AllegroGraph Tutorial -
Distributed Repository Using
Shards and Federation Setup

Introduction

A database in AllegroGraph is usually initially implemented as
a single repository, running in a single AllegroGraph server.
This is simple to set up and operate, but problems arise when
the size of data in the repository nears or exceeds the
resources of the server on which it resides. Problems can also
arise when the size of data fits well within the specs of the
database server, but the query patterns across that data
stress the system.

When the demands of data or query patterns outpace the ability
of a server to keep up, there are two ways to attempt to grow
your system: vertical or horizontal scaling.

With vertical scaling, you simply increase the capacity of the
server on which AllegroGraph is running. Increasing CPU power
or the amount of RAM in a server can work for modest size data
sets, but you may soon run into the limitations of the
available hardware, or the cost to purchase high end hardware
may become prohibitive.

AllegroGraph provides an alternative solution: a cluster of
database servers, and horizontal scaling
through sharding and federation, which combine 1in
AllegroGraph’s FedShard™ facility. An AllegroGraph cluster 1is
a set of AllegroGraph installations across a defined set of
machines. A distributed repository is a logical database
comprised of one or more repositories spread across one or
more of the AllegroGraph nodes in that cluster. A distributed

https://allegrograph.com/allegrograph-tutorial-distributed-repository-using-shards-and-federation-setup/
https://allegrograph.com/allegrograph-tutorial-distributed-repository-using-shards-and-federation-setup/
https://allegrograph.com/allegrograph-tutorial-distributed-repository-using-shards-and-federation-setup/

repository has a required partition key that is used when
importing statements. When adding statements to vyour
repository, the partition key is used to determine on which
shard each statement will be placed. By carefully choosing
your partition key, it is possible to distribute your data
across the shards in ways that supports the query patterns of
your application.

Data common to all shards is placed in knowledge base
repositories which are federated with shards when queries are
processed. This combination of shards and federated knowledge
base repos, called FedShard™, accelerates results for highly
complex queries.

This diagram shows how this works:

Knowledge Base #1 Knowledge Base #2 | Knowledge Base #3 Non Shardable
Knowledge
Shardable data

Shard #1

The three Knowledge Base repos at the top contain data needed
for all queries. The Shards below contain partitionable data.
Queries are run on federations of the knowledge base repos
with a shard (and can be run of each possible federation of a
shard and the knowledge bases with results being combined when
the query completes). The black lines show the federations
running queries.

The shards need not reside in the same AllegroGraph instance,
and indeed need not reside on the same server, as this
expanded images shows:

The Distributed Repositories Using Shards and Federation
Tutorial walks you through how to define and install to a
cluster, how to define a distributed repository, and how
various utilities can be used to manipulate AllegroGraph
clusters and distributed repositories.

This document describes all the options when setting up a
distributed repository (the tutorial just uses some options).
The last section, More information on running the cluster, has
links into the Tutorial document where things like running a
SPARQL query on a cluster are discussed.

The basic setup

You have a very large database and you want to run queries on
the database. With the data in a single repository in a single
server, queries may take a long time because a query runs on a
single processor. At the moment, parallel processing of
queries using multiple cores is not supported for a single
repository.

https://franz.com/agraph/support/documentation/7.0.0/cluster-tutorial.html
https://franz.com/agraph/support/documentation/7.0.0/cluster-tutorial.html
https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#running-cluster
https://franz.com/agraph/support/documentation/7.0.0/cluster-tutorial.html

But if you can partition your data into several logical groups
and your queries can be applied to each group without needing
information from any other group, then you can create a
distributed repository which allows multiple servers to run
queries on pieces of the data effectively in parallel.

Let us start with an example. We describe a simplified version
of the database used in the tutorial.

The data is from a hospital. There is diagnosis description
data (a list of diseases and conditions) and administration
data (a list of things that can happen to a patient while in
the hospital — check in, check out, room assignment, etc.) and
there is patient data. Over the years the hospital has served
millions of patients.

Each patient has a unique identifier, say pNNNNNNNNN, that is
the letter p followed by nine decimal digits. Everything that
happened to that patient is recorded in one or more triples,
such as:

p001034027 checkIn 2016-11-07T10:22:00Z
p001034027 seenBy doctorl2872
p001034027 admitted 2016-11-07T12:45:00Z

p001034027 diagnosedHaving condition5678
p001034027 hadOperation procedure0l1754
p001034027 checkOut 2016-11-07T16:15:00Z

This is quite simplified. The tutorial example is richer. Here
we just want to give the general idea. Note there are three
objects which refer to other data: condition5678 (broken
arm), doctorl2872 (Dr. Jones), and procedure0l754 (setting a
broken bone). We will talk about these below.

So we have six triples for this hospital visit. We also have
personal data:

p001034027 name "John Smith"
p001034027 insurance "Blue Cross"
p001034027 address "123 First St. Springfield"

And then there are other visits and interactions. All in all,
there are, say, 127 triples with p001034027 as the subject.
And there are 3 million patients, with an average of 70
triples per patient, or 210 million triples of patient data.

Suppose you have queries like:

= How many patients were admitted in 20167

= How many patients had a broken arm (condition5678)7?

= How many broken arm patients were re-admitted within 90
days?

= How many patients stayed in the hospital longer than 2
days?

All of those queries apply to patients individually: that 1is
those questions can be answered for any patient, such
as p001034027, without needing to know about any other
patient. Contrast that with the query

 What was the next operation in the operating room
where p001034027 was treated?

For that query, you need to know when p001034027 used the
operating room and what was the next use, which would have
been by some other patient. (In the simple scheme described,
it is not clear we know which operating room was used and
when, but assume that data is in triples not described, all
with p001034027 as the subject.) This query 1is not, in its
present form, suitable for a distributed repository since to
answer 1it, information has to be collected from the shard
containing p001034027 and then used in retirieving data from
other shards.

So if your queries are all of the first type, then your data
is suitable for a distributed repository.

Some data is common to all patients: the definition of
conditions, doctors, and procedures. You may need to know
these data when answering queries. Not if the query is How

many patients were diagnosed with condition56787' but if it
is How many patients had a broken arm? as the latter requires
knowing that condition5678 1is a broken arm. Thus, triples
like

condition5678 hasLabel "broken arm"

are needed on all shards so that queries like

SELECT ?s WHERE { ?c hasLabel "broken arm"
?s diagnosedHaving ?c . }

will return results. As we describe, we have an additional
repository. the kb (knowledge base) repo which is federated
with all shards and provides triples specifying the general
taxonomy and ontology.

Resource requirements

The Memory Usage document discusses requirements for repos.
Each shard in a distributed repository is a repo so each must
have the resources discussed in that document.

Also distributed repositories use many file descriptors, not
only for file access but also for pipes and sockets. When
AllegroGraph starts up, if the system determines that there
may be too few file descriptors allowed, a warning is printed:

AllegroGraph Server Edition 7.0.0

Copyright (c) 2005-2020 Franz Inc. ALll Rights Reserved.
AllegroGraph contains patented and patent-pending
technologies.

Daemonizing...

Server started with warning: When configured to serve a
distributed

database we suggest the soft file descriptor limit be 65536.
The

current limit is 1024.

https://franz.com/agraph/support/documentation/7.0.0/memory-usage.html

Cluster Definition File

To support operation over a cluster of servers, AllegroGraph
requires a Cluster Definition file named, 1in the
default, agcluster.cfg. This file can define distributed
repository specifications. We discuss the file in detail below
in the agcluster.cfg file section.

The distributed repository setup

A distributed repository has the following components:

=A set of one of more AllegroGraph servers. Each server
is specified by a host, a scheme (i.e. http or https),
and a port. Those three elements uniquely define the
server. After installation and cluster setup are
complete, AllegroGraph will be installed on each server
and will have the cluster repository and one or more
cluster shards (a special type of repository) defined in
each server. We refer to the servers as cluster servers.

= A distributed repository. This is a special type of
repository. Its name is specified in
the agcluster.cfg file with the db directive (described
below). It appears as a repository on each cluster
server but does not itself contain triples. Instead it
contains information about the cluster (the servers, the
shards, and so on) which is used by the server to manage
queries, insertions, and deletions. Queries applied to
the distributed repository are applied to each shard and
the results and collected and returned, perhaps after
some editing and further modification. Distributed
repositories are created using specifications 1in
the agcluster.cfg file. (To be clear about terminology:
the distributed repository definition 1is the whole
complex specified by the agcluster.cfg file: shards, kb
repositories, and the distributed repository.)

https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#agcluster-file

A set of cluster shards. A shard is a special type of
repository. Shards are named (implicitly or explicitly)
in the agcluster.cfg file. Shards are created when a
distributed repository is created using specifications
in the agcluster.cfg file. Each shard is created fresh
at that time: if there is already a repository on a
server which shares the name of a shard, that repository
must be superseded (deleted and recreated afresh) when
the distributed repository is created.

= A partition key. The key identifies which triples belong
in the same shard. The key can be a part, that is a
subject, predicate, object, or graph of a triple, or an
attribute name (see the Triple Attributes document). If
it is a part, all triples with the same part value are
placed in the same shard (all triples have a graph even
if it is the default graph so if the key is part graph,
all triples with the default graph go into the same
shard, all with graph XXX into the same shard, and so
on). For key attribute attribute-name all triples with
the same value for the attribute with attribute-name go
into the same shard.

= The common kb repository or repositories. These are one
or more ordinary repositories which will be federated
with each shard when processing a SPARQL query. They are
specified in the agcluster.cfg file and are associated
with the cluster but are otherwise normal repos. In
general triples can be added and deleted in the usual
manner and queries can be executed as usual unrelated to
the ditributed repository. (When a query is run on a
distributed repository, the common kb repositories are
treated as if read only and so calls to delete triples
or SPARQL-DELETE clauses will not delete triples 1in
these common kb repos.) You can have as many common
repos as you like and need not have any.

Keep these requirements in mind in the formal descriptions of
the directives below.

https://franz.com/agraph/support/documentation/7.0.0/triple-attributes.html

The agcluster.cfg file

The agcluster.cfg file can be used for installation (it can
install all the servers and create all the repositories and
set up all the necessary mechanics for distributed queries) or
it can simply be used for distributed queries after the user
has set up everything by hand, or somewhere in between.

agcluster.cfg files contain directives. Directive names are
case-insensitive, so Server is the same as server. There are
four types of directives:

- Defaulting directives: these provide defaults for
defining directives and collective directives. See
the Defaulting directives section for a complete list.
Examples are the Port and Scheme directives, which
provide the default port and scheme values for server
directives.

- Defining directives: there are two: server and repo.
These define servers and repositories that will make up
the distributed repository.

» Collective directives: group and db are the two
collective directives. group directives define and label
collections of servers and repos. db directives define
actual distributed repositories.

=0Object specification directives: these directives
provide information about specific types of objects, for
the most part dbs and servers. They specify aspects
(such a username and password for servers, shards per
server for dbs). These are described with the object
directives they affect.

The format of an agcluster.cfg file 1is:

Toplevel directives
Collective directives

Comment lines and blank lines may be inserted anywhere in the
file.

https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#defaulting-directives

The toplevel directives can be defaulting directives and
defining directives. The defaulting directives provide
defaults for any defining directives in the whole file
(including those in group and db directives) unless overridden
by defaulting directives in the collective directives or
specific values in the defining directive. Here is a quick
example. (Note we indent directives within
the Group directive. That is for clarity and has no semantic
meaning.)

Port 10066

Scheme http

server aghostl.franz.com hostl

Group my-group
Scheme https
server aghost2.franz.com:12012 host2
server http://aghost3.franz.com host3

Three servers are defined:

= hostl http://aghostl.franz.com:10066 (using toplevel
scheme and port defaults)

» host2 https://aghost2.franz.com:12012 (using group
scheme default and explicit port value)

» host3 http3://aghost3.franz.com:10066 (using toplevel
port default and explicit scheme value)

Toplevel directives are all read when the agcluster.cfg file
is read and apply to defining directives regardless of whether
they are before or after the defaulting directives. (All group
directives must be after all toplevel directives.)

If there are duplicate defaulting directives at the toplevel,
the last is used and the earlier ones are ignored. So if these
directives appear at the toplevel:

Port 10035
server http://aghost.franz.com aghost
Port 10066

the aghost server is http://aghost.franz.com:10066, using the
final port directive, not the first one even though the final
one appears after the server directive.

The Distributed Repositories Tutorial has a
minimal agcluster.cfg file which relies on the system
providing default names for all the shard repos. Here 1is
the agcluster.cfg file from the tutorial:

Port 10035
Scheme http

group my-servers
server aghostl.franz.com hostl
server aghost2.franz.com host2
server aghost3.franz.com host3

db bigDB
key part graph
user test
password Xyzzy
shardsPerServer 3
include my-servers

The file defines:

» Three servers: servers are fully determined by a host
(e.g. aghostl.franz.com), a port (10035, specified in a
default directive line at the top), and a scheme (http
or https, in this case http, specified in a default
directive line at the top).

= A group of servers, specified in the group line with the
label my-servers.

= A distributed repository named bigDB. This is specified
on the db line. A cluster repository with the
name bigDB will be visible on each server after the
distributed repository is defined and the databases are
created.

= The key that will be used to determine which shard a
triple is added to. key part graph says assign to a

https://franz.com/agraph/support/documentation/current/cluster-tutorial.html

shard based on the graph of the triple. All triples with
the same graph value end up in the same shard.

= A username and password. These should be valid for all
servers in the my-servers group.

» An include directive saying the servers in the my-
servers group should be used by the distributed
repository.

= A shardsPerServer directive saying that each specified
server will have three shards.

Comment lines

Comment lines in the agcluster.cfg file are lines that start
with a #. These are ignored as are blank lines. A # following
other text does not indicate the remainder of the line is a
comment. So

This 1s a comment
Port 10035 # This is NOT a comment and this line is ill-formed

Labels

Many constructs (servers, groups, repos, and db’s) can be
assigned a label. These labels can be referenced later in the
file to refer to the constructs. Some database utilities can
also use labels.

A label must precede references to it.

This is OK:
server http://aghostl.franz.com hostl

group my-servers
server hostl

This is NOT OK:
group my-servers
server hostl

server http://aghostl.franz.com hostl

All labels exist in the same namespace. Duplicate names are
illegal, even when used for different objects:

This will error:
repo http://aghost.franz.com/repositories/my-repo labell
db labell

[...]

Some more simple agcluster.cfg examples

If the agcluster.cfg file just below is used for installation,
then all three servers will be installed. When
the bigDB distributed repository is the created (with, for
example, agtool create-db), three shard repositories will be
created on each server with names determined by the system.
Finally, the distributed cluster repository named bigDB will
be accessible on each server.

Now we could have specified more things. For example, we could
have specified some of the shard repos:

Port 10035
Scheme http

group my-servers
server aghostl.franz.com hostl
server aghost2.franz.com host2
server aghost3.franz.com host3

db bigDB
key part graph
repo hostl/repositories/my-shardl
repo aghostl.franz.com/repositories/my-shard2
user test
password Xyzzy
shardsPerServer 3
include my-servers

We have specified two shard repositories, both on hostl, one

using the label hostl and one using the actual host name.

If we use this file to install and create the distributed
repository, we will still end up with three servers and three
repos, named by the system, on each, and additionally the two
named repo shards, for a total of eleven shards.

A note on constructed repository names

As we will describe, when a distributed repository is created,
shard repos are often created and named by the system. The
names are generated from the repository name and have the
following form:

<repository-name>.shard<index>

For example, the shards of a 3-shard distributed repository
named distdb will be
named distdb.shard0, distdb.shardl and distdb.shard2 respectiv
ely.

But if these names conflict with other existing repository
names or with other shard names constructed while the
distributed repository is being created, the system will try
different names. If it cannot find a suitable name, the
distributed repository creation will fail with an error.

The names specified in the examples in this document thus may
not correspond to what you actually see, but will usually be
pretty close.

The directives in the agcluster.cfg
file

Defining directives

The two defining directives are server and repo.

The server directive

A server is completely specified by a scheme (http or https),
a port (a positive integer in the range of acceptable port
numbers), and a host. The general format is

server [<scheme>://]host[:<port>] [label]

The <scheme> and <port> can be specified, can come from
a defaulting directive, or can be the global default, http for
the scheme and 10035 for the port. The label is a name which
can be used later in the file to refer to this server.

Here are some examples (we assume no defaulting directives are
present except those shown in the examples):

server aghost.franz.com aghost

The server is http://aghost.franz.com:10035 and its label
is aghost. The scheme (http) and port (10035) come from the
global defaults.

scheme https
port 12001
server aghostl.franz.com aghostl

The server 1s https//aghostl.franz.com:12001 and its label
is aghostl. The scheme (https) and port (12001) come from the
defaulting directives just above the server directive.

server http://aghost2.franz.com:13012

The server 1is http//aghost.franz.com:13012 and it has no
label. The scheme, port, and host are all fully specified and
use no defaults. (If this is a toplevel directive, it is not
very useful as the server cannot be referred to later.
Labelless servers can be useful as part of collective

https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#defaulting-directives

directives as they are used when the collective defined 1is
used. In general, however, it is better to specify a label.

Server-specific directives

The following directives can be specified for a server. They
can appear after the server directive or as defaulting
directives in the current context:

user <username>
The AllegroGraph user that will be be used when making
requests to a server.

password <password>
The password for the user.

osuser <name> : The username to use when ssh’ing into servers
(used by agraph-control and install-agraph in their respective
clustered operation modes).

sudo <boolean>
[Optional] Allow passwordless sudo on each host. sudo is
necessary if, for example, you wish to install AllegroGraph
into a directory that requires root privileges to write to.
bindir <directory>
The directory where of the bin/ subdirectory of the
directory where AllegroGraph is installed on the server
(the installation will be in the parent directory).

The repo directive

A repo (or repository) is completely specified by a server
host, a catalog, and a repo name. The general format is

repo <server>[/catalog/<catalog-name>]/repository

<server> can be a SERVER-SPEC or a label of an already defined
server. Here are some examples:

server aghost.franz.com aghost

https://franz.com/agraph/support/documentation/7.0.0/agtool.html#server-specs

repo https://aghost2.franz.com:10077/repositories/my-repo my-
repo
repo aghost/catalogs/my-catalog/repositories/cat-repo cat-repo

A repo directive implicitly defines a server. Thus if either
of those repo directives appeared as part of a db directive
(defining a distributed repository) the servers
aghost.franz.com (with whatever default values the scheme and
port had when the server was defined) and
https://aghost2.franz.com:10077 will be included among the
distributed repository servers even if there is not a specific
server directives including them.

Collective directives: GROUP and DB

There are two types of collections that can be specified in
an agcluster.cfg file (these are collective directives):

 GROUP: a collection of server and/or repo objects, along
with default directives that affect elements of the
group only.

=DB: a collection of servers and repos where each repo is
a shard in a distributed repository. Each repo 1is
associated with a server so this collection must include
one or more servers, perhaps defined directly or added
with an include statement or specified implicitly in
a repo directive. Additional db-specific directives may
be included (like shardsPerServer, all are described
below) and defaulting directives that apply to
the db collection only.

These directives create contexts and statements following
these directives apply to that context only. All statements up
to the next collective directive refer to the context of the
current connective directive. Statements that precede any
collective directive are toplevel context statements.

The GROUP directive

A group 1s a collection of servers defined
with server directives and/or repos defined
with repo directives. Groups can be referred to by their
labels and included with distributed repositories with
the include directive (see DB directive below).

The format is

group <label>
[default-directives]
server-directive <label>
repo-directive <label>
include <label of another group>

Any number of server and repo directives can be supplied and
in any order. include directives includes other groups of
servers and repos in this group.

The label is needed as otherwise there is no way to refer to
the group in other directives.

default-directives are defined below. They usually provide
defaults for values in the server and repo directives.

repo-directives are formally defined above but in short are

server-spec-or-label[/catalog/catalog-name]/repositories/repo-
name <label>

A server-spec is described next. A server-label is the label
given to a server-directive.

server-directives are formally defined above but in short are

[scheme://][host][:port] <label>

where scheme is http (the default) or https, host is a
hostname (default localhost) and port is a port number
(default 10035). The label is optional. It can refer to the
server in other directives. An example 1is

https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#db-directive
https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#defaulting-directives
https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#repo-directives
https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#server-directives

group my-servers
Port 10650
Scheme http
server aghostl.franz.com aghostl
server https://aghost2.franz.com aghost2
server aghost3.franz.com:10035 aghost3

Defaults are specified for Port and Scheme and are used when
necessary. The servers are (completely specified):

http://aghostl.franz.com:10650 aghostl
https://aghost2.franz.com:10650 aghost2
http://aghost3.franz.com:10035 aghost3

aghostl uses both supplied defaults, aghost2 uses the default
port but a different scheme. aghost3 uses the default scheme
but a different port.

Here we include some repo directives

group my-shards

Post 10650

Scheme http

server aghostl.franz.com aghostl

server https://aghost2.franz.com aghost2

server aghost3.franz.com:10035 aghost3

repo aghostl/repositories/my-repl

repo

http://ag-other-host.franz.com/catalog/shard-cat/repositories/
my-other-repo

One repo-directive uses a server label and the other specifies
a server (with host ag-other-host.franz.com) not otherwise
listed.

The DB directive

The db directive defines a collection of repositories and
servers which collectively form a distributed repository.
Triples in the distributed repository are stored in the
individual repositories, which are

called shards. kb directives define additional repos which
contains things like triples defining the database ontology.
These repos are federated with shards during SPARQL queries.
Queries are run by each server on each shard and the results
are combined and returned as the query result. See
the Distributed Repositories Tutorial for information on how
distributed repositories work. That document contains a fully
worked out example. It also contains a agcluster.cfg file,
which though quite short and straightforward, allows for rich
and complex examples. (While the specification allows for many
options and complex configurations, most actual use cases do
not require long or complex cluster config files.)

The specification for a db directive is as follows:

db <label>

[defaulting directives]

key <part-or-attribute> <part-type-or-attribute-
name>

prefix <string>

shardsPerServer <positive integer>

kb <repo spec or label>

include <group Llabel>

server <server spec or label>

repo <repo spec or label>

key, prefix, shardsPerServer, and kb are DB-specific
directives. Here are the directives used above:

» The db label: this must be specified. It will name the
distributed repository and might be used in naming
shards not specifically named.

-defaulting directives: see the Defaulting
directives section below. These directives can provide
default values for other directives. Any number of
defaulting directives can be specified.

 key: this required directive specifies how triples
should be assigned to shards. There are two arguments,
the type and the value. The type is

https://franz.com/agraph/support/documentation/current/cluster-tutorial.html
https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#defaulting-directives
https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#defaulting-directives

either part or attribute. The possible values for part
are subject, predicate, object, and graph.
The value for attribute is an attribute name. See
the Triple Attributes document. For key attribute
name all triples loaded into the distributed repository
must have the the name attribute with a value. (ALl
triples have a subject, predicate, object, and graph,
the graph being the default graph is no graph is
specified when the triple is added.) Only one key can be
specified and once the distributed repository 1is
created, it cannot be changed.

prefix: string to be used when generating unique names
for shards. It defaults to the db label. Only one prefix
can be specified.

shardsPerServer: a positive integer specifying the
number of shards per server. The default is 1. Servers
need not have the same number of shards and may have
more shards than this value, but cannot have fewer. Thus
all servers must have at least one shard. This directive
can be specified once only.

kb: a repo spec or label. This repository will be
federated with each shard when processing a query. This
repo typically contains ontology data and data which
provides information elements of triples.
Multiple kb directives can be specified.

include: a group label. The servers in the group will be
used in the distributed repository. Additional servers
can be designated with the next directive.
Multiple include directives can be specified.
server: a server spec or label. This server will be

included in the distributed repository.
Multiple server directives can be specified.
Each server declaration will result

in shardsPerServer shards being added, with names
constructed from the prefix or the db label, without

https://franz.com/agraph/support/documentation/7.0.0/triple-attributes.html

regard to repo declarations even if the repository spec
supplied specifies the same server as
a server directive. See the example below.

 repo: a repository spec or label. The repository will be
included in the distributed repository.
Multiple repo directives can be
specified. repo directives add shards but they are not
counted as the in shardsPerServer value, See the example
below.

Here are some examples. Suppose we have this group directive:

group my-servers
port 10035
scheme http
server aghostl.franz.com hostl
server aghost2.franz.com host2
server aghost3.franz.com host3

Here 1is a db directive with the servers specified with
and include directive :

db my-cluster
include my-servers

Here 1s an equivalent db directive specifying servers
directly:

db my-cluster
port 10035
scheme http
server aghostl.franz.com hostl
server aghost2.franz.com host2
server aghost3.franz.com host3

Here the servers do not all use the same port or scheme. First
we create a group:

group my-servers
server http://aghostl.franz.com:10044 hostl
server https://aghost2.franz.com:10035 host2
server http://aghost3.franz.com:10035 host3

db my-cluster
include my-servers

Here is the same db with the servers specified directly:

db my-cluster
server http://aghostl.franz.com:10044 hostl
server https://aghost2.franz.com:10035 host2
server http://aghost3.franz.com:10035 host3

All of those db above define a distributed repository with
three shards (since shardsPerServer defaults to 1) with shard
name on each server my-cluster.shardd. If we specified a
prefix:

db my-cluster
server http://aghostl.franz.com:10044 hostl
server https://aghost2.franz.com:10035 host2
server http://aghost3.franz.com:10035 host3
prefix mc-shard

The shard name on each server would be mc-shard.shard0.

Here we indicate that each server will have 3 shards with
names created using the db label (my-cluster):

db my-cluster
server http://aghostl.franz.com:10044 hostl
server https://aghost2.franz.com:10035 host2
server http://aghost3.franz.com:10035 host3
shardsPerServer 3

This directive will result in 9 shards (3 for each server)
named, on each server my-cluster.shard0, my -
cluster.shardl, my-cluster.shard2. Here is a db directive
where some shards are named directly:

db my-cluster
server http://aghostl.franz.com:10044 hostl
server https://aghost2.franz.com:10035 host2
shardsPerServer 3
repo http://aghost3.franz.com:10044/repositories/my-hl-repol
repo http://aghost3.franz.com:10044/repositories/my-hl-repo2

This directive will also result in eight shards, 6 (3 in hostl
and 3 in host2) named by the system (with names my-
cluster.shard@, my-cluster.shardl, my-cluster.shard?2) and the
two repos on aghost3.franz.com. Because aghost3.franz.com does
not appear in a server declaration, it only gets the 2 shards
specified by the repo declarations and no additional shards
are created in that server.

Here we specify shardsPerServer to be 3 but also specify a
fourth repo in hostl. We end up with 10 shards:

db my-cluster
server http://aghostl.franz.com:10044 hostl
server https://aghost2.franz.com:10035 host2
server http://aghost3.franz.com:10035 host3
shardsPerServer 3
repo hostl/repositories/my-hl-repo4

This can be a little confusing but the rule is: for
each server declaration in
the db context, shardsPerServer shards will be created, named
with names constructed from the prefix or the db label if
no prefix is specified. Then any repo directives will result
in additional shards. So

db my-cluster
server http://agraphl.franz.com/
server http://agraph2.franz.com/
repo http://agraphl.franz.com/repositories/my-repol
repo http://agraph2.franz.com/repositories/my-repol
server http://agraph3.franz.com/

will results in the following 5 shards
(since shardsPerServer is unspecified, its value is 1 (the
default):

http://agraphl.franz.com/repositories/my-cluster.shard0
http://agraph2.franz.com/repositories/my-cluster.shard0
http://agraphl.franz.com/repositories/my-repol
http://agraph2.franz.com/repositories/my-repol
http://agraph3.franz.com/repositories/my-cluster.shard0

When a server declarations is at the toplevel and not part of
the db context, it does not get additional shards even though
repos in it are made into shards:

server http://agraphl.franz.com/ hostl
server http://agraph2.franz.com/ host2
db my-cluster
repo hostl/repositories/my-repol
repo host2/repositories/my-repol
server http://agraph3.franz.com/

results in these shards:
will results in the following 3 shards:

http://agraphl.franz.com/repositories/my-repol
http://agraph2.franz.com/repositories/my-repol
http://agraph3.franz.com/repositories/my-cluster.shardo

The kb directive: Here we specify a repo as the value of
the kb directive. This repo will be federated with each shard
when processing a query.

db my-cluster

server http://aghostl.franz.com:10044 hostl

server https://aghost2.franz.com:10035 host2

server http://aghost3.franz.com:10035 host3

shardsPerServer 3

kb

https://my-server.franz.com:10022/catalog/kb-cat/repositories/
my - kb

Equivalently, we can specify the server at the toplevel with a
label and use the label in the kb directive:

server https://my-server.franz.com:10022 my-kb-server
db my-cluster
server http://aghostl.franz.com:10044 hostl
server https://aghost2.franz.com:10035 host2
server http://aghost3.franz.com:10035 host3
shardsPerServer 3
kb my-kb-server/catalog/kb-cat/repositories/my-kb

We cannot define the my-kb-server under the db my-cluster line
because then it would be included among the servers with
shards. (It is, of courrse, ok to have the kb repo on a server
with shards, but if we want it on a server without shards, it
must be specified on the kb line or at the toplevel.)

Equivalently again we can specify the repo at the toplevel
with a label and use the label on the kb line:

server https://my-server.franz.com:10022 my-kb-server
repo my-kb-server/catalog/kb-cat/repositories/my-kb my-kb-repo
db my-cluster

server http://aghostl.franz.com:10044 hostl

server https://aghost2.franz.com:10035 host2

server http://aghost3.franz.com:10035 host3

shardsPerServer 3

kb my-kb-repo

of equivalently again:

repo
https://my-server.franz.com:10022/catalog/kb-cat/repositories/
my-kb my-kb-repo
db my-cluster

server http://aghostl.franz.com:10044 hostl

server https://aghost2.franz.com:10035 host2

server http://aghost3.franz.com:10035 host3

shardsPerServer 3

kb my-kb-repo

Defaulting directives

These directives provide defaults for
resolving server and repo directives. Values specified in
those directives can override the default.

=port: the port use by a server. Default when
no port value is specified is 10035.
 scheme: the protocol to use when connecting to a server.

The value must be http or https. Default when
no scheme is specified in http.

- catalog: the catalog to use when resolving repos.
Default when no catalog is specified is the root
catalog.

All directives applicable to servers can also be defaulting
directives and can appear at the toplevel (and so affect any
group which does not specify a different default and any
server or repo which does not specify a different value and
which 1is not in a group with a different default, see examples
in the Server directives section).

Here 1is part of an agcluster.cfg file (server and repo
specifications are described above):

Port 10035
Catalog my-catalog
Scheme https

Server aghostl.franz.com hostl
Repo hostl/repositories/my-repo repol

The full server specification is
https://aghostl.franz.com:10035

The full repo specification 1is

https://aghostl.franz.com:10035/catalog/my-catalog/repositorie
s/my-repo

Default values from the scheme, port, and catalog were filled
in because of the toplevel defaulting directives.

The following server directives can also appear at the
toplevel (these are documented above:

» user <username>
= password <password>
= osuser <name>

https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#server-directives
https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#server-directives
https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#server-specific

= sudo <boolean>
» bindir <directory>

Installing AllegroGraph on multiple
servers

The clustering support in AllegroGraph is designed to allow
you to work with all servers with few or even single commands.
It is strongly recommended that you arrange things so you use
the same directories on each server and use the same scheme,
port and username and password. All those must be specified in
the agraph.cfg file, so then the same agraph.cfg file will
work on all the servers. The user must have sufficient
permissions to perform operations on the servers and
distributed repositories (superusers/administrators typically
have all necessary permissions). These things can be different
on each server but that requires having
separate agraph.cfg files and a more
complex agcluster.cfg file and makes simultaneous installation
on multiple servers difficult or impossible.

If you have the same agraph.cfg file for all servers, the
following command will install on all servers defined 1in
the agcluster.cfg file and copy
the agcluster.cfg and agraph.cfg files to each AllegroGraph
installation:

install-agraph --cluster-config agcluster.cfg --agraph-config
agraph.cfg [install-dir]

install-agraph is located in the untarred AlllegroGraph
distribution directory. It and the two .cfg files must have
paths supplied so the system knows where they are.

If you have a bindir directive in the agcluster.cfg,
the install-dir argument can be left out as it can be inferred
from the bindir value. If install-dir is specified, it must be

an absolute pathname.

The distributed AllegroGraph installation process generates a
number of temporary files. These are placed in /tmp unless a -
-staging-dir argument is supplied to the install-agraph call.
The value can either be an absolute pathname which names a
directory which must be accessible on every host in the
cluster. All temporary files are removed when the installation
completes. If temporary file space runs out, the installation
will fail and all new installations will be deleted.

If you cannot use the same directories, schemes, ports, or
superuser/passwords on all servers, then install AllegroGraph
on each server and run

install-agraph --cluster-config agcluster.cfg [install-dir]

That will cause the agcluster.cfg file to be copied around.
That file should have the varying specifications for each
server.

Changing the agcluster.cfg file

If you want to add information to the agcluster.cfg file (to,
for example, add distributed repository — db —specifications),
simply wupdate a <copy of agcluster.cfg (in one
the lib/ subdirectories of one of the distributed repo
servers) and run

install-agraph —cluster-config [path of modified
copy/Jlagcluster.cfg

That will copy the revised file to the various installations
on the servers.

Be careful not to modify the specifications for distributed
repos already created. The install-dir argument is not needed
since a bindir directive was added to the agcluster.cfg file
when it was copied to the lib/ subdirectory of the

installation directories on the various servers.

Starting and stopping the servers

Servers can be started and stopped in the usual way, with
commands like

agraph-control --agraph-config <agraph.cfg file> start/stop
All servers in a cluster can be started and stopped with

agraph-control --cluster start/stop

when the invoked agraph-control program 1is 1in
the bin/ directory of one of the server installations (because
it then knows how to find the agcluster.cfg file). If agraph-
control is from somewhere else or does not find the file as
expected, specify the location of the file with

agraph-control --cluster-config <agcluster.cfg file>
start/stop

Using agtool utilities on a
distributed repository

The agtool General Command Utility has numerous command
options that work on repositories. Most of these work on
distributed repositories just as they work on regular
repositories. But here are some notes on specific tools.

Using agtool export on a distributed
repository
agtool export (see Repository Export) works on distributed

repositories just like it does with regular repositories. All
data in the various shards of the distributed repo is written

https://franz.com/agraph/support/documentation/7.0.0/agtool.html
https://franz.com/agraph/support/documentation/7.0.0/agexport.html

to a regular data file which can be read into a regular
repository or another distributed repo with the same number of
shards or a different number of shards. (Nothing in the
exported file indicates that the data came from a distributed
repository).

The kb (knowledge base) repos associated with a distributed
repo (see above in this document) are repos which are
federated with shards when SPARQL queries are being
processed. kb repos are not exported along with a distributed
repo. You must export them separately if desired.

Using agtool archive on a distributed
repository

The agtool archive command is used for backing up and
restoring databases. For backing up, it works similarly to
backing up a regular repo (that is, the command line and
arguments are essentially the same).

But a backup of a distributed repo can only be restored into a
distributed repo with the same number of shards. It cannot be
restored into a regular repo or into a distributed repo with a
different number of shards. So for example, suppose we have a
distributed repo bigDB defined as follows in
a agcluster.cfg file:

Port 19700
Scheme http

group my-servers
server aghostl.franz.com hostl
server aghost2.franz.com host2

db bigDB
key part graph
user test

password xyzzy

https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#kb-repos

shardsPerServer 3
include my-servers

Here is the agtool archive backup command:

% bin/agtool archive backup
http://test:xyzzy@aghostl.franz.com:19700/repositories/bigDB
/aghostl/diskl/userl/drkennl/

agtool built with AllegroGraph Server

Opening triple store bigDB for backup to
/aghostl/diskl/userl/drkennl/archives/root/bigDB/bigDB.agbacku
Y

Backup throughput: 20.9 MB/s

Backup completed in OhOm3s

Wrote 62.8 MiB to
/aghostldiskl/userl/drkennl/archives/root/bigDB/bigDB.agbackup

The backup went fine. But if we try to restore to a regular
repo or to a distributed repo with a different number of
shards (there are six shards in our example, 3 on each of 2
servers), it will fail.

But we can restore to a different distributed repo with 6
shards, say one specified like this:

db restoreDB1
key part graph
user test
password xyzzy
server aghostl.franz.com
shardsPerServer 6

as follows:

% bin/agtool archive restore --newuuid
http://test:xyzzy@aghostl.franz.com:19700/repositories/restore
DB1 /aghostl/diskl/userl/drkennl/ bigDB

agtool built with AllegroGraph Server

Restoring archive from /aghostl/diskl/userl/drkennl/ to new
triple-store restorebigDB1

Restore throughput: 0.7 MB/s

Restore completed in Ohlm24s

Read 62.8 MiB from
/aghostl/diskl/userl/drkennl/archives/root/bigDB/bigDB.agbacku

Y

And of course we can restore to a distributed repo with the
same server/shard configuration, like bugDB3 with a spec
similar to bigDB‘s:

group my-servers
server aghostl.franz.com hostl
server aghost2.franz.com host2

db bigDB
key part graph
user test

password xyzzy
shardsPerServer 3
include my-servers

db bigDB3
key part graph
user test

password xyzzy
shardsPerServer 3
include my-servers

% bin/agtool archive restore --newuuid
http://test:xyzzy@aghostl.franz.com:19700/repositories/bigDB3
/aghostldiskl/userl/drkennl/ bigDB

agtool built with AllegroGraph

Restoring archive from /aghostl/diskl/userl/drkennl/ to new
triple-store bigDB3

Restore throughput: 0.8 MB/s

Restore completed in Oh1lm20s

Read 62.8 MiB from
/aghostl/diskl/userl/drkennl/archives/root/bigDB/bigDB.agbacku

P

%

Upgrading to a new version

Upgrading to a new version 1s described in the Repository
Upgrading document. It works with distributed repos as with
regular repos with the exception that the later version must
have a sufficiently similar agcluster.cfg file, with the same
servers and specifications for existing distributed repos as
the older version.

Distributed repos in AGWebView

AGWebView is the browser interface to an AllegroGraph server.
For the most part, a distributed repo looks in AGWebView like
a regular repo. The number of triples (called by the alternate
name Statements and appearing at the top of
the Repository page) is the total for all shards and commands
work the same as on regular repos.

You do see the difference in Reports. In many reports
individual shards are listed by name. (The names are assigned
by the system and not under user control). Generally you do
not act on individual shards but sometimes information on them
is needed for problem solving.

More information on running the
cluster

See the Distributed Repositories Tutorial for information on
using a cluster once it is set up. See particularly the
sections:

 Creating the Shards of a Distributed Repository
= Adding data to a distributed repository
» Querying a distributed repository using SPARQL

https://franz.com/agraph/support/documentation/7.0.0/upgrade-guide.html
https://franz.com/agraph/support/documentation/7.0.0/upgrade-guide.html
https://franz.com/agraph/support/documentation/7.0.0/agwebview.html
https://franz.com/agraph/support/documentation/7.0.0/cluster-tutorial.html
https://franz.com/agraph/support/documentation/7.0.0/cluster-tutorial.html#Creating-the-Shards-of-a-Distributed-Repository
https://franz.com/agraph/support/documentation/7.0.0/cluster-tutorial.html#Adding-data-to-a-distributed-repository
https://franz.com/agraph/support/documentation/7.0.0/cluster-tutorial.html#Querying-a-distributed-repository-using-SPARQL

Using JSON-LD in AllegroGraph
— Python Example

The following 1is example #19

from our AllegroGraph Python
JSON'LD {d Tutorial.

JSON-LD 1is described pretty well at https://json-1d.org/ and
the specification can be found
at https://json-ld.org/latest/json-1d/

The website https://json-1d.org/playground/ is also useful.

There are many reasons for working with JSON-LD. The major
search engines such as Google require ecommerce companies to
mark up their websites with a systematic description of their
products and more and more companies use it as an easy
serialization format to share data.

The benefit for your organization is that you can now combine
your documents with graphs, graph search and graph algorithms.
Normally when you store documents in a document store you set
up your documents in such a way that it is optimized for
direct retrieval queries. Doing complex joins for multiple
types of documents or even doing a shortest path through a
mass of object (types) is however very complicated. Storing
JSON-LD objects in AllegroGraph gives you all the benefits of
a document store and you can semantically link objects
together, do complex joins and even graph search.

A second benefit is that, as an application developer, you do
not have to learn the entire semantic technology stack,
especially the part where developers have to create individual

https://allegrograph.com/using-json-ld-in-allegrograph-python-example/
https://allegrograph.com/using-json-ld-in-allegrograph-python-example/
https://franz.com/agraph/support/documentation/current/python/tutorial.html
https://franz.com/agraph/support/documentation/current/python/tutorial.html
https://json-ld.org/
https://json-ld.org/latest/json-ld/
https://json-ld.org/playground/

triples or edges. You can work with the JSON data
serialization format that application developers usually
prefer.

In the following you will first learn about JSON-LD as a
syntax for semantic graphs. After that we will talk more about
using JSON-LD with AllegroGraph as a document-graph-store.

Setup

You can use Python 2.6+ or Python 3.3+. There are small setup
differences which are noted. You do need agraph-
python-101.0.1 or later.

Mimicking instructions in the Installation document, you
should set up the virtualenv environment.

1. Create an environment named jsonld:

python3 -m venv jsonld

or

python2 -m virtualenv jsonld

2. Activate 1it:

Using the Bash shell:

source jsonld/bin/activate

Using the C shell:

source jsonld/bin/activate.csh

3. Install agraph-python:

pip install agraph-python

And start python:

python

[various startup and copyright messages]
>>>

We assume you have an AllegroGraph 6.5.0 server running. We
call ag_connect. Modify the host, port, user, and password in
your call to their correct values:

from franz.openrdf.connect import ag connect
with ag connect('repo', host='localhost', port='10035",
user="'test', password='xyzzy') as conn:
print (conn.size())

If the script runs successfully a new repository
named repo will be created.

JSON-LD setup

We next define some utility functions which are somewhat
different from what we have used before in order to work
better with JSON-LD. createdb() creates and opens a new
repository and opendb() opens an existing repo (modify the
values of host, port, user, and password arguments in the
definitions if necessary). Both return repository connections
which can be used to perform repository
operations. showtriples() displays triples in a repository.

import os
import json, requests, copy

from franz.openrdf.sail.allegrographserver import
AllegroGraphServer

from franz.openrdf.connect import ag connect

from franz.openrdf.vocabulary.xmlschema import XMLSchema

from franz.openrdf.rio.rdfformat import RDFFormat

Functions to <create/open a repo and return a
RepositoryConnection

Modify the values of HOST, PORT, USER, and PASSWORD if
necessary

def createdb(name):

return
ag connect(name,host="1localhost",port=10035,user="test", passwo
rd="xyzzy",create=True, clear=True)

def opendb(name):

return
ag_connect(name, host="1localhost",port=10035,user="test",passwo
rd="xyzzy",create=False)

def showtriples(limit=100):
statements = conn.getStatements(limit=1limit)
with statements:
for statement in statements:
print(statement)

Finally we call our createdb function to create a repository
and return a RepositoryConnection to it:

conn=createdb('jsonplay"')

Some Examples of Using JSON-LD

In the following we try things out with some JSON-LD objects
that are defined in json-1d playground: jsonld

The first object we will create is an event dict. Although it
is a Python dict, it is also valid JSON notation. (But note
that not all Python dictionaries are valid JSON. For example,
JSON uses null where Python would use None and there is no
magic to automatically handle that.) This object has one key
called @context which specifies how to translate keys and

https://json-ld.org/playground/

values into predicates and objects. The
following @context says that every time you see ical: it
should be replaced
by http://www.w3.0rg/2002/12/cal/ical#, xsd: by http://www.w3.
org/2001/XMLSchema#, and that if you see ical:dtstart as a key
than the value should be treated as an xsd:dateTime.

event = {
"@context": {
"ical": "http://www.w3.0rg/2002/12/cal/ical#",
"xsd": "http://www.w3.0rg/2001/XMLSchema#",
"ical:dtstart": { "@type": "xsd:dateTime" }
}
"ical:summary": "Lady Gaga Concert",
"ical:location": "New Orleans Arena, New Orleans,
Louisiana, USA",
"ical:dtstart": "2011-04-09T20:00:00Z"

}

Let us try it out (the subjects are blank nodes so you will
see different values):

>>> conn.addData(event)

>>> showtriples()

(:b197D2E01x1, <http://www.w3.0rg/2002/12/cal/ical#summary>,
"Lady Gaga Concert")

(_:b197D2EO1x1, <http://www.w3.0rg/2002/12/cal/ical#location>,
"New Orleans Arena, New Orleans, Louisiana, USA")

(:b197D2E01x1, <http://www.w3.0rg/2002/12/cal/ical#dtstart>,
"2011-04-09T20:00:00Z2"""<http://www.w3.0rg/2001/XMLSchema#date
Time>)

Adding an @id and @type to Objects

In the above we see that the JSON-LD was correctly translated
into triples but there are two immediate problems: first each
subject is a blank node, the use of which is problematic when
linking across repositories; and second, the object does not
have an RDF type. We solve these problems by adding an @id to

provide an IRI as the subject and adding a @type for the
object (those are at the lines just after
the @context definition):

>>> event = {
"@Qcontext": {
"ical": "http://www.w3.0rg/2002/12/cal/ical#",
"xsd": "http://www.w3.0rg/2001/XMLSchema#",
"ical:dtstart": { "@type": "xsd:dateTime" }

}
"@id": "ical:event-1",
"@type": "ical:Event",
"ical:summary": "Lady Gaga Concert",
"ical:location": "New Orleans Arena, New Orleans,

Louisiana, USA",
"ical:dtstart": "2011-04-09T20:00:00Z"
}

We also create a test function to test our JSON-LD objects. It
is more powerful than needed right now (here we just
need conn,addData(event) and showTriples() but test will be
useful in most later examples. Note
the allow external references=True argument to addData().
Again, not needed in this example but later examples use
external contexts and so this argument is required for those.

def
test(object,json ld context=None, rdf context=None,maxPrint=100
,conn=conn) :

conn.clear()

conn.addData(object, allow external references=True)

showtriples(limit=maxPrint)

>>> test(event)
(<http://www.w3.0rg/2002/12/cal/ical#event-1>,
<http://www.w3.0rg/2002/12/cal/ical#summary>, "Lady Gaga
Concert")
(<http://www.w3.0rg/2002/12/cal/ical#event-1>,
<http://www.w3.0rg/2002/12/cal/ical#location>, "New Orleans

Arena, New Orleans, Louisiana, USA")
(<http://www.w3.0rg/2002/12/cal/ical#event-1>,
<http://www.w3.0rg/2002/12/cal/ical#dtstart>,
"2011-04-09T20:00:00Z2"""<http://www.w3.0rg/2001/XMLSchema#date
Time>)
(<http://www.w3.0rg/2002/12/cal/ical#event-1>,
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>,
<http://www.w3.0rg/2002/12/cal/ical#Event>)

Note in the above that we now have a proper subject and a
type.

Referencing a External Context Via a URL

The next object we add to AllegroGraph is a person object.
This time the @context is not specified as a JSON object but
as a link to a context that is stored at http://schema.org/.
Also in the definition of the function test above we had this
parameter in addData:allow external references=True. Requiring
that argument explicitly is a security feature. One should use
external references only that context at that URL is trusted
(as it is in this case).

person = {
"@context": "http://schema.org/",
"@type": "Person",
"@id": "foaf:person-1",
"name": "Jane Doe",
"jobTitle": "Professor",
"telephone": "(425) 123-4567",
"url": "http://www.janedoe.com"

>>> test(person)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://schema.org/name>, "Jane Doe")
(<http://xmlns.com/foaf/0.1/person-1>,
<http://schema.org/jobTitle>, "Professor")
(<http://xmlns.com/foaf/0.1/person-1>,

http://schema.org/

<http://schema.org/telephone>, "(425) 123-4567")
(<http://xmlns.com/foaf/0.1/person-1>,
<http://schema.org/url>, <http://www.janedoe.com>)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>,
<http://schema.org/Person>)

Improving Performance by Adding Lists

Adding one person at a time requires doing an interaction with
the server for each person. It is much more efficient to add
lists of objects all at once rather than one at a time. Note
that addData will take a list of dicts and still do the right
thing. So let us add a 1000 persons at the same time, each
person being a copy of the above person but with a
different @id. (The example code is repeated below for ease of

copying.)

>>> X = [copy.deepcopy(person) for i in range(1000)]
>>> len(x)
1000
>>> ¢ = 0
>>> for el in X:

el['@id']= "http://franz.com/person-" + str(c)

c=¢Cc + 1
>>> test(x,maxPrint=10)
(<http://franz.com/person-0>, <http://schema.org/name>, "Jane
Doe")
(<http://franz.com/person-0>, <http://schema.org/jobTitle>,
"Professor")
(<http://franz.com/person-0>, <http://schema.org/telephone>,
"(425) 123-4567")
(<http://franz.com/person-0>, <http://schema.org/url>,
<http://www.janedoe.com>)
(<http://franz.com/person-0>,
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>,
<http://schema.org/Person>)
(<http://franz.com/person-1>, <http://schema.org/name>, "Jane
Doe")

(<http://franz.com/person-1>, <http://schema.org/jobTitle>,
"Professor")

(<http://franz.com/person-1>, <http://schema.org/telephone>,
"(425) 123-4567")

(<http://franz.com/person-1>, <http://schema.org/url>,
<http://www.janedoe.com>)

(<http://franz.com/person-1>,
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>,
<http://schema.org/Person>)

>>> conn.size()

5000

>>>

X = [copy.deepcopy(person) for 1 in range(1000)]
len(x)

c=20

for el in x:
el['@id']= "http://franz.com/person-" + str(c)
c=Cc + 1

test(x,maxPrint=10)

conn.size()

Adding a Context Directly to an Object

You can download a context directly in Python, modify it and
then add it to the object you want to store. As an
illustration we load a person context from json-ld.org
(actually a fragment of the schema.org context) and insert it
in a person object. (We have broken and truncated some output
lines for clarity and all the code executed is repeated below
for ease of copying.)

>>>
context=requests.get("https://json-1ld.org/contexts/person.json
1d").json()['@context']

>>> context

{'Person': 'http://xmlns.com/foaf/0.1/Person’,

'xsd': 'http://www.w3.0rg/2001/XMLSchema#’,

‘name': 'http://xmlns.com/foaf/0.1/name’,

‘jobTitle': 'http://xmlns.com/foaf/0.1/title’,

‘telephone': 'http://schema.org/telephone’,

‘nickname': 'http://xmlns.com/foaf/0.1/nick’,

‘affiliation': 'http://schema.org/affiliation’,

‘depiction': {'@id': 'http://xmlns.com/foaf/0.1/depiction’,
'‘@type’: '@id'},

‘image': {'@id': 'http://xmlns.com/foaf/0.1/img', '@type':
'@id'},

‘born': {'@id': ‘'http://schema.org/birthDate', '@type':
'xsd:date'},

..}
>>> person = {

"@context": context,

"@type": "Person",

"@id": "foaf:person-1",

"name": "Jane Doe",

"jobTitle": "Professor",

"telephone": "(425) 123-4567",
}
>>> test(person)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://xmlns.com/foaf/0.1/name>, "Jane Doe")
(<http://xmlns.com/foaf/0.1/person-1>,
<http://xmlns.com/foaf/0.1/title>, "Professor")
(<http://xmlns.com/foaf/0.1/person-1>,
<http://schema.org/telephone>, "(425) 123-4567")
(<http://xmlns.com/foaf/0.1/person-1>,
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>,
<http://xmlns.com/foaf/0.1/Person>)

>>>

context=requests.get("https://json-1d.org/contexts/person.json
1d").json()['@context']

The next produces lots of output, uncomment if desired
#context

person = {
"@context": context,

"@type": "Person”,
"@id": "foaf:person-1",

"name": "Jane Doe",
“jobTitle": "Professor",
"telephone": "(425) 123-4567",
}
test(person)

Building a Graph of Objects

We start by forcing a key’s value to be stored as a resource.
We saw above that we could specify the value of a key to be a
date using the xsd:dateTime specification. We now do it again
for foaf:birthdate. Then we created several linked objects and
show the connections using Gruff.

context = { "foaf:child": {"@type":"@id"},
"foaf:brotherOf": {"@type":"@id"},
"foaf:birthdate": {"@type":"xsd:dateTime"}}

pl = {
"@context": context,
"@type":"foaf:Person”,
"@id":"foaf:person-1",
"foaf:birthdate": "1958-04-09T720:00:00Z",
"foaf:child": ['foaf:person-2', 'foaf:person-3']

}
p2 = {
"@context": context,
"@type":"foaf:Person”,
"@id":"foaf:person-2",
"foaf:brotherOf": "“foaf:person-3",
"foaf:birthdate": "1992-04-09T20:00:00Z",
}

p3 = {"@context": context,
"@type":"foaf:Person",
"@id":"foaf:person-3",
"foaf:birthdate": "1994-04-09T20:00:00Z",

}

test([pl,p2,p3])

>>> test([pl,p2,p3])
(<http://xmlns.com/foaf/0.1/person-1>,
<http://xmlns.com/foaf/0.1/birthdate>,
"1958-04-09T20:00:00Z2"""<http://www.w3.0rg/2001/XMLSchema#date
Time>)

(<http://xmlns.com/foaf/0.1/person-1>,
<http://xmlns.com/foaf/0.1/child>,
<http://xmlns.com/foaf/0.1/person-2>)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://xmlns.com/foaf/0.1/child>,
<http://xmlns.com/foaf/0.1/person-3>)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>,
<http://xmlns.com/foaf/0.1/Person>)
(<http://xmlns.com/foaf/0.1/person-2>,
<http://xmlns.com/foaf/0.1/brother0f>,
<http://xmlns.com/foaf/0.1/person-3>)
(<http://xmlns.com/foaf/0.1/person-2>,
<http://xmlns.com/foaf/0.1/birthdate>,
"1992-04-09T20:00:00Z2"""<http://www.w3.0rg/2001/XMLSchema#date
Time>)

(<http://xmlns.com/foaf/0.1/person-2>,
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>,
<http://xmlns.com/foaf/0.1/Person>)
(<http://xmlns.com/foaf/0.1/person-3>,
<http://xmlns.com/foaf/0.1/birthdate>,
"1994-04-09T20:00:00Z2"""<http://www.w3.0rg/2001/XMLSchema#date
Time>)

(<http://xmlns.com/foaf/0.1/person-3>,
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>,
<http://xmlns.com/foaf/0.1/Person>)

The following shows the graph that we created in Gruff. Note
that this is what JSON-LD is all about: connecting objects
together.

BGruff?.EJ on AllegroGraph 6.4.1 (server 6.5.0) Jsonplay read-only 9 triples server localhost
File View TextSearch Display Link Remove Layout Select Edit Global Options Visual Graph Options

Birthdate

Y

Brother Of W
Child 09T20:00:00Z

[Person | 4/

Person-2

Yy v v

Type

Person |

(Literal |

" Person-1

‘No Type |

1958-04-
09T20-00:00Z

' Person-3

 1994-04-
09T20:00-:00Z

JSON-LD Keyword Directives can be Added
at any Level

Here is an example from the wild. The
URL https://www.ulta.com/antioxidant-facial-oil?productId=x1lsI
mpprodl8731241 goes to a web page advertising a facial oil.
(We make no claims or recommendations about this product. We
are simply showing how JSON-LD appears in many places.) Look
at the source of the page and you’ll find a JSON-LD object
similar to the following. Note that @ directives go to any
level. We added an @id key.

hippieoil = {"@context":"http://schema.org",
"@type":"Product",
"@id":"http://franz.com/hippieoil",
"aggregateRating":
{"@type":"AggregateRating",
"ratingValue":4.6,

https://franz.com/agraph/support/documentation/current/python/_images/person-graph.png

"reviewCount":73},

"description":"""Make peace with your inner hippie while
hydrating & protecting against photoaging....Mad Hippie's
preservative-free Antioxidant Facial 0il is truly the most
natural way to moisturize.""",

"brand":"Mad Hippie",

"name" :"Antioxidant Facial 0il",

"image":"https://images.ulta.com/is/image/Ulta/2530018",

“productID":"2530018",

"offers":

{"@type":"0Offer",
"availability":"http://schema.org/InStock",
"price":"24.99",

"priceCurrency":"USD"}}

test(hippieoil)

nGruff?.Z‘l on AllegroGraph 6.4.1 (server 6.5.0) Jjsonplay read-only 15 triples server localhost
File View TextSearch Display Link Remove Layout Select Edit Global Qptions Visual Graph Options Help

Aggregate Rating

Antioxidant

Availabilit
— - Facial Oil /
Brand .
Description N anon6 |
Name i http://schema.org/InStoc k
= ' y
Offers - 2530018
Price N 2530018 , Aggregate
F—— . ’ Rating
e ey . > 7
Product ID -
Rating Value Mad Hippie —
4.6d0
Review Count
Makepeace with your
Type > inner hippie while
hydrating & protecting
against
" photoaging....Mad
[Aggmgate Raimg] Hippie's preservative-
free Antioxidant
Offer | Facial Oil is truly the
most natural way to
moisturize.

JSON-LD @graphs

One can put one or more JSON-LD objects in an RDF named graph.
This means that the fourth element of each triple generated
from a JSON-LD object will have the specified graph name.
Let’s show in an example.

context = {

“name": "http://schema.org/name",
"description": "http://schema.org/description”,
"image": {

"@id": "http://schema.org/image", "@type": "@id"

https://franz.com/agraph/support/documentation/current/python/_images/hippieoil.png

"geo": "http://schema.org/geo",
"latitude": {
"@id": "http://schema.org/latitude", "@type":
"xsd:float" },
"longitude": {
"@id": "http://schema.org/longitude", "@type":
"xsd:float" },
"xsd": "http://www.w3.0rg/2001/XMLSchema#"

}

place = {
"@context": context,
"@id": "http://franz.com/placel",
"@graph": {
"@id": "http://franz.com/placel”,
"@type": "http://franz.com/Place",
“name": "The Empire State Building",
"description”: "The Empire State Building is a 102-
story landmark in New York City.",

"image":
"http://www.civil.usherbrooke.ca/cours/gci2l5a/empire-state-bu
ilding.jpg",

"geo": {
"latitude": "40.75",
“longitude": "73.98" }

}}

and here is the result:

>>> test(place, maxPrint=3)

(<http://franz.com/placel>, <http://schema.org/name>, "The
Empire State Building", <http://franz.com/placel>)
(<http://franz.com/placel>, <http://schema.org/description>,
"“The Empire State Building is a 102-story landmark in New York
City.", <http://franz.com/placel>)
(<http://franz.com/placel>, <http://schema.org/image>,
<http://www.civil.usherbrooke.ca/cours/gci2l5a/empire-state-bu
ilding.jpg>, <http://franz.com/placel>)

>>>

Note that the fourth element (graph) of each of the triples is

<http:

//franz.com/placel>. If you don’t add the @id the

triples will be put in the default graph.

Here a slightly more complex example:

library = {
"@context": {
"dc": "http://purl.org/dc/elements/1.1/",
"ex": "http://example.org/vocab#",
"xsd": "http://www.w3.0rg/2001/XMLSchema#",
"ex:contains": {

"@type": "@id"
}
I
"@id": "http://franz.com/mygraphl",
"@graph": [
{

"http

}

{

“"http

"@id": "http://example.org/library",
"@type": "ex:Library",
"ex:contains": "http://example.org/library/the-republic"

"@id": "http://example.org/library/the-republic",
"@type": "ex:Book",
"dc:creator": "Plato",
"dc:title": "The Republic”,
"ex:contains":

://example.org/library/the-republic#introduction”

Il@idll :

://example.org/library/the-republic#introduction",

"@type": "ex:Chapter",
"dc:description": "An introductory chapter on The

Republic.",

}
]
}

"dc:title": "The Introduction"

With the result:

>>> test(library, maxPrint=3)
(<http://example.org/library>,
<http://example.org/vocab#contains>,
<http://example.org/library/the-republic>,
<http://franz.com/mygraphl>) (<http://example.org/library>,
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>,
<http://example.org/vocab#Library>,
<http://franz.com/mygraphl>)
(<http://example.org/library/the-republic>,
<http://purl.org/dc/elements/1l.1/creator>,
"Plato",<http://franz.com/mygraphl>)

>>>

HGruﬂ:?.E.'I on AllegroGraph 84,7 (server £.5.0) Jsonplay read-only 9triples server localhost
File View TextSearch Display Link Remove Layout 5Select Edit Global Options Visual Graph Options Help

Contains _

Creator _

Description - S
> Chapter

Title N

Type

L 4

The |
Introduction

An

introductory
. chapter on
Chapter | Republic J The Republic.

Library

|z Literal |

fge

JSON-LD as a Document Store

So far we have treated JSON-LD as a syntax to create triples.
Now let us look at the way we can start using AllegroGraph as
a combination of a document store and graph database at the
same time. And also keep in mind that we want to do it in such
a way that you as a Python developer can add documents such as
dictionaries and also retrieve values or documents as
dictionaries.

https://franz.com/agraph/support/documentation/current/python/_images/library-graph.png

Setup

The Python source file jsonld tutorial helper.py contains
various definitions useful for the remainder of this example.
Once it is downloaded, do the following (after adding the path
to the filename):

conn=createdb("docugraph")

from jsonld tutorial helper import *
addNamespace(conn, "jsonldmeta", "http://franz.com/ns/allegrogra
ph/6.4/load-meta#")

addNamespace(conn, "ical","http://www.w3.0rg/2002/12/cal/ical#"

)

Let’s use our event structure again and see how we can store
this JSON document in the store as a document. Note that
the addData call includes the
keyword: json 1ld store source=True.

event = {
"@context": {
"@id": "ical:eventl",
"@type": "ical:Event",
"ical": "http://www.w3.0rg/2002/12/cal/ical#",
"xsd": "http://www.w3.0rg/2001/XMLSchema#",
"ical:dtstart": { "@type": "xsd:dateTime" }
b
"ical:summary": "Lady Gaga Concert",
"ical:location":
"New Orleans Arena, New Orleans, Louisiana, USA",
"ical:dtstart": "2011-04-09T20:00:00Z2"

>>> conn.addData(event,
allow external references=True,json ld store source=True)

The jsonld tutorial helper.py file defines the
function store as simple wrapper around addDatathat always
saves the JSON source. For experimentation reasons it also has
a parameter fresh to clear out the repository first.

>>> store(conn,event, fresh=True)

If we look at the triples in Gruff we see that the JSON source
is stored as well, on the root (top-level @id) of the JSON
object.

EGruﬂ:?.EJ on AllegroGraph 6.4.1 (server 6.3.0) jsonplay read-only Striples server localhost
File View TextSearch Display Link Bemove Layout Select Edit Global Options Visual Graph Options Help

Dtstart _
L Mew
Location _ Orleans
S v Arena, New
ource > Orleans,
Summary ~ Lmﬂss::na, {"@context”: {"ical":
" "http:/fwww w3 org/2002/
Type

12/calfical#”, "=sd™
"http:/fwwow w3 .orgl2001/
XMLSchema#", "ical-dtstart":
{"@type": "xsd:dateTime"}},
pl "@id": "ical-event1”, "@type™

=

Event1

; P, “ical:Event”, "ical:summary”:

| Literal 2011-04- "Lady Gaga Concert”,
09T20:00:00Z “icallocation”: "New Orleans

|’ Mo Type Arena, New O_rleans,

Louisiana, USA", "ical:dtstart™
(Lady Gaga)
Concert

"2011-04-09T20:00:0027}

For the following part of the tutorial we want a little bit
more data in our repository so please look at the helper
file jsonld tutorial helper.py where you will see that at the
end we have a dictionary named obs with about 9 diverse
objects, mostly borrowed from the json-ld.org site: a person,
an event, a place, a recipe, a group of persons, a product,
and our hippieoil.

Y

First let us store all the objects in a fresh repository. Then
we check the size of the repo. Finally, we create a freetext
index for the JSON sources.

>>> store(conn,[v for k,v in obs.items()], fresh=True)
>>> conn.size()
86

>>>
conn.createFreeTextIndex("source",['<http://franz.com/ns/alleg

https://franz.com/agraph/support/documentation/current/python/_images/event-store-source.png

rograph/6.4/load-meta#source>"])
>>>

Retrieving values with SPARQL

To simply retrieve values in objects but not the objects
themselves, regular SPARQL queries will suffice. But because
we want to make sure that Python developers only need to deal
with regular Python structures as lists and dictionaries, we
created a simple wrapper around SPARQL (see helper file). The
name of the wrapper is runSparql.

Here is an example. Let us find all the roots (top-level @ids)
of objects and their types. Some objects do not have roots,
so None stands for a blank node.

>>> pprint(runSpargl(conn,"select ?s ?type { ?s a ?type }"))
[{'s': 'cocktaill', 'type': 'Cocktail'},
: None, 'type': 'Individual'},

: None, 'type': 'Vehicle'},

'tesla', 'type': 'Offering'},

‘placel’, 'type': 'Place'},
: None, 'type': 'Offer'},
: None, 'type': 'AggregateRating'},

‘hippieoil', 'type': 'Product'},

‘s': 'person-3', 'type': 'Person'},
‘'s': 'person-2', 'type': 'Person'},
's': 'person-1', 'type': 'Person'},

'‘person-1000', 'type': 'Person'},
‘eventl', 'type': 'Event'}]

P N Y R N = =SS
v v nononnononaon

\'A
\'A
\'

We do not see the full URIs for ?s and ?type. You can see them
by adding an appropriate formatargument to runSparql, but the
default is terse.

>>> pprint(runSparql(conn,"select ?s ?type { ?s a ?type }
limit 2",format='ntriples'))
[{'s': ‘<http://franz.com/cocktaill>", 'type':

‘<http://franz.com/Cocktail>"},
{'s': None, 'type':
‘<http://purl.org/goodrelations/v1#Individual>"}]

>>>

Retrieving a Dictionary or Object

retrieve is another function defined
(in jsonld tutorial helper.py) for this tutorial. It is a
wrapper around SPARQL to help extract objects. Here we see how
we can use it. The sole purpose of retrieve is to retrieve the
JSON-LD/dictionary based on a SPARQL pattern.

>>> retrieve(conn,"{?this a ical:Event}")

[{'@type': 'ical:Event', 'ical:location': 'New Orleans Arena,
New Orleans, Louisiana, USA', ‘'ical:summary': 'Lady Gaga
Concert', '@id': 'ical:eventl', '‘@Qcontext': {'xsd':
‘http://www.w3.0rg/2001/XMLSchema#"', ‘ical':
‘http://www.w3.0rg/2002/12/cal/ical#', ‘ical:dtstart':
{'@type': 'xsd:dateTime'}}, 'ical:dtstart':
'2011-04-09T20:00:00Z"'}]

>>>

Ok, for a final fun (if you like expensive cars) example: Let
us find a thing that is “fast and furious”, that is worth more
than $80,000 and that we can pay for in cash:

>>>
addNamespace(conn, “gr","http://purl.org/goodrelations/v1#")
>>> X = retrieve(conn, """{ ?this fti:match 'fast furious*';

gr:acceptedPaymentMethods gr:Cash ;
gr:hasPriceSpecification 7?price .
?price gr:hasCurrencyValue ?value ;
gr:hasCurrency "USD"
filter (?value > 80000.0) }""")
>>> pprint(x)
[{'@context': {'foaf': 'http://xmlns.com/foaf/0.1/"',
‘foaf:page': {'@type': '@id'},
‘gr': 'http://purl.org/goodrelations/v1#',

‘gr:acceptedPaymentMethods': {'@type': '@id'},
‘gr:hasBusinessFunction': {'@type': '@id'},
‘gr:hasCurrencyValue': {'@type': 'xsd:float'},
‘pto': 'http://www.productontology.org/id/"',
'xsd': 'http://www.w3.0rg/2001/XMLSchema#'},

‘@id': 'http://example.org/cars/for-sale#tesla',

‘@type': 'gr:0ffering’,

‘gr:acceptedPaymentMethods': 'gr:Cash',

‘gr:description': 'Need to sell fast and furiously',
'gr:hasBusinessFunction': ‘'gr:Sell',
‘gr:hasPriceSpecification': {'gr:hasCurrency': 'USD',
‘gr:hasCurrencyValue':
'85000"'},
‘gr:includes': {'@type': ['gr:Individual', 'pto:Vehicle'],
‘foaf:page':
‘http://www.teslamotors.com/roadster’',
‘gr:name': 'Tesla Roadster'},
‘gr:name': 'Used Tesla Roadster'}]

>>> X[0]['@id"]
‘http://example.org/cars/for-sale#tesla’

