1

The Cornerstone of Data Science: Progressive Data Modeling

From AI Business June 27, 2018

This article covers Single Schema, Universal Taxonomies, Time Series Analysis, Accelerating Data Science and features some thought leadership from Franz Inc.’s CEO, Jans Aasman:

‘Contemporary data science and artificial intelligence requirements simply can’t wait for this ongoing, dilatory process. According to Jans Aasman, CEO of Franz, they no longer have to. By deploying what Aasman called an “events-based approach to schema”, companies can model datasets with any number of differences alongside one another for expedited enterprise value.’

‘The resulting schema is simplified, uniform, and useful in multiple ways. “You achieve two goals,” Aasman noted. “One is you define what data you trust to be in the main repository to have all the truth. The second thing is you make your data management a little more uniform. By doing those two things your AI and your data science will become better, because the data that goes into them is better.”’

Dr. Aasman goes on to note:

‘The events-based schema methodology only works with enterprise taxonomies—or at least with taxonomies spanning the different sources included in a specific repository, such as a Master Data Management hub. Taxonomies are necessary so that “the type of event can be specified,” Aasman said.’

‘Moreover, taxonomies are indispensable for clarifying terms and their meaning across different data formats, which may represent similar concepts in distinct ways. Therefore, practically all objects in a database should be “taxonomy based” Aasman said, because these hierarchical classifications enable organizations to query their repositories via this uniform schema.’

Read the full article over at AI Business.