Using Microsoft Power BI with
AllegroGraph

There are multiple methods to integrate AllegroGraph SPARQL
results into Microsoft Power BI. In this document we describe
two best practices to automate queries and refresh results if
you have a production AllegroGraph database with new streaming
data:

The first method uses Python scripts to feed Power BI. The
second method issues SPARQL queries directly from Power BI
using POST requests.

Method 1: Python Script:

Assuming you know Python and have it installed locally, this
is definitely the easiest way to incorporate SPARQL results
into Power BI. The basic idea of the method is as follows:
First, the Python script enables a connection to your desired
AllegroGraph repository. Then we utilize AllegroGraph’s
Python API within our script to run a SPARQL query and return
it as a Pandas dataframe. When running this script within
Power BI Desktop, the Python scripting service recognizes all
unique dataframes created, and allows you to import the
dataframe into Power BI as a table, which can then be used to
create visualizations.

Requirements:

1. You must have the AllegroGraph Python API installed. If
you do not, installation instructions are here:
https://franz.com/agraph/support/documentation/current/p
ython/install.html

2. Python scripting must be enabled in Power BI Desktop.
Instructions to do SO are here:
https://docs.microsoft.com/en-us/power-bi/connect-data/d
esktop-python-scripts


https://allegrograph.com/using-microsoft-power-bi-with-allegrograph/
https://allegrograph.com/using-microsoft-power-bi-with-allegrograph/
https://franz.com/agraph/support/documentation/current/python/install.html
https://franz.com/agraph/support/documentation/current/python/install.html
https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-python-scripts
https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-python-scripts

a) As mentioned in the article, pandas and matplotlib
must be installed. This can be done with ‘pip install
pandas’ and ‘pip install matplotlib’ in your terminal.

The Process:

Once these requirements have been met, create a Python file
with whatever script editor you usually use. The following
code will create a connection to your desired repository. For
this example, we will be using the Kennedy dataset that is
available with the AllegroGraph distribution (See the
‘Tutorial’ directory). Load the Kennedy.ntriples file into
your running AllegroGraph. (Replace the ‘****’ in the code
with your corresponding username and password.)

#the necessary imports

import os
from franz.openrdf.connect import ag connect
from franz.openrdf.query.query import QuerylLanguage

import pandas as pd

#connect to your agraph repository

def setup env var(var name, value, description):
os.environ[var name] = value

print("{}: {}".format(description, value))

setup env var('AGRAPH HOST', 'localhost', 'Hostname')
setup env _var('AGRAPH PORT', '10035', 'Port')

setup env var('AGRAPH USER', '***x' 'Username')



setup _env_var('AGRAPH PASSWORD', '***x',

'Password"')

conn = ag connect('kennedy', create=False, clear=False)

2. We then want to create a query.

For this example, we will

first show what our data looks like, what the visual query of
and what the written query looks like.
With the following query we want every person’s first and last

the information 1is,

names, as well as their birth years.
of the data visualized in Gruff,

the query:

Birth-year

First-nams

¥

Last-name

Type

(Porson)

| Literal|

No Type|

| Person |« Tone

? person

.PEI'SOI'H T'

First-name

Person12 ( Lawford |
X’( Peter |

Birth-year

Last-name

| 7 last_name |

Here is a small portion
and then the visualization of

(1932

g {'I{e nnedyhl

\-['Eumrd

(1923

? birth_
_year |




3. Then add the written query to the python script as a
variable string (we added an additional line to the query to
sort on birth year). Next use the API functionality to simply
execute the query and turn the results into a pandas
dataframe.

query = """select ?person ?first name ?last name ?birth year
where
{ ?person <http://www.franz.com/simple#first-name> ?first name

’

<http://www.franz.com/simple#birth-year> ?birth year

rdf:type <http://www.franz.com/simple#person> ;
<http://www.franz.com/simple#last-name> ?last name

}

order by desc(?birth year)"""

with conn.executeTupleQuery(query) as result:
df = result.toPandas()

When looking at the result, we see that we have a DataFrame!

[5] df.head()

™

X
person first name last name birth year

<http:/ /v . com/ simpleitperson7e> Kym Smith 1972
<http://vw .com/simple#person63> Molly Stark 1968
<http://vwew . com/simple#iperson64> Rory Kennedy 1968

<http://vwew .com/ simpleitperson62> Douglas Kennedy 1967

<http:// v . com/ simple#tperson65> Mark Bailey 1967

4. Now we will use this script in Power BI. When in Power BI
Desktop, go to ‘Get Data’ and look for the python script
option. Then simply copy and paste your entire script into the



text box, and run the script. In this case, our output looks
like this:

Navigator

£ | df (2

tenlav Dot - ] - i
Display Options E person first_name last_narme birth_year

y Python [1] <httpy/fwww franz.com/simple#iperson70>  Kym Smith

~

== | <http:/fwww franz.com/simpledpersong3>  Molly Stark

<http:/fwww.franz.com/simple#personéd>  Rory Kennedy
<http:/fwww franz.com/simpledpersoné2>  Douglas Kennedy
<http://www.franz.com/simplegperson65>  Mark Bailey

<http:/fwww.franz.com/simplefperson6g8> Amanda Srnith

5. Next simply ‘Load’ the data, and then you can use the
Power BI Desktop interface to create whatever visualizations
you want! If you do have a lot of additional operations to
perform on your dataframe, we recommend doing these in your
python script.

Method 2: POST Request:

For the SPARQL query via POST requests to work you need to
url-encode the query. Every modern programming language will
support that, but in our example we will be using Python
again. This method is better for when you do not have python
locally installed or prefer a different programming language.

It is possible to send a GET request from Power BI, but once
the results from the query reach a certain size, a POST
request is required, which is confusing to do within the Power
BI Desktop interface. The following steps will show you how to
do SPARQL Queries using POST requests. It looks a bit odd but
it works well.

The Process:

1. In your AG WebView create an ‘anonymous’ user. (Go to
admin -> Users -> [add a user] -> and add ‘anonymous’ as



username without adding a password). You can use these
settings:

Users

anonymous [remove]
Roles: None
[suspend] [disable] [expire password]

[_] Superuser [ ] Start sessions [_] Evaluate arbitrary code [_| Control replication [_] Two-phase commit
[¥] Allow user attributes via HTTP header x-user-attributes
[] Allow user attributes via SPARQL PREFIX franzOption userAttributes

o read/write on all [remove]

Grant | read/write v on catalog | * ~ | repository | * v | [ok]
Security Filters: [add]

2. Go to your desired repository in WebView and Click on
‘Queries’ -> ‘New’

3. Write a simple SPARQL query, and run it to make sure you
get the correct response back.

4. In python create the following script: (Assuming your
AllegroGraph is on your localhost port 10035 and your repo is
called ‘kennedy’)

import urllib

def CreateP0STquery(query):
start =
“http://anonymous:@localhost:10035/repositories/kennedy?queryL
n=SPARQL&Limit=1000&infer=false&returnQueryMetadata=false&chec
kVariables=false&query="
response = start + urllib.parse.quote(query)
return response

This function url-encodes the query and attaches it to the
POST request. Replace the ‘localhost:10035' and ‘kennedy’
strings in the start variable with your corresponding data.
Then, using the same query as our previous example, we create



our url-encoded POST query:

query = """select ?person ?first name ?last name ?birth year
where
{ ?person <http://www.franz.com/simple#first-name> ?first name

<http://www.franz.com/simple#birth-year> ?birth year

rdf:type <http://www.franz.com/simple#person> ;
<http://www.franz.com/simple#last-name> ?last name

}

order by desc(?birth_year)"""

result = CreateP0STquery(query)
print(result)

This gives us the following result:

[16] result

“hittp: //anonymous :@localhost:1ee35/repositories/kennedy?queryLn=sPARQLE&]limi t=10@8&infer=false&returnQuerymMetadata=false&checkvariab
les —false&quer\. electX2eX3Fpersont2eX3Ffirst_nameX2eX3Flast_nameX20X3Fbirth_yearXlewhereXoAX7EX2eX3Fpersoni2eX3chttpXaA/ /www. fran

1 ex23first-nameX3EX20X3Ffirst_nameZ2eX3BXoARIoR20%20R 20X 20%20%20R20%20%28%3ChTLtpX2A/ /www. franz. com/simpleX23birth-yeari3
EX28X3Fbirth ari2eX3nXaaireXralreXrairetiareX e e rerd LAt ype2aX3Cht tpX2A/ fwwm . franz . com/ simpleX23p EIEXIGXIBABALISLIAND
exzenzak2akzen2enzaR2eR3ChittpR3A/ fwww. franz. com/simpleX23last-namei3 E'Xzeﬁ;aF1ast_nane.vzB.ZZEi?D%ﬁAor‘dEnez&tl‘,-'izadescHsBFbl.rth |_year#k
29°

5. Within Power BI Desktop we go to ‘Get data’ and create a
‘Blank query’ and go into the ‘Advanced Editor’ window. Using
the following format we will get our desired results (please
note that due to the length of the url-encoded request, it did
not all fit in the image. Copy and pasting into the url field
works fine. The ‘url’ variable needs to be in quotes and have
a comma at the end):



QueryT

let
url = "http://anonymous:@localhost:18035/repositories/kennedy?queryLn=SPARQLELimit=1060&infer=false&returnQuery
body = "",
Ssource = Csv.Document(Web.Contents(url, [Headers = [Accept="text/csv"], Content=Text.ToBinary(body)]))
in
source

We see the following results:

[ T A

=% 1 —_— I T L = Properties _— s S i Data Type: Test = [ Merge Queries = = Test Analytics
-t b e ! & [ AdmancedEdior Pt I I il 7 Use First Row as Meaders = T Append Queries = @
Close & Mew  Recent l.'|l.er Data source hanage Redresh e le-os.e_ 'I.l.eTo.e Keep  Remove Eplit Group 1, ; Fuplace Vakes Comblng Filss .‘-\ Piurn Machine Loarning
Apply~  Source* Sources=  Data setlings  Parameters >  Preview s —J 4 Columrs~ Calumrs = Rows* Rows * Column® By 3
Class Now Quary Data Sources Paramaters Quary Manage Columrs Reduce Rows sant Transfoem Combing Al nsights
Cueries [1] < M = Csv,Document{web.Contents(url, [Headers = [Accepte="text/csv™], ContentsText.Tosinary(body)]))
] Cluery1 . Calumnl = | BB Calumnz = | ¥ Calumn3 = | M Columnd -
1 persan first_name last_name bt _ywar
2 hpeyfwews franz.comysimpleipersondd  Kym Smith 1972
1 hittpef o, frans. comfsimplefpersonBd  Molly Stark 1968
4 tgs/fwees frang.comysimplegpersonBs  Rory Kennedy 1968
5 Wtpefwews franz.comysimplafparson62  Douglas Kenrady 1967
£ httpcffwane. franz.comfsimplefpersonBS  Mark Bailey 1967
T httpsfecane. franz.comyfsimplefpersonéd  Amanda Smith 1967
& hupsffesee. franz.comysimpledperson7l  Alfred Tischear 1967
4 hitpeyfwewe. frana.comyfsimpledperson?s  Patrick Kenrody 1967
10 hittpzffwew. franz.comysimple#iperson23  Carolyn Bessstte 1966
11 hittpzf forwas. franz.comysimplepersonBd  Cart Hood 1966
12 e e, frana. comysimplempersond?  Jeannia Rigp 1965
13 hvip:d foowee frans.comysimplefpersona3  Anthany Shrives 1965
14 httpz/fwrerer. franz.comysimpledpersondd  Alina Mojica 1965
15  httpsfweaw. franz.comy/simplefipersontd  Matthew Kennedy 1965
16 Wotpsyforwes. franz.comyfsimplemperson3l  Mark Shrives 1964
17 httpeffocere, frane. comysimpledpersont]  Victona Stauss 1964
18 httpz/fwww franz.comysimplefpersonld  Patrick Kennedy 1963
19 httpzffwears. franz.comysimpleffipersonS8  Christopher Kennedy 1963

6. One last step is to turn the top row into the column
names, which can be achieved by pressing the ‘Use first row as
headers’:

—
—

Data Type: Text ~ &) Merge Queries ~ E- Text Analytics

A
Z -
i- j Use First Row as Headers ~ _ Append Queries * <€ Vision
Split  Group , ) _ _ .
Column~ By 2 Replace Values Combine Files ‘,[_},5 Azure Machine Learning

ort Transform Combine Al Insights

The best part about both of these methods is that once the
query has been created, Power BI can refresh the visuals using
the same queries if your data changed. This can be achieved by



scheduling refreshes within the Power BI Desktop interface
(https://docs.microsoft.com/en-us/power-bi/connect-data/refres
h-data#configure-scheduled-refresh)

Please send any questions or issues to: support@franz.com


https://docs.microsoft.com/en-us/power-bi/connect-data/refresh-data#configure-scheduled-refresh
https://docs.microsoft.com/en-us/power-bi/connect-data/refresh-data#configure-scheduled-refresh
mailto:support@franz.com

