
Using JSON-LD in AllegroGraph
– Python Example

The following is example #19
from our AllegroGraph Python
Tutorial.

JSON-LD is described pretty well at https://json-ld.org/ and
the specification can be found
at https://json-ld.org/latest/json-ld/ .

The website https://json-ld.org/playground/ is also useful.

There are many reasons for working with JSON-LD. The major
search engines such as Google require ecommerce companies to
mark up their websites with a systematic description of their
products and more and more companies use it as an easy
serialization format to share data.

The benefit for your organization is that you can now combine
your documents with graphs, graph search and graph algorithms.
Normally when you store documents in a document store you set
up your documents in such a way that it is optimized for
direct retrieval queries. Doing complex joins for multiple
types of documents or even doing a shortest path through a
mass of object (types) is however very complicated. Storing
JSON-LD objects in AllegroGraph gives you all the benefits of
a document store and you can semantically link objects
together, do complex joins and even graph search.

A second benefit is that, as an application developer, you do
not have to learn the entire semantic technology stack,
especially the part where developers have to create individual
triples or edges. You can work with the JSON data
serialization format that application developers usually

https://allegrograph.com/using-json-ld-in-allegrograph-python-example/
https://allegrograph.com/using-json-ld-in-allegrograph-python-example/
https://franz.com/agraph/support/documentation/current/python/tutorial.html
https://franz.com/agraph/support/documentation/current/python/tutorial.html
https://json-ld.org/
https://json-ld.org/latest/json-ld/
https://json-ld.org/playground/

prefer.

In the following you will first learn about JSON-LD as a
syntax for semantic graphs. After that we will talk more about
using JSON-LD with AllegroGraph as a document-graph-store.

Setup
You can use Python 2.6+ or Python 3.3+. There are small setup
differences which are noted. You do need agraph-
python-101.0.1 or later.

Mimicking instructions in the Installation document, you
should set up the virtualenv environment.

Create an environment named jsonld:1.

python3 -m venv jsonld

or

python2 -m virtualenv jsonld

Activate it:2.

Using the Bash shell:

source jsonld/bin/activate

Using the C shell:

source jsonld/bin/activate.csh

Install agraph-python:3.

pip install agraph-python

And start python:

python
[various startup and copyright messages]
>>>

We assume you have an AllegroGraph 6.5.0 server running. We
call ag_connect. Modify the host, port, user, and password in
your call to their correct values:

from franz.openrdf.connect import ag_connect
with ag_connect('repo', host='localhost', port='10035',
 user='test', password='xyzzy') as conn:
 print (conn.size())

If the script runs successfully a new repository
named repo will be created.

JSON-LD setup
We next define some utility functions which are somewhat
different from what we have used before in order to work
better with JSON-LD. createdb() creates and opens a new
repository and opendb() opens an existing repo (modify the
values of host, port, user, and password arguments in the
definitions if necessary). Both return repository connections
which can be used to perform repository
operations. showtriples() displays triples in a repository.

import os
import json, requests, copy

from franz.openrdf.sail.allegrographserver import
AllegroGraphServer
from franz.openrdf.connect import ag_connect
from franz.openrdf.vocabulary.xmlschema import XMLSchema
from franz.openrdf.rio.rdfformat import RDFFormat

Functions to create/open a repo and return a
RepositoryConnection
Modify the values of HOST, PORT, USER, and PASSWORD if
necessary

def createdb(name):
 return

ag_connect(name,host="localhost",port=10035,user="test",passwo
rd="xyzzy",create=True,clear=True)

def opendb(name):
 return

ag_connect(name,host="localhost",port=10035,user="test",passwo
rd="xyzzy",create=False)

def showtriples(limit=100):
 statements = conn.getStatements(limit=limit)
 with statements:
 for statement in statements:
 print(statement)

Finally we call our createdb function to create a repository
and return a RepositoryConnection to it:

conn=createdb('jsonplay')

Some Examples of Using JSON-LD
In the following we try things out with some JSON-LD objects
that are defined in json-ld playground: jsonld

The first object we will create is an event dict. Although it
is a Python dict, it is also valid JSON notation. (But note
that not all Python dictionaries are valid JSON. For example,
JSON uses null where Python would use None and there is no
magic to automatically handle that.) This object has one key
called @context which specifies how to translate keys and
values into predicates and objects. The
following @context says that every time you see ical: it

https://json-ld.org/playground/

should be replaced
by http://www.w3.org/2002/12/cal/ical#, xsd: by http://www.w3.
org/2001/XMLSchema#, and that if you see ical:dtstart as a key
than the value should be treated as an xsd:dateTime.

event = {
 "@context": {
 "ical": "http://www.w3.org/2002/12/cal/ical#",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "ical:dtstart": { "@type": "xsd:dateTime" }
 },
 "ical:summary": "Lady Gaga Concert",
 "ical:location": "New Orleans Arena, New Orleans,
Louisiana, USA",
 "ical:dtstart": "2011-04-09T20:00:00Z"
}

Let us try it out (the subjects are blank nodes so you will
see different values):

>>> conn.addData(event)
>>> showtriples()
(_:b197D2E01x1, <http://www.w3.org/2002/12/cal/ical#summary>,
"Lady Gaga Concert")
(_:b197D2E01x1, <http://www.w3.org/2002/12/cal/ical#location>,
"New Orleans Arena, New Orleans, Louisiana, USA")
(_:b197D2E01x1, <http://www.w3.org/2002/12/cal/ical#dtstart>,
"2011-04-09T20:00:00Z"^^<http://www.w3.org/2001/XMLSchema#date
Time>)

Adding an @id and @type to Objects
In the above we see that the JSON-LD was correctly translated
into triples but there are two immediate problems: first each
subject is a blank node, the use of which is problematic when
linking across repositories; and second, the object does not
have an RDF type. We solve these problems by adding an @id to
provide an IRI as the subject and adding a @type for the
object (those are at the lines just after

the @context definition):

>>> event = {
 "@context": {
 "ical": "http://www.w3.org/2002/12/cal/ical#",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "ical:dtstart": { "@type": "xsd:dateTime" }
 },
 "@id": "ical:event-1",
 "@type": "ical:Event",
 "ical:summary": "Lady Gaga Concert",
 "ical:location": "New Orleans Arena, New Orleans,
Louisiana, USA",
 "ical:dtstart": "2011-04-09T20:00:00Z"
 }

We also create a test function to test our JSON-LD objects. It
is more powerful than needed right now (here we just
need conn,addData(event) and showTriples() but test will be
useful in most later examples. Note
the allow_external_references=True argument to addData().
Again, not needed in this example but later examples use
external contexts and so this argument is required for those.

def
test(object,json_ld_context=None,rdf_context=None,maxPrint=100
,conn=conn):
 conn.clear()
 conn.addData(object, allow_external_references=True)
 showtriples(limit=maxPrint)

>>> test(event)
(<http://www.w3.org/2002/12/cal/ical#event-1>,
<http://www.w3.org/2002/12/cal/ical#summary>, "Lady Gaga
Concert")
(<http://www.w3.org/2002/12/cal/ical#event-1>,
<http://www.w3.org/2002/12/cal/ical#location>, "New Orleans
Arena, New Orleans, Louisiana, USA")
(<http://www.w3.org/2002/12/cal/ical#event-1>,
<http://www.w3.org/2002/12/cal/ical#dtstart>,

"2011-04-09T20:00:00Z"^^<http://www.w3.org/2001/XMLSchema#date
Time>)
(<http://www.w3.org/2002/12/cal/ical#event-1>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://www.w3.org/2002/12/cal/ical#Event>)

Note in the above that we now have a proper subject and a
type.

Referencing a External Context Via a URL
The next object we add to AllegroGraph is a person object.
This time the @context is not specified as a JSON object but
as a link to a context that is stored at http://schema.org/.
Also in the definition of the function test above we had this
parameter in addData:allow_external_references=True. Requiring
that argument explicitly is a security feature. One should use
external references only that context at that URL is trusted
(as it is in this case).

person = {
 "@context": "http://schema.org/",
 "@type": "Person",
 "@id": "foaf:person-1",
 "name": "Jane Doe",
 "jobTitle": "Professor",
 "telephone": "(425) 123-4567",
 "url": "http://www.janedoe.com"
}

>>> test(person)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://schema.org/name>, "Jane Doe")
(<http://xmlns.com/foaf/0.1/person-1>,
<http://schema.org/jobTitle>, "Professor")
(<http://xmlns.com/foaf/0.1/person-1>,
<http://schema.org/telephone>, "(425) 123-4567")
(<http://xmlns.com/foaf/0.1/person-1>,
<http://schema.org/url>, <http://www.janedoe.com>)

http://schema.org/

(<http://xmlns.com/foaf/0.1/person-1>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://schema.org/Person>)

Improving Performance by Adding Lists
Adding one person at a time requires doing an interaction with
the server for each person. It is much more efficient to add
lists of objects all at once rather than one at a time. Note
that addData will take a list of dicts and still do the right
thing. So let us add a 1000 persons at the same time, each
person being a copy of the above person but with a
different @id. (The example code is repeated below for ease of
copying.)

>>> x = [copy.deepcopy(person) for i in range(1000)]
>>> len(x)
1000
>>> c = 0
>>> for el in x:
 el['@id']= "http://franz.com/person-" + str(c)
 c= c + 1
>>> test(x,maxPrint=10)
(<http://franz.com/person-0>, <http://schema.org/name>, "Jane
Doe")
(<http://franz.com/person-0>, <http://schema.org/jobTitle>,
"Professor")
(<http://franz.com/person-0>, <http://schema.org/telephone>,
"(425) 123-4567")
(<http://franz.com/person-0>, <http://schema.org/url>,
<http://www.janedoe.com>)
(<http://franz.com/person-0>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://schema.org/Person>)
(<http://franz.com/person-1>, <http://schema.org/name>, "Jane
Doe")
(<http://franz.com/person-1>, <http://schema.org/jobTitle>,
"Professor")
(<http://franz.com/person-1>, <http://schema.org/telephone>,

"(425) 123-4567")
(<http://franz.com/person-1>, <http://schema.org/url>,
<http://www.janedoe.com>)
(<http://franz.com/person-1>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://schema.org/Person>)
>>> conn.size()
5000
>>>

x = [copy.deepcopy(person) for i in range(1000)]
len(x)

c = 0
for el in x:
 el['@id']= "http://franz.com/person-" + str(c)
 c= c + 1

test(x,maxPrint=10)

conn.size()

Adding a Context Directly to an Object
You can download a context directly in Python, modify it and
then add it to the object you want to store. As an
illustration we load a person context from json-ld.org
(actually a fragment of the schema.org context) and insert it
in a person object. (We have broken and truncated some output
lines for clarity and all the code executed is repeated below
for ease of copying.)

>>>
context=requests.get("https://json-ld.org/contexts/person.json
ld").json()['@context']
>>> context
{'Person': 'http://xmlns.com/foaf/0.1/Person',
 'xsd': 'http://www.w3.org/2001/XMLSchema#',
 'name': 'http://xmlns.com/foaf/0.1/name',

 'jobTitle': 'http://xmlns.com/foaf/0.1/title',
 'telephone': 'http://schema.org/telephone',
 'nickname': 'http://xmlns.com/foaf/0.1/nick',
 'affiliation': 'http://schema.org/affiliation',
 'depiction': {'@id': 'http://xmlns.com/foaf/0.1/depiction',
'@type': '@id'},
 'image': {'@id': 'http://xmlns.com/foaf/0.1/img', '@type':
'@id'},
 'born': {'@id': 'http://schema.org/birthDate', '@type':
'xsd:date'},
 ...}
>>> person = {
 "@context": context,
 "@type": "Person",
 "@id": "foaf:person-1",
 "name": "Jane Doe",
 "jobTitle": "Professor",
 "telephone": "(425) 123-4567",
}
>>> test(person)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://xmlns.com/foaf/0.1/name>, "Jane Doe")
(<http://xmlns.com/foaf/0.1/person-1>,
<http://xmlns.com/foaf/0.1/title>, "Professor")
(<http://xmlns.com/foaf/0.1/person-1>,
<http://schema.org/telephone>, "(425) 123-4567")
(<http://xmlns.com/foaf/0.1/person-1>,
 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
 <http://xmlns.com/foaf/0.1/Person>)
>>>

context=requests.get("https://json-ld.org/contexts/person.json
ld").json()['@context']
The next produces lots of output, uncomment if desired
#context

person = {
 "@context": context,
 "@type": "Person",
 "@id": "foaf:person-1",
 "name": "Jane Doe",

 "jobTitle": "Professor",
 "telephone": "(425) 123-4567",
}
test(person)

Building a Graph of Objects
We start by forcing a key’s value to be stored as a resource.
We saw above that we could specify the value of a key to be a
date using the xsd:dateTime specification. We now do it again
for foaf:birthdate. Then we created several linked objects and
show the connections using Gruff.

context = { "foaf:child": {"@type":"@id"},
 "foaf:brotherOf": {"@type":"@id"},
 "foaf:birthdate": {"@type":"xsd:dateTime"}}

p1 = {
 "@context": context,
 "@type":"foaf:Person",
 "@id":"foaf:person-1",
 "foaf:birthdate": "1958-04-09T20:00:00Z",
 "foaf:child": ['foaf:person-2', 'foaf:person-3']
}

p2 = {
 "@context": context,
 "@type":"foaf:Person",
 "@id":"foaf:person-2",
 "foaf:brotherOf": "foaf:person-3",
 "foaf:birthdate": "1992-04-09T20:00:00Z",
}

p3 = {"@context": context,
 "@type":"foaf:Person",
 "@id":"foaf:person-3",
 "foaf:birthdate": "1994-04-09T20:00:00Z",
}

test([p1,p2,p3])

>>> test([p1,p2,p3])
(<http://xmlns.com/foaf/0.1/person-1>,
<http://xmlns.com/foaf/0.1/birthdate>,
"1958-04-09T20:00:00Z"^^<http://www.w3.org/2001/XMLSchema#date
Time>)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://xmlns.com/foaf/0.1/child>,
<http://xmlns.com/foaf/0.1/person-2>)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://xmlns.com/foaf/0.1/child>,
<http://xmlns.com/foaf/0.1/person-3>)
(<http://xmlns.com/foaf/0.1/person-1>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://xmlns.com/foaf/0.1/Person>)
(<http://xmlns.com/foaf/0.1/person-2>,
<http://xmlns.com/foaf/0.1/brotherOf>,
<http://xmlns.com/foaf/0.1/person-3>)
(<http://xmlns.com/foaf/0.1/person-2>,
<http://xmlns.com/foaf/0.1/birthdate>,
"1992-04-09T20:00:00Z"^^<http://www.w3.org/2001/XMLSchema#date
Time>)
(<http://xmlns.com/foaf/0.1/person-2>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://xmlns.com/foaf/0.1/Person>)
(<http://xmlns.com/foaf/0.1/person-3>,
<http://xmlns.com/foaf/0.1/birthdate>,
"1994-04-09T20:00:00Z"^^<http://www.w3.org/2001/XMLSchema#date
Time>)
(<http://xmlns.com/foaf/0.1/person-3>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://xmlns.com/foaf/0.1/Person>)

The following shows the graph that we created in Gruff. Note
that this is what JSON-LD is all about: connecting objects
together.

JSON-LD Keyword Directives can be Added
at any Level
Here is an example from the wild. The
URL https://www.ulta.com/antioxidant-facial-oil?productId=xlsI
mpprod18731241 goes to a web page advertising a facial oil.
(We make no claims or recommendations about this product. We
are simply showing how JSON-LD appears in many places.) Look
at the source of the page and you’ll find a JSON-LD object
similar to the following. Note that @ directives go to any
level. We added an @id key.

hippieoil = {"@context":"http://schema.org",
 "@type":"Product",
 "@id":"http://franz.com/hippieoil",
 "aggregateRating":
 {"@type":"AggregateRating",
 "ratingValue":4.6,

https://franz.com/agraph/support/documentation/current/python/_images/person-graph.png

 "reviewCount":73},
 "description":"""Make peace with your inner hippie while
hydrating & protecting against photoaging....Mad Hippie's
preservative-free Antioxidant Facial Oil is truly the most
natural way to moisturize.""",
 "brand":"Mad Hippie",
 "name":"Antioxidant Facial Oil",
 "image":"https://images.ulta.com/is/image/Ulta/2530018",
 "productID":"2530018",
 "offers":
 {"@type":"Offer",
 "availability":"http://schema.org/InStock",
 "price":"24.99",
 "priceCurrency":"USD"}}

test(hippieoil)

JSON-LD @graphs
One can put one or more JSON-LD objects in an RDF named graph.
This means that the fourth element of each triple generated
from a JSON-LD object will have the specified graph name.
Let’s show in an example.

context = {
 "name": "http://schema.org/name",
 "description": "http://schema.org/description",
 "image": {
 "@id": "http://schema.org/image", "@type": "@id"
},

https://franz.com/agraph/support/documentation/current/python/_images/hippieoil.png

 "geo": "http://schema.org/geo",
 "latitude": {
 "@id": "http://schema.org/latitude", "@type":
"xsd:float" },
 "longitude": {
 "@id": "http://schema.org/longitude", "@type":
"xsd:float" },
 "xsd": "http://www.w3.org/2001/XMLSchema#"
 }

place = {
 "@context": context,
 "@id": "http://franz.com/place1",
 "@graph": {
 "@id": "http://franz.com/place1",
 "@type": "http://franz.com/Place",
 "name": "The Empire State Building",
 "description": "The Empire State Building is a 102-
story landmark in New York City.",

 "image":
"http://www.civil.usherbrooke.ca/cours/gci215a/empire-state-bu
ilding.jpg",
 "geo": {
 "latitude": "40.75",
 "longitude": "73.98" }
 }}

and here is the result:

>>> test(place, maxPrint=3)
(<http://franz.com/place1>, <http://schema.org/name>, "The
Empire State Building", <http://franz.com/place1>)
(<http://franz.com/place1>, <http://schema.org/description>,
"The Empire State Building is a 102-story landmark in New York
City.", <http://franz.com/place1>)
(<http://franz.com/place1>, <http://schema.org/image>,
<http://www.civil.usherbrooke.ca/cours/gci215a/empire-state-bu
ilding.jpg>, <http://franz.com/place1>)
>>>

Note that the fourth element (graph) of each of the triples is

<http://franz.com/place1>. If you don’t add the @id the
triples will be put in the default graph.

Here a slightly more complex example:

library = {
 "@context": {
 "dc": "http://purl.org/dc/elements/1.1/",
 "ex": "http://example.org/vocab#",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "ex:contains": {
 "@type": "@id"
 }
 },
 "@id": "http://franz.com/mygraph1",
 "@graph": [
 {
 "@id": "http://example.org/library",
 "@type": "ex:Library",
 "ex:contains": "http://example.org/library/the-republic"
 },
 {
 "@id": "http://example.org/library/the-republic",
 "@type": "ex:Book",
 "dc:creator": "Plato",
 "dc:title": "The Republic",

 "ex:contains":
"http://example.org/library/the-republic#introduction"
 },
 {

 "@id":
"http://example.org/library/the-republic#introduction",
 "@type": "ex:Chapter",
 "dc:description": "An introductory chapter on The
Republic.",
 "dc:title": "The Introduction"
 }
]
}

With the result:

>>> test(library, maxPrint=3)
(<http://example.org/library>,
<http://example.org/vocab#contains>,
<http://example.org/library/the-republic>,
<http://franz.com/mygraph1>) (<http://example.org/library>,
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://example.org/vocab#Library>,
<http://franz.com/mygraph1>)
(<http://example.org/library/the-republic>,
<http://purl.org/dc/elements/1.1/creator>,
"Plato",<http://franz.com/mygraph1>)
>>>

JSON-LD as a Document Store
So far we have treated JSON-LD as a syntax to create triples.
Now let us look at the way we can start using AllegroGraph as
a combination of a document store and graph database at the
same time. And also keep in mind that we want to do it in such
a way that you as a Python developer can add documents such as
dictionaries and also retrieve values or documents as
dictionaries.

https://franz.com/agraph/support/documentation/current/python/_images/library-graph.png

Setup
The Python source file jsonld_tutorial_helper.py contains
various definitions useful for the remainder of this example.
Once it is downloaded, do the following (after adding the path
to the filename):

conn=createdb("docugraph")
from jsonld_tutorial_helper import *
addNamespace(conn,"jsonldmeta","http://franz.com/ns/allegrogra
ph/6.4/load-meta#")
addNamespace(conn,"ical","http://www.w3.org/2002/12/cal/ical#"
)

Let’s use our event structure again and see how we can store
this JSON document in the store as a document. Note that
the addData call includes the
keyword: json_ld_store_source=True.

event = {
 "@context": {
 "@id": "ical:event1",
 "@type": "ical:Event",
 "ical": "http://www.w3.org/2002/12/cal/ical#",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "ical:dtstart": { "@type": "xsd:dateTime" }
 },
 "ical:summary": "Lady Gaga Concert",
 "ical:location":
 "New Orleans Arena, New Orleans, Louisiana, USA",
 "ical:dtstart": "2011-04-09T20:00:00Z"
}

>>> conn.addData(event,
allow_external_references=True,json_ld_store_source=True)

The jsonld_tutorial_helper.py file defines the
function store as simple wrapper around addDatathat always
saves the JSON source. For experimentation reasons it also has
a parameter fresh to clear out the repository first.

>>> store(conn,event, fresh=True)

If we look at the triples in Gruff we see that the JSON source
is stored as well, on the root (top-level @id) of the JSON
object.

For the following part of the tutorial we want a little bit
more data in our repository so please look at the helper
file jsonld_tutorial_helper.py where you will see that at the
end we have a dictionary named obs with about 9 diverse
objects, mostly borrowed from the json-ld.org site: a person,
an event, a place, a recipe, a group of persons, a product,
and our hippieoil.

First let us store all the objects in a fresh repository. Then
we check the size of the repo. Finally, we create a freetext
index for the JSON sources.

>>> store(conn,[v for k,v in obs.items()], fresh=True)
>>> conn.size()
86
>>>
conn.createFreeTextIndex("source",['<http://franz.com/ns/alleg

https://franz.com/agraph/support/documentation/current/python/_images/event-store-source.png

rograph/6.4/load-meta#source>'])
>>>

Retrieving values with SPARQL
To simply retrieve values in objects but not the objects
themselves, regular SPARQL queries will suffice. But because
we want to make sure that Python developers only need to deal
with regular Python structures as lists and dictionaries, we
created a simple wrapper around SPARQL (see helper file). The
name of the wrapper is runSparql.

Here is an example. Let us find all the roots (top-level @ids)
of objects and their types. Some objects do not have roots,
so None stands for a blank node.

>>> pprint(runSparql(conn,"select ?s ?type { ?s a ?type }"))
[{'s': 'cocktail1', 'type': 'Cocktail'},
 {'s': None, 'type': 'Individual'},
 {'s': None, 'type': 'Vehicle'},
 {'s': 'tesla', 'type': 'Offering'},
 {'s': 'place1', 'type': 'Place'},
 {'s': None, 'type': 'Offer'},
 {'s': None, 'type': 'AggregateRating'},
 {'s': 'hippieoil', 'type': 'Product'},
 {'s': 'person-3', 'type': 'Person'},
 {'s': 'person-2', 'type': 'Person'},
 {'s': 'person-1', 'type': 'Person'},
 {'s': 'person-1000', 'type': 'Person'},
 {'s': 'event1', 'type': 'Event'}]
>>>

We do not see the full URIs for ?s and ?type. You can see them
by adding an appropriate formatargument to runSparql, but the
default is terse.

>>> pprint(runSparql(conn,"select ?s ?type { ?s a ?type }
limit 2",format='ntriples'))
[{'s': '<http://franz.com/cocktail1>', 'type':

'<http://franz.com/Cocktail>'},
 {'s': None, 'type':

'<http://purl.org/goodrelations/v1#Individual>'}]
>>>

Retrieving a Dictionary or Object
retrieve is another function defined
(in jsonld_tutorial_helper.py) for this tutorial. It is a
wrapper around SPARQL to help extract objects. Here we see how
we can use it. The sole purpose of retrieve is to retrieve the
JSON-LD/dictionary based on a SPARQL pattern.

>>> retrieve(conn,"{?this a ical:Event}")
[{'@type': 'ical:Event', 'ical:location': 'New Orleans Arena,
New Orleans, Louisiana, USA', 'ical:summary': 'Lady Gaga
Concert', '@id': 'ical:event1', '@context': {'xsd':
'http://www.w3.org/2001/XMLSchema#', 'ical':
'http://www.w3.org/2002/12/cal/ical#', 'ical:dtstart':
{'@type': 'xsd:dateTime'}}, 'ical:dtstart':
'2011-04-09T20:00:00Z'}]
>>>

Ok, for a final fun (if you like expensive cars) example: Let
us find a thing that is “fast and furious”, that is worth more
than $80,000 and that we can pay for in cash:

>>>
addNamespace(conn,"gr","http://purl.org/goodrelations/v1#")
>>> x = retrieve(conn, """{ ?this fti:match 'fast furious*';
 gr:acceptedPaymentMethods gr:Cash ;
 gr:hasPriceSpecification ?price .
 ?price gr:hasCurrencyValue ?value ;
 gr:hasCurrency "USD" .
 filter (?value > 80000.0) }""")
>>> pprint(x)
[{'@context': {'foaf': 'http://xmlns.com/foaf/0.1/',
 'foaf:page': {'@type': '@id'},
 'gr': 'http://purl.org/goodrelations/v1#',

 'gr:acceptedPaymentMethods': {'@type': '@id'},
 'gr:hasBusinessFunction': {'@type': '@id'},
 'gr:hasCurrencyValue': {'@type': 'xsd:float'},
 'pto': 'http://www.productontology.org/id/',
 'xsd': 'http://www.w3.org/2001/XMLSchema#'},
 '@id': 'http://example.org/cars/for-sale#tesla',
 '@type': 'gr:Offering',
 'gr:acceptedPaymentMethods': 'gr:Cash',
 'gr:description': 'Need to sell fast and furiously',
 'gr:hasBusinessFunction': 'gr:Sell',
 'gr:hasPriceSpecification': {'gr:hasCurrency': 'USD',
 'gr:hasCurrencyValue':
'85000'},
 'gr:includes': {'@type': ['gr:Individual', 'pto:Vehicle'],
 'foaf:page':

'http://www.teslamotors.com/roadster',
 'gr:name': 'Tesla Roadster'},
 'gr:name': 'Used Tesla Roadster'}]
>>> x[0]['@id']
'http://example.org/cars/for-sale#tesla'

