
Comex AI Conference 2021
(Recording)
COMEX is the largest Technology, Communications, Innovation
and Digital Transformation show in the Sultanate of Oman and
offers exhibitors and visitors a comprehensive and highly
specialized platform for industry leading discussions,
knowledge-sharing, B2B meetings.

Dr. Sheng-Chuan Wu presented – Using AI for Practical Business
Applications

Adding Properties to Triples
in AllegroGraph
AllegroGraph provides two ways to add metadata to triples. The
first one is very similar to what typical property graph
databases provide: we use the named graph of triples to store
meta data about that triple. The second approach is what we
have termed triple attributes. An attribute is a key/value
pair associated with an individual triple. Each triple can
have any number of attributes. This approach, which is built
into AllegroGraph’s storage layer, is especially handy for
security and bookkeeping purposes. Most of this article will
discuss triple attributes but first we quickly discuss the
named graph (i.e. fourth element or quad) approach.

1.0 The Named Graph for Properties

Semantic Graph Databases are actually defined by the W3C
standard to store RDF as ‘Quads’ (Named Graph, Subject,

https://allegrograph.com/comex-ai-conference-2021-recording/
https://allegrograph.com/comex-ai-conference-2021-recording/
https://comex.om/2020/
https://comex.om/2020/
https://allegrograph.com/adding-properties-to-triples-in-allegrograph/
https://allegrograph.com/adding-properties-to-triples-in-allegrograph/
https://franz.com/agraph/support/documentation/current/agraph-introduction.html
https://franz.com/agraph/support/documentation/current/triple-attributes.html

Predicate, and Object). The ‘Triple Store’ terminology has
stuck even though the industry has moved on to storing
quads. We believe using the named graph approach to store
metadata about triples is richer model that the property graph
database method.

The best way to understand this is to give an example. Below
we see two statements about Bruce weighing 105 kilos. The
triple portions (subject, predicate, object) are identical but
the named graphs (fourth elements) differ. They are used to
provide additional information about the triples. The graph
values are S1 and S2. By looking at these graphs we see that

The author of the first triple (with graph S1) is Sophia
and the author of the second (with graph S2) is Bruce
(who is also the subject of the two triples).
Sophia is 100% certain about her statement while Bruce
is only 10% certain about his.

Using the named graph we can do even more than a property
graph database, as the value of a graph can itself be a node,
and is the subject of various triples which specify the
original triple’s author, date, and certainty. Additional
triples tell us the ages of the authors and the fact that the
authors are married.

Here is the data displayed in Gruff, AllegroGraph’s associated
triple store browser:

Using named graphs for a triple’s metadata is a powerful tool
but it does have limitations: (1) only one graph value can be
associated with a triple, (2) it can be important that
metadata is stored directly and physically with the triple
(with named graphs, the actual metadata is usually stored in
additional triples with the graph as the subject, as in the
example above), and (3) named graphs have competing uses and

may not be available for metadata.

2.0 The Triple Attributes approach

AllegroGraph uniquely offers a mechanism called triple
attributes where a collection of user defined key/value pairs
can be stored with each individual triple. The advantage of
this approach is manyfold, but the original use case was
designed for triple level security for an Intelligence agency.

By having triple attributes physically connected to the
triples in the storage layer we can provide a very powerful
and flexible mechanism to protect triples at the lowest
possible level in AllegroGraph’s architecture. Our first
example below shows this use case in great detail. Other use
cases are for example to add weights or costs to triples, to
be used in graph algorithms. Or we can add a recorded time or
expiration times to a triple and use that to provide a time
machine in AllegroGraph or do automatic clean-up of old data.

Example with Attributes:

 Subject – <http://dbpedia.org/resource/Arif_Babayev>
 Predicate – <http://dbpedia.org/property/placeOfDeath>
 Object – <http://dbpedia.org/resource/Baku>
 Named Graph – <http://ex#trans@@1142684573200001>
 Triple Attributes – {“securityLevel”: “high”,
“department”: “hr”, “accessToken”: [“E”, “D”]}

This article provides an initial introduction to attributes
and the associated concept of static filters, showing how they
are set up and used. We start with a security example which
also describes the basics of adding attributes to triples and

filtering query results based on attribute values. Then we
discuss other potential uses of attributes.

2.1 Triple Attribute Basics: a Security Example

One important purpose of attributes, when they were added as a
feature, was to allow for very fine triple-level security, so
that triples would be visible or invisible to users according
to the attributes of the triples and the permissions
associated with the query being posed by the user.

Note that users as such do not have attributes. Instead,
attribute values are assigned when a query is posed. This is
an important point: it is natural to think that there can be
an attribute SECURITY-LEVEL, and a triple can have attribute
SECURITY-LEVEL=3, and USER1 can have an attribute SECURITY-
LEVEL=2 and USER2 can have an attribute SECURITY-LEVEL=4, and
the system can require that the user SECURITY-LEVEL attribute
must be greater than the triple SECURITY-LEVEL for the triple
to be visible to the user. But that is not how attributes
work. The triples can have the attribute SECURITY-LEVEL=2 but
users do not have attributes. Instead, the filter is made part
of the query.

Here is a simple example. We define attributes and static
attribute filters using AGWebView. We have a repository named
repo. Here is a portion of its AGWebView page:

The red arrow points to the commands of interest: Manage
attribute definitions and Set static attribute filter. We
click on Set static attribute filter to define an attribute.
We have filled in the attribute information (name security-
level, minimum and maximum number allowed per triple, allowed
values, and whether order or not (yes in our case):

We click Save and the attribute is defined:

Then we define a filter (on the Set static attribute filter
page):

We defined the filter (attribute-set> user.security-level
triple.security-level) and clicked Save (the definition
appears in both the Edit and the Current fields). The filter
says that the “user” security level must be greater than the
triple security level. We put “user” in quotes because the
user security level is specified as part of the query, and has
no direct connection to any specific user.

Here are some triples in a nqx file fr.nqx. The first triple
has no attributes and the other three each has a security-
level attribute value.

 <http://www.franz.com#emp0>

<http://www.franz.com#position> “intern” .

 <http://www.franz.com#emp1>
<http://www.franz.com#position> “worker” {“security-level”:
“2”} .

 <http://www.franz.com#emp2>
<http://www.franz.com#position> “manager” {“security-level”:
“3”} .

 <http://www.franz.com#emp3>
<http://www.franz.com#position> “boss” {“security-level”: “4”}
.

We load this file into a repository which has the security-
level attribute defined as above and the static filter
mentioned above also defined. (Triples with attributes can
also be entered directly when using AGWebView with the Import
RDF from a text area input command).

Once the triples are loaded, we click View triples in
AGWebView and we see no triples:

This result is often surprising to users just beginning to
work with attributes and filters, who may expect the first
triple, abbreviated to [emp0 position intern], to be visible,
but the system is doing what it is supposed to do. It will
only show triples where the security-level of the user posing
the query is greater than the security level of the triple.
The user has no security level and so the comparison fails,
even with triples that have no security-level attribute value.
We will describe below how to ensure you can see triples with
no attributes.

So we need to specify an attribute value to the user posing
the query. (As said above, users do not themselves have
attribute values. But the attribute value of a user posing a
query can be specified as part of the query.) “User”
attributes are specified with a prefix like the following:

 prefix franzOption_userAttributes: <franz:%7B%22security-

level%22%3A%223%22%7D>

so the query should be

 prefix franzOption_userAttributes: <franz:%7B%22security-
level%22%3A%223%22%7D>

 select ?s ?p ?o { ?s ?p ?o . }

We will show the results below, but first what are all the %
signs and numbers doing there? Why isn’t the prefix just
prefix franzOption_userAttributes: <franz:{“security-
level”:”3″}>? The issue is that {“security-level”:”3″} won’t
read correctly. It must be URL encoded. We do this by going to
https://www.urlencoder.org/ (there are other websites that do
this as well) and put {“security-level”:”3″} in the first box,
click Encode and get %7B%22security-level%22%3A%223%22%7D. We
then paste that into the query, as shown above.

When we try that query in AGWebView, we get one result:

If we encode {“security-level”:”5″} to get the query

prefix franzOption_userAttributes: <franz:%7B%22security-
level%22%3A%225%22%7D>
select ?s ?p ?o { ?s ?p ?o . }

we get three results:

 emp3 position “boss”
 emp2 position “manager”
 emp1 position “worker”

since now the “user” security-level is greater than that of
any triples with a security-level attribute. But what about

the triple with subject emp0, the triple with no attributes?
It does not pass the filter which required that the user
attribute be greater than the triple attribute. Since the
triple has no attribute value so the comparison failed.

Let us redefine the filter to:

(or (attribute-set> user.security-level triple.security-level)
 (empty triple.security-level))

Now a triple will pass the filter if either (1) the “user”
security-level is greater than the triple security-level or

(2) the triple does not have a security-level attribute. Now
the query from above where the user has attribute security-
level:”5” will show all the triples with security-level less
than 5 and with no attributes at all. That happens to be all
four triples so far defined:

The triple

 emp0 position “intern”

will now appears as a result in any query where it satisfies
the SPARQL select regardless of the security-level of the

“user”.

It would be a useful feature that we could associate
attributes with actual users. However, this is not as simple
as it sounds. Attributes are features of repositories. If I
have a REPO1 repository, it can have a bunch of defined
attributes and filters but my REPO2 may know nothing about
them and its triples may not have any attributes at all, and
no attributes are defined, and (as a result) no filters. But
users are not repository-linked objects. While a repository
can be made read-only or unreadable for a user, users do not
have finer repository features. So an interface for providing
users with attributes, since it would only make sense on a
per-repository basis, requires a complicated interface. That
is not yet implemented (though we are considering how it can
be done).

Instead, users can have specific prefixes associated with them
and that prefix and be included in any query made by the user.

But if all it takes to specify “user” attributes is to put the
right line at the top of your SPARQL query, that does not seem
to provide much security. There is a feature for users “Allow
user attributes via SPARQL PREFIX franzOption_userAttributes”
which can restrict a user’s ability to specify “user”
attributes in a query, but that is a rather blunt instrument.
Instead, the model is that most users (outside of trusted
administrators) are not actually allowed to pose SPARQL
queries directly. Instead, there is an intermediary program
which takes the query a user requests and, having determined
the status of the user and what attribute values should be
given to the user, modifies the query with the appropriate
franzOption_userAttributes prefixes and then sends the query
on to the server, following which it captures the results and

sends them back to the requesting user. That intermediate
program will store the prefix suitable for a user and thus
associate “user” attributes with specific users.

2.2 Using attributes as additional data

Although triple security is one powerful use of attributes,
security is far from the only use. Just as the named graph can
serve as additional data, so can attributes. SPARQL queries
can use attribute values just as static filters can filter out
triples before displaying them. Let us take a simple example:
the attribute timeAdded. Every triple we add will have a
timeAdded attribute value which will be a string whose
contents are a datetime value, such as “2017-09-11T:15:52”. We
define the attribute:

Now let us define some triples:

 <http://www.franz.com#emp0>
<http://www.franz.com#callRank> “2” {“timeAdded”:
“2019-01-12T10:12:45” } .
 <http://www.franz.com#emp0>
<http://www.franz.com#callRank> “1” {“timeAdded”:
“2019-01-14T14:16:12” } .
 <http://www.franz.com#emp0>
<http://www.franz.com#callRank> “3” {“timeAdded”:
“2019-01-11T11:15:52” } .

 <http://www.franz.com#emp1>
<http://www.franz.com#callRank> “5” {“timeAdded”:
“2019-01-13T11:03:22” } .
 <http://www.franz.com#emp0>
<http://www.franz.com#callRank> “2” {“timeAdded”:
“2019-01-13T09:03:22” } .

We have a call center with employees making calls. Each call
has a ranking from 1 to 5, with 1 the lowest and 5 the
highest. We have data on five calls, four from emp0 and one
from emp1. Each triples has a timeAdded attribute with a
string containing a dateTime value. We load these into a empty
repository named at-test where the timeAdded attribute is
defined as above:

SPARQL queries can use the attribute magic properties (see
https://franz.com/agraph/support/documentation/current/triple-
attributes.html#Querying-Attributes-using-SPARQL). We use the
attributesNameValue magic property to see the subject, object,
and attribute value:

 select ?s ?o ?value {
 (?ta ?value)

https://franz.com/agraph/support/documentation/current/triple-attributes.html#Querying-Attributes-using-SPARQL
https://franz.com/agraph/support/documentation/current/triple-attributes.html#Querying-Attributes-using-SPARQL

<http://franz.com/ns/allegrograph/6.2.0/attributesNameValue>
 (?s ?p ?o) .
 }

But we are really interested just in emp0 and we would like to
see the results ordered by time, that is by the attribute
value, so we restrict the query to emp0 as the subject and
order the results:

 select ?o ?value {
 (?ta ?value)

<http://franz.com/ns/allegrograph/6.2.0/attributesNameValue>
 (<http://www.franz.com#emp0> ?p ?o) .
 } order by ?value

There are the results for emp0, who is clearly having
difficulties because the call rankings have been steadily
falling over time.

Another example using timeAdded is employee salary data. In
the Human Resources data, the salary of an employee is stored:

 emp0 hasSalary 50000

Now emp0 gets a raise to 55000. So we delete the triple above
and add the triple

 emp0 hasSalary 55000

But that is not satisfactory because we have lost the salary

history. If the boss asks “How much was emp0 paid initially?”
we cannot answer. There are various solutions. We could define
a salary change object, with predicates effectiveDate,
previousSalary, newSalary, and so on:

 salaryChange017 forEmployee emp0
 salaryChange017 effectiveDate “2019-01-12T10:12:45”
 salaryChange017 oldSalary “50000”
 salaryChange017 newSalary “55000”

 emp0 hasSalaryChange salaryChange017

and that would work fine, but perhaps it is more setup and
effort than is needed. Suppose we just have hasSalary triples
each with a timeAdded attribute. Then the current salary is
the latest one and the history is the ordered list. Here that
idea is worked out:

<http://www.franz.com#emp0> <http://www.franz.com#hasSalary>
“50000”^^<http://www.w3.org/2001/XMLSchema#integer>
{“timeAdded”: “2017-01-12T10:12:45” } .
<http://www.franz.com#emp0> <http://www.franz.com#hasSalary>
“55000”^^<http://www.w3.org/2001/XMLSchema#integer>
{“timeAdded”: “2019-03-17T12:00:00” } .

What is the current salary? A simple SPARQL query tells us:

 select ?o ?value {
 (?ta ?value)

<http://franz.com/ns/allegrograph/6.2.0/attributesNameValue>
 (<http://www.franz.com#emp0>
<http://www.franz.com#hasSalary> ?o) .
 } order by desc(?value) limit 1

The salary history is provided by the same query without the
LIMIT:

 select ?o ?value {
 (?ta ?value)

<http://franz.com/ns/allegrograph/6.2.0/attributesNameValue>

 (<http://www.franz.com#emp0>
<http://www.franz.com#hasSalary> ?o) .
 } order by desc(?value)

This method of storing salary data may not easily support more
complex questions which might be easily answered if we went
the salaryChange object route mentioned above but if you are
not looking to ask those questions, you should not do the
extra work (and the risk of data errors) required.

You could use the graph of each triple for the timeAdded. All
the examples above would work with minor tweaks. But there are
many uses for the named graph of a triple. Attributes are
available and using them for one purpose does not restrict
their use for other purposes.

Unraveling the Quandary of
Access Layer versus Storage
Layer Security
InfoSecurity – February 2019

Dr. Jans Aasman was quoted in this article about how
AllegroGraph’s Triple Attributes provide Storage Layer
Security.

With horizontal standards such as the General Data Protection
Regulation (GDPR) and vertical mandates like the Fair Credit
Reporting Act increasing in scope and number, information
security is impacted by regulatory compliance more than ever.

Organizations frequently decide between concentrating
protection at the access layer via role-based security
filtering, or at the storage layer with methods like
encryption, masking, and tokenization.

The argument is that the former underpins data governance
policy and regulatory compliance by restricting data access
according to department or organizational role. However, the
latter’s perceived as providing more granular security
implemented at the data layer.

A hybrid of access based security and security at the data
layer—implemented by triple attributes—can counteract the
weakness of each approach with the other’s strength,
resulting in information security that Franz CEO Jans Aasman
characterized as “fine-grained and flexible enough” for any
regulatory requirements or security model.

https://allegrograph.com/unraveling-the-quandary-of-access-layer-versus-storage-layer-security/
https://allegrograph.com/unraveling-the-quandary-of-access-layer-versus-storage-layer-security/
https://allegrograph.com/unraveling-the-quandary-of-access-layer-versus-storage-layer-security/
https://franz.com/agraph/support/documentation/current/triple-attributes.html
https://franz.com/

The security provided by this semantic technology is
considerably enhanced by the addition of key-value pairs as
JSON objects, which can be arbitrarily assigned to triples
within databases. These key-value pairs provide a second
security mechanism “embedded in the storage, so you cannot
cheat,” Aasman remarked.

When implementing HIPPA standards with triple attributes,
“even if you’re a doctor, you can only see a patient record
if all your other attributes are okay,” Aasman mentioned.

“We’re talking about a very flexible mechanism where we can
add any combination of key-value pairs to any triples, and
have a very flexible language to specify how to use that to
create flexible security models,” Aasman said.

Read the full article at InfoSecurity.

Solving Knowledge Graph Data
Prep with Standards
Dataversity – December 2018

There’s a general consensus throughout the data ecosystem that
Data Preparation is the most substantial barrier to
capitalizing on data-driven processes. Whether organizations
are embarking on Data Science initiatives or simply feeding

https://www.pcmag.com/encyclopedia/term/45782/key-value-pair
https://www.infosecurity-magazine.com/opinions/access-storage-layer-security/
https://allegrograph.com/solving-knowledge-graph-data-prep-with-standards/
https://allegrograph.com/solving-knowledge-graph-data-prep-with-standards/

any assortment of enterprise applications, the cleansing,
classifying, mapping, modeling, transforming, and integrating
of data is the most time honored (and time consuming) aspect
of this process.

Approximately 80 percent of the work of data scientists is
mired in Data Preparation, leaving roughly 20 percent of their
jobs to actually exploiting data. Moreover, the contemporary
focus on external sources, Big Data, social and mobile
technologies has exploded the presence of semi-structured and
unstructured data, which accounts for nearly 80 percent of
today’s data and further slows the preparation processes.

Read the full article at Dataversity.

The Most Secure Graph
Database Available
Triples offer a way of describing model elements and relationships
between them. In come cases, however, it is also convenient to be
able to store data that is associated with a triple as a whole
rather than with a particular element. For instance one might wish
to record the source from which a triple has been imported or
access level necessary to include it in query results. Traditional
solutions of this problem include using graphs, RDF reification or
triple IDs. All of these approaches suffer from various
flexibility and performance issues. For this reason AllegroGraph
offers an alternative: triple attributes.
Attributes are key-value pairs associated with a triple. Keys
refer to attribute definitions that must be added to the store
before they are used. Values are strings. The set of legal values

https://www.infoworld.com/article/3228245/data-science/the-80-20-data-science-dilemma.html
https://visit.figure-eight.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf
https://www.forbes.com/sites/forbestechcouncil/2017/06/05/the-big-unstructured-data-problem/#45ef303b493a
https://www.forbes.com/sites/forbestechcouncil/2017/06/05/the-big-unstructured-data-problem/#45ef303b493a
http://www.dataversity.net/solving-knowledge-graph-data-prep-standards/
https://allegrograph.com/the-most-secure-graph-database-available/
https://allegrograph.com/the-most-secure-graph-database-available/

of an attribute can be constrained by the definition of that
attribute. It is possible to associate multiple values of a given
attribute with a single triple.
Possible uses for triple attributes include:

Access control: It is possible to instruct AllegroGraph to
prevent an user from accessing triples with certain
attributes.
Sharding: Attributes can be used to ensure that related
triples are always placed in the same shard when
AllegroGraph acts as a distributed triple store.

Like all other triple components, attribute values are immutable.
They must be provided when the triple is added to the store and
cannot be changed or removed later.
To illustrate the use of triple attributes we will construct an
artificial data set containing a log of information about contacts
detected by a submarine at a single moment in time.

Managing attribute definitions
Before we can add triples with attributes to the store we must
create appropriate attribute definitions.
First let’s open a connection

from franz.openrdf.connect import ag_connect

conn = ag_connect('python-tutorial', create=True, clear=True)

Attribute definitions are represented
by AttributeDefinition objects. Each definition has a name, which
must be unique, and a few optional properties (that can also be
passed as constructor arguments):

allowed_values: a list of strings. If this property is set
then only the values from this list can be used for the
defined attribute.
ordered: a boolean. If true then attribute value comparisons
will use the ordering defined by allowed_values. The default
is false.
minimum_number, maximum_number: integers that can be used to
constrain the cardinality of an attribute. By default there
are no limits.

Let’s define a few attributes that we will later use to
demonstrate various attribute-related capabilities of
AllegroGraph. To do this, we will use
the setAttributeDefinition() method of the connection object.

from franz.openrdf.repository.attributes import AttributeDefinition

A simple attribute with no constraints governing the set
of legal values or the number of values that can be
associated with a triple.
tag = AttributeDefinition(name='tag')

An attribute with a limited set of legal values.
Every bit of data can come from multiple sources.
We encode this information in triple attributes,
since it refers to the tripe as a whole. Another
way of achieving this would be to use triple ids
or RDF reification.
source = AttributeDefinition(
 name='source',
 allowed_values=['sonar', 'radar', 'esm', 'visual'])

Security level - notice that the values are ordered
and each triple *must* have exactly one value for
this attribute. We will use this to prevent some
users from accessing classified data.
level = AttributeDefinition(
 name='level',
 allowed_values=['low', 'medium', 'high'],
 ordered=True,
 minimum_number=1,
 maximum_number=1)

An attribute like this could be used for sharding.
That would ensure that data related to a particular
contact is never partitioned across multiple shards.
Note that this attribute is required, since without
it an attribute-sharded triple store would not know
what to do with a triple.
contact = AttributeDefinition(
 name='contact',
 minimum_number=1,
 maximum_number=1)

So far we have created definition objects, but we
have not yet sent those definitions to the server.
Let's do this now.
conn.setAttributeDefinition(tag)
conn.setAttributeDefinition(source)

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.setAttributeDefinition

conn.setAttributeDefinition(level)
conn.setAttributeDefinition(contact)

This line is not strictly necessary, because our
connection operates in autocommit mode.
However, it is important to note that attribute
definitions have to be committed before they can
be used by other sessions.
conn.commit()

It is possible to retrieve the list of attribute definitions from
a repository by using the getAttributeDefinitions() method:

for attr in conn.getAttributeDefinitions():
 print('Name: {0}'.format(attr.name))
 if attr.allowed_values:
 print('Allowed values: {0}'.format(
 ', '.join(attr.allowed_values)))
 print('Ordered: {0}'.format(
 'Y' if attr.ordered else 'N'))
 print('Min count: {0}'.format(attr.minimum_number))
 print('Max count: {0}'.format(attr.maximum_number))
 print()

Notice that in cases where the maximum cardinality has not been
explicitly defined, the server replaced it with a default value.
In practice this value is high enough to be interpreted as ‘no
limit’.

 Name: tag
 Min count: 0
 Max count: 1152921504606846975

 Name: source
 Allowed values: sonar, radar, esm, visual
 Min count: 0
 Max count: 1152921504606846975
 Ordered: N

 Name: level
 Allowed values: low, medium, high
 Ordered: Y
 Min count: 1
 Max count: 1

 Name: contact
 Min count: 1
 Max count: 1

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.getAttributeDefinitions

Attribute definitions can be removed (provided that the attribute
is not used by the static attribute filter, which will be
discussed later) by calling deleteAttributeDefinition():

conn.deleteAttributeDefinition('tag')
defs = conn.getAttributeDefinitions()
print(', '.join(sorted(a.name for a in defs)))

contact, level, source

Adding triples with attributes
Now that the attribute definitions have been established we can
demonstrate the process of adding triples with attributes. This
can be achieved using various methods. A common element of all
these methods is the way in which triple attributes are
represented. In all cases dictionaries with attribute names as
keys and strings or lists of strings as values are used.
When addTriple() is used it is possible to pass attributes in a
keyword parameter, as shown below:

ex = conn.namespace('ex://')
conn.addTriple(ex.S1, ex.cls, ex.Udaloy, attributes={
 'source': 'sonar',
 'level': 'low',
 'contact': 'S1'
})

The addStatement() method works in similar way. Note that it is not
possible to include attributes in the Statement object itself.

from franz.openrdf.model import Statement

s = Statement(ex.M1, ex.cls, ex.Zumwalt)
conn.addStatement(s, attributes={
 'source': ['sonar', 'esm'],
 'level': 'medium',
 'contact': 'M1'
})

When adding multiple triples with addTriples() one can add a fifth
element to each tuple to represent attributes. Let us illustrate

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.deleteAttributeDefinition
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.addTriple
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.addStatement
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.model.html#franz.openrdf.model.Statement
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.addTriples

this by adding an aircraft to our dataset.

conn.addTriples(
 [(ex.R1, ex.cls, ex['Ka-27'], None,
 {'source': 'radar',
 'level': 'low',
 'contact': 'R1'}),
 (ex.R1, ex.altitude, 200, None,
 {'source': 'radar',
 'level': 'medium',
 'contact': 'R1'})])

When all or most of the added triples share the same attribute set
it might be convenient to use the attributes keyword parameter.
This provides default values, but is completely ignored for all
tuples that already contain attributes (the dictionaries are not
merged). In the example below we add a triple representing an
aircraft carrier and a few more triples that specify its position.
Notice that the first triple has a lower security level and
multiple sources. The common ‘contact’ attribute could be used to
ensure that all this data will remain on a single shard.

conn.addTriples(
 [(ex.M2, ex.cls, ex.Kuznetsov, None, {
 'source': ['sonar', 'radar', 'visual'],
 'contact': 'M2',
 'level': 'low',
 }),
 (ex.M2, ex.position, ex.pos343),
 (ex.pos343, ex.x, 430.0),
 (ex.pos343, ex.y, 240.0)],
 attributes={
 'contact': 'M2',
 'source': 'radar',
 'level': 'medium'
 })

Another method of adding triples with attributes is to use the NQX
file format. This works both
with addFile() and addData() (illustrated below):

from franz.openrdf.rio.rdfformat import RDFFormat

conn.addData('''
 <ex://S2> <ex://cls> <ex://Alpha> \
 {"source": "sonar", "level": "medium", "contact": "S2"} .
 <ex://S2> <ex://depth> "300" \

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.addFile
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.addData

 {"source": "sonar", "level": "medium", "contact": "S2"} .
 <ex://S2> <ex://speed_kn> "15.0" \
 {"source": "sonar", "level": "medium", "contact": "S2"} .
''', rdf_format=RDFFormat.NQX)

When importing from a format that does not support attributes, it
is possible to provide a common set of attribute values with a
keyword parameter:

from franz.openrdf.rio.rdfformat import RDFFormat

conn.addData('''
 <ex://V1> <ex://cls> <ex://Walrus> ;
 <ex://altitude> 100 ;
 <ex://speed_kn> 12.0e+8 .
 <ex://V2> <ex://cls> <ex://Walrus> ;
 <ex://altitude> 200 ;
 <ex://speed_kn> 12.0e+8 .
 <ex://V3> <ex://cls> <ex://Walrus> ;
 <ex://altitude> 300;
 <ex://speed_kn> 12.0e+8 .
 <ex://V4> <ex://cls> <ex://Walrus> ;
 <ex://altitude> 400 ;
 <ex://speed_kn> 12.0e+8 .
 <ex://V5> <ex://cls> <ex://Walrus> ;
 <ex://altitude> 500 ;
 <ex://speed_kn> 12.0e+8 .
 <ex://V6> <ex://cls> <ex://Walrus> ;
 <ex://altitude> 600 ;
 <ex://speed_kn> 12.0e+8 .
''', attributes={
 'source': 'visual',
 'level': 'high',
 'contact': 'a therapist'})

The data above represents six visually observed Walrus-class
submarines, flying at different altitudes and well above the speed
of light. It has been highly classified to conceal the fact that
someone has clearly been drinking while on duty – after all there
are only four Walrus-class submarines currently in service, so the
observation is obviously incorrect.

Retrieving attribute values
We will now print all the data we have added to the store,
including attributes, to verify that everything worked as

expected. The only way to do that is through a SPARQL query using
the appropriate magic property to access the attributes. The query
below binds a literal containing a JSON representation of triple
attributes to the ?a variable:

import json

r = conn.executeTupleQuery('''
 PREFIX attr: <http://franz.com/ns/allegrograph/6.2.0/>
 SELECT ?s ?p ?o ?a {
 ?s ?p ?o .
 ?a attr:attributes (?s ?p ?o) .
 } ORDER BY ?s ?p ?o''')
with r:
 for row in r:
 print(row['s'], row['p'], row['o'])
 print(json.dumps(json.loads(row['a'].label),
 sort_keys=True,
 indent=4))

The result contains all the expected triples with pretty-printed
attributes.

<ex://M1> <ex://cls> <ex://Zumwalt>
{
 "contact": "M1",
 "level": "medium",
 "source": [
 "esm",
 "sonar"
]
}
<ex://M2> <ex://cls> <ex://Kuznetsov>
{
 "contact": "M2",
 "level": "low",
 "source": [
 "visual",
 "radar",
 "sonar"
]
}
<ex://M2> <ex://position> <ex://pos343>
{
 "contact": "M2",
 "level": "medium",
 "source": "radar"
}

https://franz.com/ns/allegrograph/6.2.0/attributes

<ex://R1> <ex://altitude> "200"^^...
{
 "contact": "R1",
 "level": "medium",
 "source": "radar"
}
<ex://R1> <ex://cls> <ex://Ka-27>
{
 "contact": "R1",
 "level": "low",
 "source": "radar"
}
<ex://S1> <ex://cls> <ex://Udaloy>
{
 "contact": "S1",
 "level": "low",
 "source": "sonar"
}
<ex://S2> <ex://cls> <ex://Alpha>
{
 "contact": "S2",
 "level": "medium",
 "source": "sonar"
}
<ex://S2> <ex://depth> "300"
{
 "contact": "S2",
 "level": "medium",
 "source": "sonar"
}
<ex://S2> <ex://speed_kn> "15.0"
{
 "contact": "S2",
 "level": "medium",
 "source": "sonar"
}
<ex://V1> <ex://altitude> "100"^^...
{
 "contact": "a therapist",
 "level": "high",
 "source": "visual"
}
<ex://V1> <ex://cls> <ex://Walrus>
{
 "contact": "a therapist",
 "level": "high",
 "source": "visual"
}
<ex://V1> <ex://speed_kn> "1.2E9"^^...
{

 "contact": "a therapist",
 "level": "high",
 "source": "visual"
}
...
<ex://pos343> <ex://x> "4.3E2"^^...
{
 "contact": "M2",
 "level": "medium",
 "source": "radar"
}
<ex://pos343> <ex://y> "2.4E2"^^...
{
 "contact": "M2",
 "level": "medium",
 "source": "radar"
}

Attribute filters
Triple attributes can be used to provide fine-grained access
control. This can be achieved by using static attribute filters.
Static attribute filters are simple expressions that control which
triples are visible to a query based on triple attributes. Each
repository has a single, global attribute filter that can be
modified using setAttributeFilter(). The values passed to this
method must be either strings (the syntax is described in the
documentation of static attribute filters) or filter objects.
Filter objects are created by applying set operators to ‘attribute
sets’. These can then be combined using filter operators.
An attribute set can be one of the following:

a string or a list of strings: represents a constant set of
values.
TripleAttribute.name: represents the value of
the name attribute associated with the currently inspected
triple.
UserAttribute.name: represents the value of
the name attribute associated with current query. User
attributes will be discussed in more detail later.

Available set operators are shown in the table below. All classes
and functions mentioned here can be imported from
the franz.openrdf.repository.attributes package:

https://franz.com/agraph/support/documentation/current/triple-attributes.html#static-filters
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.setAttributeFilter
https://franz.com/agraph/support/documentation/current/triple-attributes.html#static-filters

Syntax Meaning

Empty(x)
True if the specified attribute set

is empty.

Overlap(x, y)
True if there is at least one
matching value between the two

attribute sets.

Subset(x, y), x << y
True if every element of x can be

found in y

Superset(x, y), x >> y
True if every element of y can be

found in x

Equal(x, y), x == y
True if x and y have exactly the same

contents.

Lt(x, y), x < y

True if both sets are singletons, at
least one of the sets refers to a
triple or user attribute, the

attribute is ordered and the value of
the single element of x occurs before

the single value of y in
the lowed_values list of the attribute.

Le(x, y), x <= y True if y < x is false.

Eq(x, y)
True if both x < y and y < x are

false. Note that using the == Python
operator translates toEqauls, not Eq.

Ge(x, y), x >= y True if x < y is false.

Gt(x, y), x > y True if y < x.
Note that the overloaded operators only work if at least one of
the attribute sets is a UserAttribute or TripleAttribute reference –
if both arguments are strings or lists of strings the default
Python semantics for each operator are used. The prefix syntax
always produces filters.
Filters can be combined using the following operators:

Syntax Meaning

Not(x), ~x Negates the meaning of the filter.

And(x, y, ...), x & y True if all subfilters are true.

Or(x, y, ...), x | y
True if at least one subfilter is

true.
Filter operators also work with raw strings, but overloaded
operators will only be recognized if at least one argument is a
filter object.

Using filters and user attributes
The example below displays all classes of vessels from the dataset
after establishing a static attribute filter which ensures that
only sonar contacts are visible:

from franz.openrdf.repository.attributes import *

conn.setAttributeFilter(TripleAttribute.source >> 'sonar')
conn.executeTupleQuery(
 'select ?class { ?s <ex://cls> ?class } order by ?class',
 output=True)

The output contains neither the visually observed Walruses nor the
radar detected ASW helicopter.

| class |
==================
| ex://Alpha |
| ex://Kuznetsov |
| ex://Udaloy |
ex://Zumwalt

To avoid having to set a static filter before each query (which
would be inefficient and cause concurrency issues) we can employ
user attributes. User attributes are specific to a particular
connection and are sent to the server with each query. The static
attribute filter can refer to these and compare them with triple
attributes. Thus we can use code presented below to create a
filter which ensures that a connection only accesses data at or

below the chosen clearance level.

conn.setUserAttributes({'level': 'low'})
conn.setAttributeFilter(
 TripleAttribute.level <= UserAttribute.level)
conn.executeTupleQuery(
 'select ?class { ?s <ex://cls> ?class } order by ?class',
 output=True)

We can see that the output here contains only contacts with the
access level of low. It omits the destroyer and Alpha submarine
(these require medium level) as well as the top-secret Walruses.

| class |
==================
| ex://Ka-27 |
| ex://Kuznetsov |
ex://Udaloy

The main advantage of the code presented above is that the filter
can be set globally during the application setup and access
control can then be achieved by varying user attributes on
connection objects.
Let us now remove the attribute filter to prevent it from
interfering with other examples. We will use
the clearAttributeFilter() method.

conn.clearAttributeFilter()

It might be useful to change connection’s attributes temporarily
for the duration of a single code block and restore prior
attributes after that. This can be achieved using
the temporaryUserAttributes() method, which returns a context
manager. The example below illustrates its use. It also shows how
to use getUserAttributes() to inspect user attributes.

with conn.temporaryUserAttributes({'level': 'high'}):
 print('User attributes inside the block:')
 for k, v in conn.getUserAttributes().items():
 print('{0}: {1}'.format(k, v))
 print()
print('User attributes outside the block:')
for k, v in conn.getUserAttributes().items():
 print('{0}: {1}'.format(k, v))

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.clearAttributeFilter
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.temporaryUserAttributes
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.getUserAttributes

User attributes inside the block:
level: high

User attributes outside the block:
level: low »

