
Gruff QuickStart

Contents

• Gruff – Intro to key features

• a visualization tool for inspecting Semantic Graph Databases

(triple stores) *and* building SPARQL/Prolog Queries visually

• Example Data - https://allegrograph.com/downloads/

• Healthcare Data

• Movie Actors Data

• Crunchbase Companies

• Quickstart lessons in Gruff

https://allegrograph.com/downloads/

What version of Gruff?

§ Gruff v8.0 for AllegroGraph 7 – Free up to 5 M triples

§ New in v8 – Browser based – Integrated with AllegroGraph

AGWebView.

§ For large datasets and production systems – info@franz.com

§ Gruff actually works with ANY triple store via SPARQL Endpoint

Protocol.

§ Demo Version – No Download required

§ http://gruff.allegrograph.com:10035/#

http://gruff.allegrograph.com:10035/

[1] Install AllegroGraph – Gruff Built-in

• Install and Start AllegroGraph

• Download and Load actors.ntriples.gz

• Open the ‘actors’ repository

• Click on the Gruff icon

• Menu>Display>Display Some Sample Triples

• Remove all triples from screen (‘z’ till blank, or ctr-alt-x)

• Create free text index (Text Search>Select or Create Text Index) and

select all the predicates you want to include

• Search for a movie actor using text search (‘h’)

[2] Manage your Repositories with AGWebview

• Gruff - Now Integrated with AGWebView

• Browse available catalogs and repositories
• Create (also delete) a repository
• Load RDF data into a repository, or into a specific

graph of a repository.
• Configure triple indices for a repository

• Set up free-text indexing for a repository
• Issue SPARQL and Prolog queries, which can be

saved and reused
• Walk from query results to related triples and

resources

• View and add namespaces
• Manage AllegroGraph users and “roles,” and their

access to repositories
• Capture a query as a web URL for embedding in

applications

• Apply Prolog rules and functors to repositories
• Open sessions for commit and rollback.
• Much more …..

[3] Graph View

• Most time spent in the Graph view (press g)

• Some easy starters to get something on the screen

• Using text indexing (press h)

• Do simple SPARQL query in query screen (press w) ..
• Select * where { ?x a ?y . } limit 10 .. Click on ‘create-visual-graph’

• Display sample instance node by class hierarchy (press ctr-j)

• Select the predicates to show on the screen (press p)

• Use shift-p to find an earlier selection

• Explode nodes (press f)

• Going back to previous state (press z)

• Reorder graph (press r)

• Center the graph (press c)

• Make the graph more compact (press 6)

• Nudge the graph (press d)

• Zoom in and out (middle wheel mouse, or use , and .)

[3] Graph View Layouts

• The corners of nodes are ‘mouse-sensitive’: please try all corners

• And try our tree rendering using ctr-t (or left bottom node corder)

[3] Graph View Continued

• Explode node by right-clicking and choosing from a menu or a tree

• Select and then delete nodes from the screen (press x)

• Delete all nodes from the screen (press ctr-alt-x)

• Eraser mode (press ctr-shift-x)

• Remove orphans (press shift-o)

• Show full namespaces (shift-8 .. Not F8)

• Toggle predicate names on screen (press n)

• Find shortest path (press shift-f)
• Pin nodes, or graph might change too much (press i)

• Find shortest path with shift-f

• What if you can’t find a path?

• Choose more predicates and sometimes less J

• Create larger time window to search

• Buy more memory and solid state drives for your laptop

• Check in table view if one of the nodes has the right predicates

[3] Graph View ‘G’ continued

• Sometimes you don’t want to see the node labels (ctr-8 or

• Visual-graph-options -> node labels -> use label preds for nodes)

• Important: you can add your own node labels..

• You can always see the full URL of a node left under the screen

• Double click on node to go to table view (or press t)

• Go directly to outline view from selected node (press o)

• Save a graph layout to disk (ctr-s)

• Load a graph layout (ctr-l)

• Graph layouts are simple text files and

can be shared

[4] Table View

IF YOU WANT TO SEE YOUR TRIPLES IN ATRADITIONAL

TEXTUAL TABLE (press t or double click a node)

• Navigate the data by clicking on ‘values’

• Above gray line: s p o (where s is the main node we
selected)

• Under gray line: o p s (note the ‘is’ predicate ‘of) to denote

the other direction

• Note how ‘8’ shows you full URLs of nodes
• Note how ‘Alt-8’ shows you how we use node-labels

• You can create triples in the table view, see manual…

[5] Outline View – press o

IF YOU HAVE DEEP HIERARCHICAL DATA AND YOU NEED TO RETAIN

THE CONTEXT WHILE NAVIGATING.

• Navigate the data by clicking on little arrows

• Blue: outgoing triples

• Black: triples pointing to previous level (note the ‘is’

… ‘of’ around the predicates

• Display:

• Note how ‘8’ shows you full URLs of nodes

• Note how ‘Alt-8’ shows you how we use node-labels

[6] Query View – press w

Write queries in SPARQL and Prolog – by writing code

• Use namespace abbreviations (b) to avoid typing

prefixes

• Turn output into Graph or CSV

• Managing queries

• Save queries (ctr-s)

• Load queries (ctr-l)

• Investigate menu … query options

• One can change the time limit..

[7] Visual Query Editor – press e

• Build queries visually – no code!

• Most things work like the graphical query view

• Search for freetext (press h)

• Right click on screen to create new variables

• Right click on variables to create new predicates with

drag and drop

• Multiple ways to choose names of predicates.. See

menus

[8] Discovery: using graph patterns on the

screen to build queries

• Create interesting patterns in the Graph view using

everything you learned so far

• Find a connection trail that you think is interesting

• Highlight each node in trail (ctr-left-click or ‘h’)

• Move highlighted nodes to query editor (ctr-alt-i)

• Change some variables manually or let Gruff find the

variable names for you

[9] Using Pictures for Nodes

[9] Using Pictures for Nodes

• Tell Gruff what predicate to use for pixmaps

• <jans> <pixmap> “pictureOfJans.ico”
• Global-options -> node label predicates -> custom predicates for node label

pixmaps.

• And tell Gruff the base location of your pixmaps

• You can use relative filenames

• You can use jpg png bmp ico
• Global-options->miscellaneous->document base folder

