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Abstract
The Unified Medical Language System (UMLS) is a set of files and software tools that brings together many health
and biomedical vocabularies and standards to enable interoperability between computer systems. Maintained by
the National Library of Medicine, UMLS includes over 3 million concepts and 11 million unique terms from over
200 vocabularies, including SNOMED CT, ICD-10, LOINC, MeSH, and RxNorm. The UMLS aims to facilitate the
development of computer-based systems that can effectively understand and use biomedical information from
various sources.

However, several authors have diagnosed significant problems with the predicate relationships in UMLS,
including inconsistencies, ambiguities, redundancies and, in the case of transitive relationships, cycles. This
last issue, cycles, became our concern when we attempted to search for clinical codes in transitive closures of
narrower UMLS concepts in an NQF (National Quality Forum) 1 query for early-onset diabetes quality metrics.

To address the challenges within UMLS, the study leverages a neuro-symbolic knowledge graph framework.
This innovative approach integrates logic-based semantic reasoning, classical machine learning, and Large
Language Models (LLMs) to clean the UMLS graph and eliminate cycles effectively. By validating existing
hierarchical and equivalence relations through this framework, the project successfully prunes a significant
number of cycles (66 %) from UMLS. This outcome demonstrates the potential of Neuro-symbolic AI in enhancing
the reliability and precision of biomedical information systems. A cleaned up UMLS saves time for data scientists
that can have more trust in the outcome of their queries and might even save lives by being more precise in
analytics underlying treatments.
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1. What is UMLS?

The Unified Medical Language System (UMLS) is a comprehensive and systematic effort initiated by the
National Library of Medicine (NLM) to integrate disparate biomedical terminologies and ontologies [1].
It serves as a unifying resource by mapping relationships and concepts across various vocabularies,
promoting semantic interoperability in the field of health analytics. UMLS knowledge sources underpin
a wide variety of consequential informatics research and applications. The UMLS Metathesaurus
(2020AA edition) now contains 4.28 million concepts and 15.5 million concept names (including some
in 25 different spoken languages) from 214 vocabulary sources; the Semantic Network has 127 types
and 54 relationships; the SPECIALIST Lexicon includes 983,420 lexical items; and there are many
associated lexical programs and tools. Seen in hindsight, some features that add complexity to the
UMLS Metathesaurus also make terminology data more FAIR (Findable, Accessible, Interoperable, and
Reusable).

At its core, the UMLS employs a Metathesaurus, a large, multi-terminology database that aligns
different biomedical vocabularies, such as MeSH, SNOMED CT, and LOINC. UMLS establishes associa-
tions between synonymous or related terms, enhancing the comprehension and retrieval of biomedical
information.

The UMLS currently helps thousands of system developers and researchers to overcome variations in
the way concepts are expressed, a task that remains critical to effective retrieval, analysis, aggregation,

1National Query Forum or NQF is a not-for-profit, nonpartisan, membership-based organization that works to improve
healthcare outcomes, safety, equity, and affordability.

NLP4KGC’24: International Workshop on Natural Language Processing for Knowledge Graph Creation, September 17–19, 2024,
Amsterdam, Netherlands



and semantically interoperable exchange of biomedical and health-related information and data. Use of
the UMLS resources underpins systems collectively used by millions of scientists, health professionals,
patients, and consumers—and by thousands of computer programs—every day.

2. Exposing Cycles with Synthea

Synthea is an open-source synthetic clinical data generator that simulates the medical history and
health status of patients in a population [2]. It is designed to support the development, testing, and
evaluation of health data analytics tools, models, and applications. Synthea generates synthetic patient
data that includes demographics, encounters, allergies, conditions, laboratory results, medications, and
claims. The realistic generated data represents a diverse patient population, making it useful for training
machine learning algorithms, testing healthcare applications, and conducting research.

Our project utilized Synthea to build a patient-centric knowledge graph composed of 10 million
patients in the state of California. The process was streamlined by AllegroGraph’s FedShard 1 feature
which was purpose-built to store instance data, such as EMR patient healthcare events, in combination
with large knowledge bases such as UMLS. FedShard facilitates having core entities of interest (e.g.
Patients) at the core with several layers of knowledge linked to the patient as ‘events’. The events
represent activities that transpire in a temporal context over their healthcare journey. By linking the
diagnosis and procedure codes in the Synthea patient data with the UMLS knowledge base, we now have
a Patient 360 Entity-Event Knowledge Graph (EEKG), that can predict patient outcomes and readily
scales through sharding and parallelization of queries [3].

Our challenge started when we assumed that the UMLS structure could facilitate queries such as
“Select all the patients with a more specific diagnosis than nervous system disorder (C0027765).“
Unexpectedly, the transitive closure of the narrower relation from the concept “nervous system disorder”
included some oddities such as “Heart failure”,“Burn Injury” and “Renal dysplasia”. Eventually we
diagnosed the problem to our assumption that the UMLS graph was acyclic, which led to our review of
previous literature and research on the causes of and prior attempts to audit and eliminate the cyclic
links in UMLS.

3. UMLS has many cycles

Errors and inconsistencies within UMLS are well documented. Even the Wikipedia article on UMLS [4]
says:

Given the size and complexity of the UMLS and its permissive policy on integrating terms,
errors are inevitable.

Errors include ambiguity and redundancy, hierarchical relationship cycles (a concept is both
an ancestor and descendant to another), missing ancestors (semantic types of parent and
child concepts are unrelated), and semantic inversion (the child/parent relationship with the
semantic types is not consistent with the concepts).

These errors are discovered and resolved by auditing the UMLS. Manual audits can be very
time-consuming and costly.

Our discussion is focused entirely on how we identified and resolved the problem of cycles using LLMs
in combination with our Patient Knowledge Graph. UMLS is intended to be a directed, acyclic graph,
but the existence of cycles invalidates this assumption. More significantly, cycles limit the usefulness
of UMLS in symbolic reasoning applications. Cycles can lead not only to nonsense conclusions, but
combinatorial explosion as well.
1AllegroGraph is a horizontally distributed, multi-model (document and graph), entity-event knowledge graph technology
solution from Franz Inc.[https://allegrograph.com/products/allegrograph/]. FedShard is a patented sharding and federation
feature of AllegroGraph.



Figure 1: A sample cycle found in UMLS. The predicate “narrower” followed through a series of concepts, returns
to the original concept. Such cycles make it difficult to use UMLS for automated deduction and reasoning.

4. Previous Work

Short of a labor-intensive audit of all hierarchical relationships in UMLS by expert medical ontologists,
the previous solutions include a special issue of Journal of Biomedical Informatics focused on structural
issues in the Unified Medical Language System (UMLS) [5]. The UMLS, designed by the National Library
of Medicine, integrates biomedical terminologies into a unified knowledge representation. The UMLS, a
complex knowledge base, resulted from collaborative efforts with external contributors. While much
research has focused on content-related aspects, the editorial emphasizes the importance of addressing
structural issues, including mathematical definitions and design considerations. The UMLS, with over
100 terminological sources, is a significant project, and the editorial directs readers to related research
and bibliographies for further exploration. Several authors have published papers about the problem
of inconsistencies and cycles in UMLS. They have proposed a variety of techniques to address the
problem. We can classify these techniques into 3 broad classes: Auditing and Visualization, Rule-Based
approaches, and Natural Language Processing.

4.1. Visualization and Auditing Tools

Perhaps the most sophisticated example, explored by Morrey et al. [6], is a graphical user interface
offering several different visualization options to explore the very large graph of UMLS relationships.

The paper by Bodenreider et al [7] explores visualization techniques for assessing a partition of the
Semantic Network (SN) they previously designed. Their methods reveal issues and confirm the validity
of certain groups in the partition.

The approach described in Halper et al [8] introduces a methodology for auditing cycles in the
parent relationship hierarchy of the UMLS. The goal is to identify and delete erroneous relationships
within cycles, rather than simply breaking the cycles by deleting parent relationships. The focus is
on cycles involving three concepts, and the paper presents hypotheses that suggest a high probability
of locating an erroneous parent relationship within a cycle. These hypotheses are confirmed with
statistical confidence, supporting the proposed auditing approach. The paper also suggests that cycles
can serve as indicators of other non-structural inconsistencies that are difficult to detect automatically.
An extensive auditing example is provided to illustrate how a cycle can reveal further inconsistencies.
Overall, the approach presents a systematic and focused method for auditing cycles in the UMLS parent



relationship hierarchy.

4.2. Rule-based Analysis

Geller et. al developed an automated technique to uncover inconsistent and suspicious relationships in
UMLS [9]. Cimino et al [10] explore inconsistencies in the correspondence between the hierarchies of
UMLS Metathesaurus and UMLS Semantic Network, revealing potential errors in either hierarchy or in
the assignment of concepts [10].

The approach described by Mougin et al [11] addresses the issue of inconsistencies in hierarchical
relations within the UMLS Metathesaurus. Previous work proposed a formal approach to identify and
eliminate circular hierarchical relations, resulting in a directed acyclic graph. However, this approach is
only partially automated and implementation is complex. An alternative approach suggested here is to
avoid loops by preventing nodes from being visited twice. The objective is to compare the effectiveness
of the formal approach in eliminating cycles versus the simpler approach of avoiding them. The study
found that 12% of concepts with descendants had differences between the two approaches, with the
formal approach significantly reducing the number of descendants in these cases. The benefits in terms
of semantic coherence are more nuanced and require further exploration.

4.3. Natural Language Processing

A few authors have reported natural language processing to improve UMLS. For example, the paper by
Rindflesch et al [12] addresses Natural Language Processing challenges in recognizing IS-A relationships
in biomedical texts. They demonstrate that combining underspecified syntactic analysis with UMLS
leads to effective processing in the area of Chemicals and Drugs.

5. Rationale Behind Using LLM to Prune Cycles

Our approach may be framed as a hybrid of rule-based (symbolic) and natural language processing by
Large Language Models (neural).

LLMs show remarkable textual reasoning capabilities including deductive reasoning which involves
recognizing relationships between concepts, structural or semantic. With the capability of LLMs
increasing rapidly, it can be a perfect tool to audit relationships between concepts. In this case, we are
interested in the ability of LLM to determine if a particular concept is a narrower or broader concept in
relation to a second concept. This is a perfect example of integration of neural and symbolic computation
to enable reasoning from data.

The LLM is prompted to basically answer whether concept A is a narrower subset of concept B and
generate a response of “yes” or “no”. Following quoted text is the actual prompt text submitted to an
LLM, which in this case is a GPT 3.5 model, to determine membership of “Congestive Heart Failure”
within “Heart Diseases” Concept:

“Does Congestive Heart Failure describe a narrower subset of Heart Diseases? Answer yes or
no ”

We can prompt LLM to answer and validate whether each of the relationships in the cycle represents
a valid hierarchical relationship between them. If the answer is “no” for a particular edge, that edge can
be removed to break the cycle.

6. Methodology

Neuro-symbolic AI represents an advanced approach in artificial intelligence that integrates the strengths
of neural networks (for handling unstructured data, learning from vast datasets, and adapting to
new information) with symbolic AI (for logical reasoning, understanding complex relationships, and



Figure 2: The 1-cycle between the concepts “Hearing Problem” and “Deafness” removed by the neuro-symbolic
process. The LLM provides evidence that Deafness is narrower than Hearing Problem, but not vice-versa, so we
remove one relation and remove the cycle. This removal has the side-effect also of breaking a longer 4-cycle.

processing structured data). This hybrid methodology is particularly relevant to the paper’s focus on
pruning cycles within the Unified Medical Language System (UMLS) to address issues of inconsistencies,
ambiguities, and redundancies. By leveraging a Neuro-symbolic framework, the paper illustrates how
combining machine learning, logical reasoning, and Large Language Models can effectively declutter
and validate the complex web of biomedical terminologies and relationships in UMLS.

For the purpose of this paper, we will be looking at the transitive closure of the narrower relationships
and using an LLM response to validate each of the relationships that form the cyclic narrower path
in the graph. Following bullets highlight the steps involved in setting up the UMLS knowledge graph,
counting cycles in the graph and then using a LLM in the mix to then mark the narrower relationships
that need to be deleted to break the cycles:

1. Convert UMLS to RDF triples and store them in Allegrograph.
2. Select 1404 MTH concepts exactly matching 1404 SNOMED codes found in Synthea data.
3. Starting with 1-cycles, explore the UMLS graph for cycles starting with the MTH concepts,

following all the ‘narrower’ links recursively. When a cycle is found, save all of its participating
triples with a graph-id unique to that cycle, associated with a property indicating the cycle length.

4. Keep count of the number of cycles graph-ids.
5. For each narrower edge in the cycle, from concept Y to concept X, construct LLM prompts of the

form “Does ‘X’ describe a narrower subset of ‘Y’? Answer yes or no.” and “Does ‘Y’ describe a
narrower subset of ‘X’? Answer yes or no.”

6. Using a SPARQL query, mark the edge for deletion when the answer to the first question is ‘Yes’
and the second one is ‘No.’

7. Remove the marked edges and re-run the procedure to count the number of cycles.
8. Repeat the process from step 2 by deleting edges from 2-cycles, 3-cycles and so on.

Following subsections elaborate more on the bullets above:



Figure 3: The nuances of counting cycles: cycles contain other cycles, cycles share relations with other cycles,
and cycles often have multiple paths from a node back to itself.

6.1. Building UMLS Knowledge Graph

UMLS Metathesaurus is a component of UMLS that contains concept mappings, definitions, hierarchical
relationships between concepts and also non-hierarchical semantic relationships between concepts as
well. As such, a Knowledge Graph built using the standards based Resource Description Framework
(RDF) representation of UMLS, such as AllegroGraph, is the optimal way to represent the network of
relationships within UMLS. This representation also helps us to easily explore the transitive closures
within the hierarchical relationships of UMLS.

To build the Knowledge Graph, we map UMLS metathesaurus to a SKOS (Simple Knowledge Organi-
zation System) ontology [13], which is a great fit for a concept-oriented vocabulary like UMLS. As of
2023AA release of UMLS, our Knowledge Graph has 3 million plus concepts in the core metathesaurus
source and over 7 million concepts from other component sources like ICD10 and SNOMED. Of im-
portant note because we are using RDF, these concepts could be loaded as SKOS concepts in a SKOS
scheme corresponding to the original source.

This approach is primarily based on the earlier work of P. Mirhaji at the University of Texas, Houston
[14]. Following bullets highlight the method of creation of a UMLS SKOS knowledge graph according
to this method:

1. UMLS concepts become SKOS concept with skos:prefLabel set to Metathesaurus preferred term
of the concept.

2. PAR/CHD and "RB"/"RN" relationships from UMLS Metathesaurus are interpreted as SKOS:broader
and SKOS:narrower relationships respectively.

3. UMLS semantic network types are used as a rdfs:type for concepts.
4. Concept matches and related concepts across SKOS schemes are connected using the

SKOS:exactMatch and SKOS:relatedMatch predicates respectively.

The SKOS representation of UMLS not only makes the UMLS datasets FAIR (Findable, Accessible,
Interoperable and Reusable) but also forms a baseline knowledge graph that can be enriched through
other related data sources for any other specific use-cases.

6.2. Counting Cycles

What counts as a cycle? A→B→C→A is the same as the cycles B→C→A→B and C→A→B→C. UMLS
has many cycles, but most of them are 1-cycles of the form A→B→A.



Many cycles contain other cycles as subcycles. The algorithm for counting cycles is depth-first search.
It’s difficult to optimize because even a node that has been ‘visited’ may still be explored when another
path passes through it. To ensure the accuracy of our results we applied a full brute-force depth-first
search for cycles, without optimizations, because we prioritized accuracy of the count over efficiency of
the counting procedure. A lot of longer cycles contain 1-cycles as subcycles

6.3. SPARQL Query

The basic idea in step 3 above is to audit all the triples that belong to cycles, and save a new triple with
same form as the first,
?y skos:narrower ?x.
but save it with unique graph-id so that we can count it and retrieve the cycle length of a cycle length

for triples in the graph ?g with
?g <http://franz.com/cycleLength> ?length.
Following SPARQL query implements validation of 2-cycles in step 5 and also uses the LLM inte-

grations available in AllegroGraph to query GPT models for “Yes” or “No” answers to the validation
question in step 4 2:

PREFIX llm: <http://franz.com/ns/allegrograph/8.0.0/llm/>
PREFIX franzOption_openaiApiKey: <franz:sk-U01ABc2defGHIJKlmnOpQ3RstvVWxyZABcD4eFG5jiJKlmno>

INSERT { graph ?g {?y <http://franz.com/toBeDeleted> ?x.
?x <http://franz.com/xPrompt> ?xPrompt.
?y <http://franz.com/yPrompt> ?yPrompt.
?x <http://franz.com/xResponse> ?xResponse.
?y <http://franz.com/yResponse> ?yResponse.
}

} WHERE {
{SELECT ?x ?y ?g {
graph ?g {
?y skos:narrower ?x.
?g <http://franz.com/cycleLength> 2.
}
FILTER NOT EXISTS {?y <http://franz.com/toBeDeleted> ?x}

} ORDER BY RAND() LIMIT 100}
?x rdfs:label ?xlabel.
?y rdfs:label ?ylabel.
bind(concat("Define ",?xlabel,": ") as ?xdefPrompt).
bind(concat("Define ",?ylabel,": ") as ?ydefPrompt).
bind(concat(
"Does ’",
?xlabel,
"’ describe a narrower subset of ’",
?ylabel,
"’? Answer yes or no.") as ?xPrompt).

bind(concat(
"Does ’",
?ylabel,
"’ describe a narrower subset of ’",
?xlabel,
"’? Answer yes or no.") as ?yPrompt).
bind(llm:response(?xPrompt) as ?xResponse).
bind(llm:response(?yPrompt) as ?yResponse).
FILTER (strstarts(lcase(str(?xResponse)), "no"))
FILTER (strstarts(lcase(str(?yResponse)), "yes"))

}

2AllegroGraph 8.0.0 release has new features that integrate LLM features right into SPARQL queries through its flagship magic
predicates, which enable extension of SPARQL predicates to support custom functions like LLM prompting for example.
[https://franz.com/agraph/support/documentation/8.0.0/llm.html]



7. Result

Following table represents the reduction in cycles over successive execution of the SPARQL INSERT
query above for various cycle lengths up to length 6.

Cycle Length Original UMLS Removed 2985 1-
cycles

Removed 477
2-cycles

Removed 99
3-cycles

1 6014 3009 2882 2866
2 2582 1535 958 956
3 1903 963 637 522
4 1886 743 493 370
5 1796 719 476 235
6 1715 579 427 262
Total Cycles 15896 7548 5873 5211

We can make following observations based on the results table:

1. The SPARQL query is run successively for cycles of lengths from 1 to 6
2. We also notice on the first run we have the biggest reduction of 1-cycles but it also removes cycles

of longer length in the process. We hypothesize that the removal of longer cycles makes some of
the shorter cycles unreachable.

3. Ultimately with this approach we see a 67% reduction in cycles of length up to 6 in UMLS.

8. Conclusion

We used an LLM model to validate the transitive closure of the narrower relationships in the UMLS
knowledge graph particularly with the aim to weed out cycles within the graph. We use AllegroGraph’s
latest integration of LLM features within a SPARQL query through magic predicates to validate narrower
relationships within cycles of length up to 6 cycle lengths. Applying the validation results, we can
prune the graph to make it more consistent. This process removed the number of cycles in our sample
by 2/3 from almost 16,000 to just over 5,000.

This Neuro-symbolic AI pruning approach leverages the strengths of logic-based semantic reasoning,
classical machine learning, and Large Language Models (LLMs) to declutter the UMLS graph by pruning
a significant number of cycles. Specifically, the methodology combines the generation of synthetic
patient data using Synthea, the construction of a patient-centric Knowledge Graph, and the utilization
of LLMs to audit and validate hierarchical and equivalence relationships within UMLS. This results in a
more reliable and precise system that could enhance data analytics in healthcare, potentially leading to
better patient outcomes.

In healthcare applications, this methodology addresses a critical challenge: ensuring that the complex
network of medical terminology and relationships within UMLS is accurate and free from logical
inconsistencies. By successfully pruning cycles from UMLS, this approach not only improves the
efficiency and trustworthiness of data queries within the system but also contributes to the broader
goal of enhancing healthcare analytics and patient care through better data integrity and semantic
interoperability.

9. Future Work

Future efforts on this topic shall focus on following areas:

1. Quantitative evaluation of how well the cycle deletions worked through evaluation of false
positives and false negatives and other relevant metrics.

2. Apply the process to all narrower and broader edges in UMLS.
3. Apply the methodology to more broader types of relationships that form a transitive closure,

semantic or otherwise.
4. Look into which other UMLS relationships can be validated with LLMs.



Figure 4: Complete Example illustrating the correction of deductive reasoning by breaking a cycle in UMLS.
Initially the concept “Congestive Heart Failure” is, by transitivity, a narrower concept than “Nervous System
Disorder”. By removing a single 1-cycle, the inconsistency disappears and the network becomes suitable for
symbolic reasoning.
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