
DB-Engines  article  –
Enriching  Property  Graphs
with Relationship Objects
In  many  graph  database  applications  we  find  that  a  link
between two nodes is quite complex.  Conventional property
graph  databases  try  to  manage  the  complexity  by  putting
properties on the edges between nodes, but this technique has
significant limitations.  To overcome the limitations, this
article introduces the relationship objects pattern.

A Classic Property Graph Scenario
Suppose we are creating a large graph database that contains
information about payments between companies. A graph database
analyst might start off modeling the payments as shown in
Figure 1, which expresses who paid whom. (All graph figures in
this article were produced using Gruff, a tool for visualizing
graph  databases,  operating  over  the  AllegroGraph  graph
database system.)

This seems straightforward enough. Now suppose that we want to
record more information about payments, such as the amount of
the payment, the means of payment (direct debit, e-check,
wire, etc.), the date and time when the payment occurred, and
so forth. A traditional property graph approach places these
properties  on  the  edge  that  connects  the  payor  and  payee
nodes, as shown in Figure 2.

https://allegrograph.com/articles/db-engines-article-enriching-property-graphs-with-relationship-objects/
https://allegrograph.com/articles/db-engines-article-enriching-property-graphs-with-relationship-objects/
https://allegrograph.com/articles/db-engines-article-enriching-property-graphs-with-relationship-objects/
https://allegrograph.com/gruff/
https://db-engines.com/en/system/AllegroGraph


Optimizing Visualization
This technique of loading up a graph’s edges with properties
is certainly useful, but it has some notable limitations at
large scale. When a payments analyst wishes to explore the
graph with visual graph display tools, it becomes onerous to
visually  navigate  a  graph  with  many  payments  due  to  the
clutter that large numbers of property values produce.

Such difficulty is one reason for refactoring the edge between
the payor and payee into a node that we call a relationship
object. In Figure 3, the payment relationship object serves as
a visualization refinement, as it displays multiple property
values in one node, via a label for the node that summarizes
the values. Experience has shown that analysts who visually
navigate graph databases find the relationship objects pattern
provides  substantial  relief  from  the  otherwise  cluttered
display.



Addressing Search Issues
At this point, however, the reader might be wondering whether,
in  providing  this  optimization  for  visualization,  we  have
sacrificed ease and efficiency of conducting searches. Such
concern  is  justified;  eliminating  the  individual  property
representations and the payment edge that directly connects
the payor and payee makes queries more convoluted and carries
a performance penalty. To address this issue, there are two
additional  aspects  to  the  relationship  objects  pattern:
preserving  individual  properties  and  constructing  a  super
graph.

Preserving Individual Properties
Typically when we use the relationship objects pattern we also
model each of the individual properties of the relationship,
and we attach the property values directly to the relationship
object (see Figure 4). If the individual property values were
not in the graph, it would be awkward to search for payments
by their properties using query languages such as SPARQL; we
would  have  to  search  through  the  display  label  of  the
relationship node, which would be a suboptimal way to query.

Note, though, that in most visualization scenarios we omit the



individual  property  representations  from  the  display.  
Otherwise we would still have the problem of overly cluttered
graph displays.

Note also that, since we retain the individual properties in
the  graph,  graph  database  tools  that  understand  the
relationship objects pattern can generate the summary label
for the relationship object.

Constructing a Super Graph
The other aspect of the relationship objects pattern that
addresses  the  search  issues  is  that  we  construct  a  super
graph,  which  consists  of  edges  that  correspond  to  the
relationship  objects  and  link  the  parties  directly.

In Figure 5, the direct edge labeled “Strong Payment Link” is
part of the super graph. The edges of the super graph enable
us to query for payments via the direct edge without the
complication  and  performance  hit  of  querying  over  the
relationship object and its Payor and Payee properties.



We can define the direct edges of the super graph explicitly
as part of the modeling process. However, in many cases it is
preferable to generate the direct edges algorithmically to add
them to the graph; for instance, for a semantic graph database
we can use SPARQL to generate the super graph from the payment
relationship objects.

It can also be useful to generate direct edges that connect
nodes whose logical connection to each other in the graph
database is weaker. Figure 6 depicts a scenario in which the
two parties did not pay each other directly, but nevertheless
may be connected to the payment indirectly because at the time
of the payment they each shared the same nine-digit US postal
code with one of the parties to the payment. (This example
assumes that full addresses for the parties are not available
in the database.)

We call direct edges generated from these weaker connections
weak links.  By contrast, the generated edge connecting the
payor and payee in our example is a strong link because, in
the graph from which the edge is generated, the relationship
object  has  already  explicitly  asserted  the  logical
relationship. The super graph includes both strong and weak
links.

As is the case with strong links, in semantic graph databases



we can use SPARQL to generate weak links.

Note also that, in cases where a party has made multiple
payments to another party, we generate only one strong payment
link between the parties. Thus the super graph condenses the
data and makes it faster to find direct payment connections
between parties. We do the same with weak links.

Applying  the  Relationship  Objects
Pattern
Imagine  that  we  are  a  government  agency  or  financial



institution that wants to use the payments graph database to
investigate various forms of fraudulent financial activities.
We can use the strong links – that is, the direct edges that
correspond to the relationship objects – to query our payments
graph  to  reveal  payments  between  two  parties,  where  the
payment is direct.

Querying  over  the  “Strong  Payment  Link”  edge  would,  for
instance, identify the Acme-to-Smith payment direct edge of
our example. Then we can interactively ask a graph database
visualization tool that has the requisite capabilities to show
us  other  nodes  connected  to  Acme  Consulting  and  Smith
Electronics, which reveals the relationship object with its
detailed data. We call this process of displaying relationship
objects after querying the super graph rehydration. In cases
where  a  strong  payment  link  represents  multiple  payments,
rehydration  reveals  the  detailed  information  about  each
payment.

Querying  over  strong  links,  followed  by  rehydration,  can
reveal  important  information  for  investigators.  However,
uncovering  fraudulent  activities  often  requires  finding
connections among companies that fraudsters seek to obscure.
By generating weak links and then querying over them, we can
detect that certain parties not directly involved with each
other in a payment may in fact be involved behind the scenes,
and  we  can  flag  such  payments  and  parties  for  possible
investigation. The weak payment link of our example, derived
from the co-occurrence of postal codes, would not in itself be
sufficient to warrant an investigation of the payment, but may
be one part of a puzzle that investigators piece together,
using additional weak and strong links.

More Reasons for Using Relationship



Objects
Thus far we have focused on the need to optimize visualization
as a rationale for using relationship objects. However, there
are additional reasons to employ them.

Complex Relationship Properties
In conventional property graphs, properties attached to edges
can only be of simple scalar data types, such as string,
integer, date, and so on, which is a problem if the property
itself is complex.

For instance, what if whenever we flag a payment as suspicious
we assign an investigator to it? Assume that we model that as
an investigator property of the payment. If we want the value
of that property to be more than a string such as “Mary Jones”
– that is if we want the value to be a first class Mary
Johnson  node  that  could  have  its  own  properties  and
participate in other relationships – a conventional property
graph would hit a wall. But if the payment is modeled as a
relationship object, which is a first class node in its own
right, then this is no problem.

Figure 7 shows the scenario where a first class Mary Johnson
node participates in the Supervisor relationship. (Note that
the Investigator property could be added to the label for the
Payment relationship object, and the Supervisor relationship
could be refactored into a relationship object.)



N-Ary Relationships
Suppose that we wanted to model a joint venture in which two
companies invest in a third company. A conventional property
graph as in Figure 8 is insufficiently expressive to model the
venture properly, because it does not capture the fact that
the two investments are part of a joint effort, and the graph
cannot define properties of the venture itself. The joint
venture  relationship  object  in  Figure  9  addresses  this
limitation.



The joint venture scenario is a case where, regardless of
visualization factors, a relationship object is required to
express what needs to be expressed. The limitation of the
conventional property graph of Figure 8 is that it only models
two disconnected binary relationships. The joint venture is by
nature  what  some  modelers  call  an  n-ary  relationship,
signifying  that  it  is  a  relationship  among  more  than  two
things. In general, n-ary relationships have to be modeled as
relationship objects.

Conclusion
In some cases relationship objects are mandatory to logically
model the scenario at hand, but even in cases where they are
not necessary from a logical standpoint they are very useful
to  optimize  the  visual  display  of  complex  relationships.
Relationship  objects  make  it  far  more  straightforward  to
interactively explore large graph spaces in an aesthetically
pleasing and effective way using advanced graph visualization
tools.

At  the  same  time,  relationship  objects  do  not  sacrifice
efficiency of search, because the super graph that we generate
provides  direct  connections  between  the  parties  to  a
relationship  so  that  even  in  graphs  with  large  branching



factors we still can perform very fast search.

There are many additional applications of relationship objects
in  finance,  biotech,  medicine,  transportation,  and  more.
Whenever graph databases rise to an industrial scale, the
relationships objects pattern is found to be useful.

About the Author:    Jans Aasman is Ph.D. psychologist and expert in the Cognitive Science –

as well as CEO of Franz.com, an early innovator in Artificial Intelligence and provider of

Semantic Graph Databases and Analytics.  As both a scientist and CEO, Dr. Aasman continues to

break ground in the areas of Artificial Intelligence and Semantic Databases as he works hand-

in-hand with organizations such as Montefiore Medical Center, Blue Cross/Blue Shield, Siemens,

Merck, Pfizer, Wells Fargo, BAE Systems as well as US and Foreign governments.

Dr. Aasman is a frequent speaker within the Semantic technology industry and has authored

multiple research papers, bylines and is one of 15 CEOs interviewed in a new book, “Startup

Best Practices”.

Dr. Aasman spent a large part of his professional life in telecommunications research,

specializing in applied Artificial Intelligence projects and intelligent user interfaces. He

gathered  patents  in  the  areas  of  speech  technology,  multimodal  user  interaction,

recommendation engines while developing precursor technology for the iPad and Siri from 1995

to 2004.  He was also a part-time professor in the Industrial Design department of the

Technical University of Delft.

 

https://franz.com/

