IRIs. If shape-graph-
iri/s is not specified, the SHACL processor will first look to
create the shapesGraph by finding triples with the
predicate sh:shapeGraph in the dataGraph. If there are no such
triples, then the shapesGraph will be assumed to be the same
as the dataGraph.

https://franz.com/agraph/support/documentation/current/shacl.html#validate-data-graph

Validation can be restricted to particular shapes and focus
nodes using the shape/s and focus-node/s parameters. Each of
these can be an IRI or list of IRIs.

If conformance-only? is true, then validation will stop as
soon as any validation failures are detected.

You can use validation-report-conforms-p to see whether or not
the dataGraph conforms to the shapesGraph (possibly restricted
to just particular shape/s and focus-node/s).

The function validation-report-conforms-p returns t or nil as
the validation struct returned by validate-data-graph does or
does not conform.

validation-report-conforms-preport
function

Returns t or nil to indicate whether or not REPORT (a
validation-report struct) indicates that validation conformed.
There is also a REST API. See HTTP reference.

Validation Output
The simple example above and the SHACL examples below show
output from agtool validate-shacl. There are various output
formats, specified by the --output option. Those examples use
the plain format, which means printing results descriptively.
Other choices include json, trig, trix, turtle, nquads, rdf-
n3, rdf/xml, and ntriples. Here are the simple
example (uncorrected) results using ntriples output:

% bin/agtool shacl-validate --output ntriples --data-graph
default --shapes-graph https://franz.com#Shapes shacl-repo-1

_:b271983AAx1
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/ns/shacl#ValidationReport> .

https://franz.com/agraph/support/documentation/current/shacl.html#validation-report-conforms-p
https://franz.com/agraph/support/documentation/current/shacl.html#validation-report-conforms-p
https://franz.com/agraph/support/documentation/current/shacl.html#validate-data-graph
https://franz.com/agraph/support/documentation/current/http-reference.html
https://franz.com/agraph/support/documentation/current/shacl.html#simple-example
https://franz.com/agraph/support/documentation/current/shacl.html#shacl-examples
https://franz.com/agraph/support/documentation/current/shacl.html#simple-example
https://franz.com/agraph/support/documentation/current/shacl.html#simple-example

_:b271983AAx1 <http://www.w3.org/ns/shacl#conforms>
"false"^^<http://www.w3.org/2001/XMLSchema#boolean> .
_:b271983AAx1 <http://purl.org/dc/terms/created>
"2019-07-01T18:26:03"^^<http://www.w3.org/2001/XMLSchema#dateT
ime> .
_:b271983AAx1 <http://www.w3.org/ns/shacl#result>
_:b271983AAx2 .
_:b271983AAx2
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/ns/shacl#ValidationResult> .
_:b271983AAx2 <http://www.w3.org/ns/shacl#focusNode>
<https://franz.com#emp001> .
_:b271983AAx2 <http://www.w3.org/ns/shacl#resultPath>
<https://franz.com#hasID> .
_:b271983AAx2 <http://www.w3.org/ns/shacl#resultSeverity>
<http://www.w3.org/ns/shacl#Violation> .
_:b271983AAx2
<http://www.w3.org/ns/shacl#sourceConstraintComponent>
<http://www.w3.org/ns/shacl#MaxCountConstraintComponent> .
_:b271983AAx2 <http://www.w3.org/ns/shacl#sourceShape>
_:b271983AAx3 .
_:b271983AAx1 <http://www.w3.org/ns/shacl#result>
_:b271983AAx4 .
_:b271983AAx4
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/ns/shacl#ValidationResult> .
_:b271983AAx4 <http://www.w3.org/ns/shacl#focusNode>
<https://franz.com#emp002> .
_:b271983AAx4 <http://www.w3.org/ns/shacl#resultPath>
<https://franz.com#hasID> .
_:b271983AAx4 <http://www.w3.org/ns/shacl#resultSeverity>
<http://www.w3.org/ns/shacl#Violation> .
_:b271983AAx4
<http://www.w3.org/ns/shacl#sourceConstraintComponent>
<http://www.w3.org/ns/shacl#PatternConstraintComponent> .
_:b271983AAx4 <http://www.w3.org/ns/shacl#sourceShape>
_:b271983AAx3 .
_:b271983AAx4 <http://www.w3.org/ns/shacl#value> "00-56-3456"
.
_:b271983AAx1 <http://www.w3.org/ns/shacl#result>
_:b271983AAx5 .

_:b271983AAx5
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/ns/shacl#ValidationResult> .
_:b271983AAx5 <http://www.w3.org/ns/shacl#focusNode>
<https://franz.com#emp003> .
_:b271983AAx5 <http://www.w3.org/ns/shacl#resultPath>
<https://franz.com#hasID> .
_:b271983AAx5 <http://www.w3.org/ns/shacl#resultSeverity>
<http://www.w3.org/ns/shacl#Violation> .
_:b271983AAx5
<http://www.w3.org/ns/shacl#sourceConstraintComponent>
<http://www.w3.org/ns/shacl#MinCountConstraintComponent> .
_:b271983AAx5 <http://www.w3.org/ns/shacl#sourceShape>
_:b271983AAx3 .

You can have the triples added to the repository by specifying
the --add-to-repo option true.

In the plain output information is provided about how many
data graphs are examined, how many shape graphs were specified
and node shapes are found, and how many focus nodes are
checked. If zero focus nodes are checked, that is likely not
what you want and something has gone wrong. Here we mis-spell
the name of the shape graph (https://franz.com#shapes instead
of https://franz.com#Shapes) and get 0 focus nodes checked:

% bin/agtool shacl-validate --data-graph default --shapes-
graph https://franz.com#shapes shacl-repo-1
Validation report: Conforms
Created: 2019-06-28T10:34:22
Number of shapes graphs: 1
Number of data graphs: 1
Number of NodeShapes: 0
Number of focus nodes checked: 0

SPARQL integration
There are two sets of magic properties defined: one checks for
basic conformance and the other produces validation reports as
triples:

?valid franz:shaclConforms (?dataGraph [?shapesGraph]
)
?valid franz:shaclFocusNodeConforms1 (?dataGraph
?nodeOrNodeCollection)
?valid franz:shaclFocusNodeConforms2 (?dataGraph
?shapesGraph ?nodeOrNodeCollection)
?valid franz:shaclShapeConforms1 (?dataGraph
?shapeOrShapeCollection [?nodeOrNodeCollection])
?valid franz:shaclShapeConforms2 (?dataGraph
?shapesGraph ?shapeOrShapeCollection [
?nodeOrNodeCollection])
(?s ?p ?o) franz:shaclValidationReport (?dataGraph [
?shapesGraph])
(?s ?p ?o) franz:shaclFocusNodeValidationReport1 (
?dataGraph ?nodeOrNodeCollection) .
(?s ?p ?o) franz:shaclFocusNodeValidationReport2 (
?dataGraph ?shapesGraph ?nodeOrNodeCollection) .
(?s ?p ?o) franz:shaclShapeValidationReport1 (
?dataGraph ?shapeOrShapeCollection [
?nodeOrNodeCollection]) .
(?s ?p ?o) franz:shaclShapeValidationReport2 (
?dataGraph ?shapesGraph ?shapeOrShapeCollection [
?nodeOrNodeCollection]) .

In all of the above ?dataGraph and ?shapesGraph can be IRIs,
the literal ‘default’, or a variable that is bound to a SPARQL
collection (list or set) that was previously created with a
function
like https://franz.com/ns/allegrograph/6.5.0/fn#makeSPARQLList
 or https://franz.com/ns/allegrograph/6.5.0/fn#lookupRdfList.
If a collection is used, then the SHACL processor will create
a temporary RDF merge of all of the graphs in it to produce
the data graph or the shapes graph.

Similarly, ?shapeOrShapeCollection and ?nodeOrNodeCollection c
an be bound to an IRI or a SPARQL collection. If a collection
is used, then it must be bound to a list of IRIs. The SHACL

https://franz.com/ns/allegrograph/6.5.0/fn#makeSPARQLList
https://franz.com/ns/allegrograph/6.5.0/fn#lookupRdfList

processor will restrict validation to the shape(s) and focus
node(s) (i.e. nodes that should be validated) specified.

The shapesGraph argument is optional in both of
the shaclConforms and shaclValidationReport magic properties.
If the shapesGraph is not specified, then the shapesGraph will
be created by following triples in the dataGraph that use
the sh:shapesGraph predicate. If there are no such triples,
then the shapesGraph will be the same as the dataGraph.

For example, the following SPARQL expression

construct { ?s ?p ?o } where {
 # form a collection of focusNodes
bind(<https://franz.com/ns/allegrograph/6.6.0/fn#makeSPARQLLis
t>(
 <http://Journal1/1942/Article25>,
 <http://Journal1/1943>) as ?nodes)

 (?s ?p ?o)
<https://franz.com/ns/allegrograph/6.6.0/shaclShapeValidationR
eport1>
 ('default' <ex://franz.com/documentShape1> ?nodes) .
}

would use the default graph as the Data Graph and the Shapes
Graph and then validate two focus nodes against the
shape <ex://franz.com/documentShape1>.

SHACL Example
We build on our simple example above. Start with a fresh
repository so triples from the simple example do not interfere
with this example.

We start with a TriG file with various shapes defined on some
classes.

@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix fr: <https://franz.com#> .

https://franz.com/agraph/support/documentation/current/shacl.html#simple-example

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<https://franz.com#ShapesGraph> {
fr:EmployeeShape
 a sh:NodeShape ;
 sh:targetClass fr:Employee ;
 sh:property [
 ## Every employee must have exactly one ID
 sh:path fr:hasID ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:datatype xsd:string ;
 sh:pattern "^[0-9][0-9][0-9]-[0-9][0-9]-

[0-9][0-9][0-9][0-9]$" ;
] ;
 sh:property [
 ## Every employee is a manager or a worker
 sh:path fr:employeeType ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:datatype xsd:string ;
 sh:in ("Manager" "Worker") ;
] ;
 sh:property [
 ## If birthyear supplied, must be 2001 or before
 sh:path fr:birthYear ;
 sh:maxInclusive 2001 ;
 sh:datatype xsd:integer ;
] ;
 sh:property [
 ## Must have a title, may have more than one
 sh:path fr:hasTitle ;
 sh:datatype xsd:string ;
 sh:minCount 1 ;
] ;

 sh:or (
 ## The President does not have a supervisor
 [
 sh:path fr:hasTitle ;

 sh:hasValue "President" ;
]
 [
 ## Must have a supervisor
 sh:path fr:hasSupervisor ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
 sh:class fr:Employee ;
]
) ;

 sh:or (
 # Every employee must either have a wage or a salary
 [
 sh:path fr:hasSalary ;
 sh:datatype xsd:integer ;
 sh:minInclusive 3000 ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
]
 [
 sh:path fr:hasWage ;
 sh:datatype xsd:decimal ;
 sh:minExclusive 15.00 ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
]
)
 .
 }

This file says the following about instances of the
class fr:Employee:

Every employee must have exactly one ID (object1.
of fr:hasID), a string of the form NNN-NN-NNNN where
the Ns are digits (this is the simple example
requirement).
Every employee must have exactly2.
one fr:employeeType triple with value either “Manager”
or “Worker”.

Employees may have a fr:birthYear triple, and if so, the3.
value must be 2001 or earlier.
Employees must have a fr:hasTitle and may have more than4.
one.
All employees except the one with title “President” must5.
have a supervisor (specified with fr:hasSupervisor).
Every employee must either have a wage (a decimal6.
specifying hourly pay, greater than 15.00) or a salary
(an integer specifying monthly pay, greater than or
equal to 3000).

Here is some employee data:

@prefix fr: <https://franz.com#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

{
 fr:Employee
 a rdfs:Class .

 fr:emp001
 a fr:Employee ;
 fr:hasID "000-12-3456" ;
 fr:hasTitle "President" ;
 fr:employeeType "Manager" ;
 fr:birthYear "1953"^^xsd:integer ;
 fr:hasSalary "10000"^^xsd:integer .

 fr:emp002
 a fr:Employee ;
 fr:hasID "000-56-3456" ;
 fr:hasTitle "Foreman" ;
 fr:employeeType "Worker" ;
 fr:birthYear "1966"^^xsd:integer ;
 fr:hasSupervisor fr:emp003 ;
 fr:hasWage "20.20"^^xsd:decimal .

 fr:emp003
 a fr:Employee ;

 fr:hasID "000-77-3232" ;
 fr:hasTitle "Production Manager" ;
 fr:employeeType "Manager" ;
 fr:birthYear "1968"^^xsd:integer ;
 fr:hasSupervisor fr:emp001 ;
 fr:hasSalary "4000"^^xsd:integer .

 fr:emp004
 a fr:Employee ;
 fr:hasID "000-88-3456" ;
 fr:hasTitle "Fitter" ;
 fr:employeeType "Worker" ;
 fr:birthYear "1979"^^xsd:integer ;
 fr:hasSupervisor fr:emp002 ;
 fr:hasWage "17.20"^^xsd:decimal .

 fr:emp005
 a fr:Employee ;
 fr:hasID "000-99-3492" ;
 fr:hasTitle "Fitter" ;
 fr:employeeType "Worker" ;
 fr:birthYear "2000"^^xsd:integer ;
 fr:hasWage "17.20"^^xsd:decimal .

 fr:emp006
 a fr:Employee ;
 fr:hasID "000-78-5592" ;
 fr:hasTitle "Filer" ;
 fr:employeeType "Intern" ;
 fr:birthYear "2003"^^xsd:integer ;
 fr:hasSupervisor fr:emp002 ;
 fr:hasWage "14.20"^^xsd:decimal .

 fr:emp007
 a fr:Employee ;
 fr:hasID "000-77-3232" ;
 fr:hasTitle "Sales Manager" ;
 fr:hasTitle "Vice President" ;
 fr:employeeType "Manager" ;
 fr:birthYear "1962"^^xsd:integer ;
 fr:hasSupervisor fr:emp001 ;

 fr:hasSalary "7000"^^xsd:integer .
 }

Comparing these data with the requirements, we see these
problems:

emp005 does not have a supervisor.1.
emp006 is pretty messed up, with (1) employeeType2.
“Intern”, not an allowed value, (2) a birthYear (2003)
later than the required maximum of 2001, and (3) a wage
(14.40) less than the minimum (15.00).

Otherwise the data seems OK.

We load these two TriG files into an emply repository (which
we have named shacl-repo-2). We specify the default graph for
the data and the https://franz.com#ShapesGraph for the shapes.
(Though not required, it is a good idea to specify a graph for
shape data as it makes it easy to delete and reload shapes
while developing.) We have 101 triples, 49 data and 52 shape.
Then we run agtool shacl-validate:

% bin/agtool shacl-validate --shapes-graph
https://franz.com#ShapesGraph --data-graph default shacl-
repo-2

There are four violations, as expected, one for emp005 and
three for emp006.

Validation report: Does not conform
Created: 2019-07-03T11:35:27
Number of shapes graphs: 1
Number of data graphs: 1
Number of NodeShapes: 1
Number of focus nodes checked: 7

4 validation results:
Result:
 Focus node: <https://franz.com#emp005>
 Value: <https://franz.com#emp005>
 Source Shape: <https://franz.com#EmployeeShape>

 Constraint Component:
<https://www.w3.org/ns/shacl#OrConstraintComponent>
 Severity: <https://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp006>
 Path: <https://franz.com#employeeType>
 Value: "Intern"
 Source Shape: _:b19D062B9x221

 Constraint Component:
<http://www.w3.org/ns/shacl#InConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp006>
 Path: <https://franz.com#birthYear>

 Value:
"2003"^^<http://www.w3.org/2001/XMLSchema#integer>
 Source Shape: _:b19D062B9x225

 Constraint Component:
<http://www.w3.org/ns/shacl#MaxInclusiveConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Result:
 Focus node: <https://franz.com#emp006>
 Value: <https://franz.com#emp006>
 Source Shape: <https://franz.com#EmployeeShape>

 Constraint Component:
<http://www.w3.org/ns/shacl#OrConstraintComponent>
 Severity: <http://www.w3.org/ns/shacl#Violation>

Fixing the data is left as an exercise for the reader.

Turn Customer Service Calls

https://allegrograph.com/turn-customer-service-calls-into-enterprise-knowledge-graphs/

into Enterprise Knowledge
Graphs
Franz’s CEO, Jans Aasman’s recent Destination CRM article:

The need for text analytics and speech recognition has
broadened over the years, becoming more prevalent and
essential in the sales, marketing, and customer service
departments of various types of businesses and industries. The
goal is simple for these contact center use cases: provide
real-time assistance to human agents interacting with
potential customers to close sales, initiate them, and
increase customer satisfaction.

Until fairly recently, the rich array of unstructured data
encompassing client texts, chats, and phone calls was obscured
from contact centers and organizations due to the sheer
arduousness of speech recognition and text analytics. When
readily integrated into knowledge graphs, however, these same
sources become some of the most credible for improving agent
interactions and achieving business objectives.

Powered by the shrewd usage of organizational taxonomies,
machine learning, natural language processing (NLP), and
semantic search, knowledge graphs make speech recognition and
text analytics immediately accessible, enabling real-time
customer interactions that can maximize business
objectives—and revenues.

Taxonomies
Taxonomies are the foundation of the knowledge graph approach
to rapidly conveying results of speech recognition and text
analytics for timely customer interactions. Agents need three
types of information to optimize customer interactions: their
personas (such as an executive or a purchase department
representative, for example), their reasons for contacting

https://allegrograph.com/turn-customer-service-calls-into-enterprise-knowledge-graphs/
https://allegrograph.com/turn-customer-service-calls-into-enterprise-knowledge-graphs/
https://www.gartner.com/it-glossary/speech-recognition/
https://go.forrester.com/blogs/use-text-analytics-technologies-to-handle-mountains-of-unstructured-data/
https://go.forrester.com/blogs/use-text-analytics-technologies-to-handle-mountains-of-unstructured-data/

them, and their industries. Taxonomies are instrumental to
performing these functions because they provide a hierarchy of
relevant terms to organizations.

Read the full article at Destination CRM

Creating Explainable AI With
Rules
Franz’s CEO, Jans Aasman’s recent Forbes article:

There’s a fascinating dichotomy in artificial intelligence
between statistics and rules, machine learning and expert
systems. Newcomers to artificial intelligence (AI) regard
machine learning as innately superior to brittle rules-based
systems, while the history of this field reveals both rules
and probabilistic learning are integral components of AI.

This fact is perhaps nowhere truer than in establishing
explainable AI, which is central to the long-term business
value of AI front-office use cases.

Granted, simple machine learning can automate backend
processes. However, the full extent of deep learning or
complex neural networks — which are much more accurate than
basic machine learning — for mission-critical decision-making
and action requires explainability.

Using rules (and rules-based systems) to explicate machine
learning results creates explainable AI. Many of the far-
reaching applications of AI at the enterprise level —
deploying it to combat financial crimes, to predict an
individual’s immediate and long-term future in health care,

https://www.destinationcrm.com/Articles/Web-Exclusives/Viewpoints/Turn-Customer-Service-Calls-into-Enterprise-Knowledge-Graphs-133284.aspx
https://allegrograph.com/creating-explainable-ai-with-rules/
https://allegrograph.com/creating-explainable-ai-with-rules/
http://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/
https://www.forbes.com/sites/cognitiveworld/2018/12/20/geoff-hinton-dismissed-the-need-for-explainable-ai-8-experts-explain-why-hes-wrong/#7fde9083756d
https://www.forbes.com/sites/cognitiveworld/2018/12/20/geoff-hinton-dismissed-the-need-for-explainable-ai-8-experts-explain-why-hes-wrong/#7fde9083756d

for example — require explainable AI that’s fair, transparent
and regulatory compliant.

Rules can explain machine learning results for these purposes
and others.

Read the full article at Forbes

https://www.forbes.com/sites/forbestechcouncil/2019/05/17/creating-explainable-ai-with-rules/

