
Multi-Master Replication
Clusters in Kubernetes and
Docker Swarm
For more examples visit –
https://github.com/franzinc/agraph-examples

Introduction

In this document we primarily discuss running a Multi-Master
Replication cluster (MMR) inside Kubernetes. We will also show
a Docker Swarm implementation.

This directory and subdirectories contain code you can use to
run an MMR cluster. The second half of this document is
entitled Setting up and running MMR under Kubernetes and that
is where you’ll see the steps needed to run the MMR cluster in
Kubernetes.

MMR replication clusters are different from distributed
AllegroGraph clusters in these important ways:

Each member of the cluster needs to be able to make a1.
TCP connection to each other member of the cluster. The
connection is to a port computed at run time. The range
of port numbers to which a connection is made can be
constrained by the agraph.cfg file but typically this
will be a large range to ensure that at least one port
in that range is not in used.
All members of the cluster hold the complete database2.
(although for brief periods of time they can be out of
sync and catching up with one another).

MMR replication clusters don’t quite fit the Kubernetes model
in these ways

When the cluster is running normally each instance knows1.

https://allegrograph.com/multi-master-replication-clusters-in-kubernetes-and-docker-swarm/
https://allegrograph.com/multi-master-replication-clusters-in-kubernetes-and-docker-swarm/
https://allegrograph.com/multi-master-replication-clusters-in-kubernetes-and-docker-swarm/
https://github.com/franzinc/agraph-examples
https://franz.com/agraph/support/documentation/current/multi-master.html
https://franz.com/agraph/support/documentation/current/multi-master.html

the DNS name or IP address of each other instance. In
Kubernetes you don’t want to depend on the IP address of
another cluster’s pod as those pods can go away and a
replacement started at a different IP address. We’ll
describe below our solution to this.
Services are a way to hide the actual location of a pod2.
however they are designed to handle a set of known
ports.. In our case we need to connect from one pod to a
known-at-runtime port of another pod and this isn’t what
services are designed for.
A key feature of Kubernetes is the ability to scale up3.
and down the number of processes in order to handle the
load appropriately. Processes are usually single purpose
and stateless. An MMR process is a full database server
with a complete copy of the repository. Scaling up is
not a quick and simple operation – the database must be
copied from another node. Thus scaling up is a more
deliberate process rather than something automatically
done when the load on the system changes during the day.

The Design

We have a headless service for our controlling instance1.
StatefulSet and that causes there to be a DNS entry for
the name controlling that points to the current IP
address of the node in which the controlling instance
runs. Thus we don’t need to hardwire the IP address of
the controlling instance (as we do in our AWS load
balancer implementation).
The controlling instance uses two PersistentVolumes to2.
store: 1. The repo we’re replicating and 2. The token
that other nodes can use to connect to this node. Should
the controlling instance AllegroGraph server die (or the
pod in which it runs dies) then when the pod is started
again it will have access to the data on those two
persistent volumes.
We call the other instances in the cluster Copy3.

https://github.com/franzinc/agraph-examples/blob/master/clustering/terraform-elb/using-terraform.md
https://github.com/franzinc/agraph-examples/blob/master/clustering/terraform-elb/using-terraform.md

instances. These are full read-write instances of the
repository but we don’t back up their data in a
persistent volume. This is because we want to scale up
and down the number of Copy instances. When we scale
down we don’t want to save the old data since when we
scale down we remove that instance from the cluster thus
the repo in the cluster can never join the cluster
again. We denote the Copy instances by their IP
addresses. The Copy instances can find the address of
the controlling instance via DNS. The controlling
instance will pass the cluster configuration to the Copy
instance and that configuration information will have
the IP addresses of the other Copy instances. This is
how the Copy instances find each other.
We have a load balancer that allows one to access a4.
random Copy instance from an external IP address. This
load balancer doesn’t support sessions so it’s only
useful for doing queries and quick inserts that don’t
need a session.
We have a load balancer that allows access to the5.
Controlling instance via HTTP. While this load balancer
also doesn’t have session support, because there is only
one controlling instance it’s not a problem if you start
an AllegroGraph session because all sessions will live
on the single controlling instance.

We’ve had the most experience with Kubernetes on the Google
Cloud Platform. There is no requirement that the load balancer
support sessions and the GCP version does not at this time,
but that doesn’t mean that session support isn’t present in
the load balancer in other cloud platforms. Also there is a
large community of Kubernetes developers and one may find a
load balancer with session support available from a third
party.

Implementation

We build and deploy in three subdirectories. We’ll describe

the contents of the directories first and then give step by
step instructions on how to use the contents of the
directories.

Directory ag/

In this directory we build a Docker image holding an installed
AllegroGraph. The Dockerfile is

FROM centos:7

#
AllegroGraph root is /app/agraph
#

RUN yum -y install net-tools iputils bind-utils wget hostname

ARG agversion=agraph-6.6.0
ARG agdistfile=${agversion}-linuxamd64.64.tar.gz

This ADD command will automatically extract the contents
of the tar.gz file
ADD ${agdistfile} .

needed for agraph 6.7.0 and can't hurt for others
change to 11 if you only have OpenSSL 1.1 installed
ENV ACL_OPENSSL_VERSION=10

so prompts are readable in an emacs window
ENV PROMPT_COMMAND=

RUN groupadd agraph && useradd -d /home/agraph -g agraph
agraph
RUN mkdir /app

declare ARGs as late as possible to allow previous lines to
be cached
regardless of ARG values

ARG user
ARG password

RUN (cd ${agversion} ; ./install-agraph /app/agraph -- --non-
interactive \
 --runas-user agraph \
 --super-user $user \
 --super-password $password)

remove files we don't need
RUN rm -fr /app/agraph/lib/doc /app/agraph/lib/demos

we will attach persistent storage to this directory
VOLUME ["/app/agraph/data/rootcatalog"]

patch to reduce cache time so we’ll see when the controlling
instance moves.
ag 6.7.0 has config parameter StaleDNSRetainTime which
allows this to be
done in the configuration.
COPY dnspatch.cl /app/agraph/lib/patches/dnspatch.cl

RUN chown -R agraph.agraph /app/agraph

The Dockerfile installs AllegroGraph in /app/agraph and
creates an AllegroGraph super user with the name and password
passed in as arguments. It creates a user agraph so that the
AllegroGraph server will run as the user agraph rather than
as root.

We have to worry about the controlling instance process dying
and being restarted in another pod with a different IP
address. Thus if we’ve cached the DNS mapping
of controlling we need to notice as soon as possible that the
mapping as changed. The dnspatch.cl file changes a parameter
in the AllegroGraph DNS code to reduce the time we trust our
DNS cache to be accurate so that we’ll quickly notice if the
IP address of controlling changes.

We also install a number of networking tools. AllegroGraph
doesn’t need these but if we want to do debugging inside the
container they are useful to have installed.

The image created by this Dockerfile is pushed to the Docker
Hub using an account you’ve specified (see the Makefile in
this directory for details).

Directory agrepl/

Next we take the image created above and add the specific code
to support replication clusters.

The Dockerfile is

ARG DockerAccount=specifyaccount

FROM ${DockerAccount}/ag:latest

#
AllegroGraph root is /app/agraph

RUN mkdir /app/agraph/scripts
COPY . /app/agraph/scripts

since we only map one port from the outside into our cluster
we need any sessions created to continue to use that one
port.
RUN echo "UseMainPortForSessions true" >>
/app/agraph/lib/agraph.cfg

settings/user will be overwritten with a persistent mount so
copy
the data to another location so it can be restored.
RUN cp -rp /app/agraph/data/settings/user
/app/agraph/data/user

ENTRYPOINT ["/app/agraph/scripts/repl.sh"]

When building an image using this Dockerfile you must specify

--build-arg DockerAccount=MyDockerAccount

where MyDockerAccount is a Docker account you’re authorized to
push images to.

The Dockerfile installs the
scripts repl.sh, vars.sh and accounts.sh. These are run when
this container starts.

We modify the agraph.cfg with a line that ensures that even if
we create a session that we’ll continue to access it via port
10035 since the load balancer we’ll use to access AllegroGraph
only forwards 10035 to AllegroGraph.

Also we know that we’ll be installing a persistent volume
at /app/agraph/data/user so we make a copy of that directory
in another location since the current contents will be
invisible when a volume is mounted on top of it. We need the
contents as that is where the credentials for the user we
created when AllegroGraph was installed.

Initially the file settings/user/username will contain the
credentials we specified when we installed AllegroGraph in
first Dockerfile. When we create a cluster instance a new
token is created and this is used in place of the password for
the test account. This token is stored
in settings/user/username which is why we need this to be an
instance-specific and persistent filesystem for the
controlling instance.

When this container starts it runs repl.sh which first
runs accounts.sh and vars.sh.

accounts.sh is a file created by the top level Makefile to
store the account information for the user account we created
when we installed AllegroGraph.

vars.sh is

constants need by scripts
port=10035
reponame=myrepl

compute our ip address, the first one printed by hostname
myip=$(hostname -I | sed -e 's/ .*$//')

In vars.sh we specify the information about the repository
we’ll create and our IP address.

The script repl.sh is this:

#!/bin/bash
#
to start ag and then create or join a cluster
##

cd /app/agraph/scripts

set -x
. ./accounts.sh
. ./vars.sh

agtool=/app/agraph/bin/agtool

echo ip is $myip

move the copy of user with our login to the newly mounted
volume
if this is the first time we've run agraph on this volume
if [! -e /app/agraph/data/rootcatalog/$reponame] ; then

 cp -rp /app/agraph/data/user/*
/app/agraph/data/settings/user
fi

due to volume mounts /app/agraph/data could be owned by root
so we have to take back ownership
chown -R agraph.agraph /app/agraph/data

start agraph
/app/agraph/bin/agraph-control --config
/app/agraph/lib/agraph.cfg start

term_handler() {
 # this signal is delivered when the pod is
 # about to be killed. We remove ourselves
 # from the cluster.

 echo got term signal
 /bin/bash ./remove-instance.sh
 exit
}

sleepforever() {
 # This unusual way of sleeping allows
 # a TERM signal sent when the pod is to
 # die to then cause the shell to invoke
 # the term_handler function above.
 date
 while true
 do
 sleep 99999 & wait ${!}
 done
}

if [-e /app/agraph/data/rootcatalog/$reponame] ; then
 echo repository $reponame already exists in this
persistent volume
 sleepforever
fi

controllinghost=controlling

controllingspec=$authuser:$authpassword@$controllinghost:$port
/$reponame

if [x$Controlling == "xyes"] ;
then
 # It may take a little time for the dns record for
'controlling' to be present
 # and we need that record because the agtool program below
will use it
 until host controlling ; do echo controlling not in DNS
yet; sleep 5 ; done
 ## create first and controlling cluster instance
 $agtool repl create-cluster $controllingspec controlling

else
 # wait for the controlling ag server to be running

 until curl -s
http://$authuser:$authpassword@$controllinghost:$port/version
; do echo wait for controlling ; sleep 5; done

 # wait for server in this container to be running
 until curl -s

http://$authuser:$authpassword@$myip:$port/version ; do echo
wait for local server ; sleep 5; done

 # wait for cluster repo on the controlling instance to be
present
 until $agtool repl status $controllingspec > /dev/null ; do
echo wait for repo ; sleep 5; done
 myiname=i-$myip
 echo $myiname > instance-name.txt

 # construct the remove-instance.sh shell script to remove
this instance
 # from the cluster when the instance is terminated.
 echo $agtool repl remove $controllingspec $myiname >
remove-instance.sh
 chmod 755 remove-instance.sh
 #

 # note that
 # % docker kill container
 # will send a SIGKILL signal by default we can't trap on
SIGKILL.
 # so
 # % docker kill -s TERM container
 # in order to test this handler
 trap term_handler SIGTERM SIGHUP SIGUSR1
 trap -p
 echo this pid is $$

 # join the cluster
 echo joining the cluster
 $agtool repl grow-cluster $controllingspec

$authuser:$authpassword@$myip:$port/$reponame $myiname
fi
sleepforever

This script can be run under three different conditions

Run when the Controlling instance is starting for the1.
first time
Run when the Controlling instance is restarting having2.
run before and died (perhaps the machine on which it was
running crashed or the AllegroGraph process had some
error)
Run when a Copy instance is starting for the first time.3.
Copy instances are not restarted when they die. Instead
a new instance is created to take the place of the dead
instance. Therefore we don’t need to handle the case of
a Copy instance restarting.

In cases 1 and 2 the environment variable Controlling will
have the value “yes”.

In case 2 there will be a directory
at /app/agraph/data/rootcatalog/$reponame.

In all cases we start an AllegroGraph server.

In case 1 we create a new cluster. In case 2 we just sleep and
let the AllegroGraph server recover the replication repository
and reconnect to the other members of the cluster.

In case 3 we wait for the controlling instance’s AllegroGraph
to be running. Then we wait for our AllegroGraph server to be
running. Then we wait for the replication repository we want
to copy to be up and running. At that point we can grow the
cluster by copying the cluster repository.

We also create a script which will remove this instance from
the cluster should this pod be terminated. When the pod is
killed (likely due to us scaling down the number of Copy
instances) a termination signal will be sent first to the
process allowing it to run this remove script before the pod
completely disappears.

Directory kube/

This directory contains the yaml files that create kubernetes
resources which then create pods and start the containers that
create the AllegroGraph replication cluster.

controlling-service.yaml

We begin by defining the services. It may seem logical to
define the applications before defining the service to expose
the application but it’s the service we create that puts the
application’s address in DNS and we want the DNS information
to be present as soon as possible after the application
starts. In the repl.sh script above we include a test to check
when the DNS information is present before allowing the
application to proceed.

apiVersion: v1
kind: Service
metadata:
 name: controlling
spec:
 clusterIP: None
 selector:
 app: controlling
 ports:
 - name: http
 port: 10035
 targetPort: 10035

This selector defines a service for any container with a label
with a key app and a value controlling. There aren’t any such
containers yet but there will be. You create this service with

% kubectl create -f controlling-service.yaml

In fact for all the yaml files shown below you create the
object they define by running

% kubectl create -f filename.yaml

copy-service.yaml

We do a similar service for all the copy applications.

apiVersion: v1
kind: Service
metadata:
 name: copy
spec:
 clusterIP: None
 selector:
 app: copy
 ports:
 - name: main
 port: 10035
 targetPort: 10035

controlling.yaml

This is the most complex resource description for the cluster.
We use a StatefulSet so we have a predictable name for the
single pod we create. We define two persistent volumes. A
StatefulSet is designed to control more than one pod so rather
than a VolumeClaim we have a VolumeClaimTemplate so that each
Pod can have its own persistent volume… but as it turns out we
have only one pod in this set and we never scale up. There
must be exactly one controlling instance.

We setup a liveness check so that if the AllegroGraph server
dies Kubernetes will restart the pod and thus the AllegroGraph
server. Because we’ve used a persistent volume for the
AllegroGraph repositories when the AllegroGraph server
restarts it will find that there is an existing MMR
replication repository that was in use when the AllegroGraph
server was last running. AllegroGraph will restart that
replication repository which will cause that replication
instance to reconnect to all the copy instances and become
part of the cluster again.

We set the environment variable Controlling to yes and this
causes this container to start up as a controlling instance
(you’ll find the check for the Controlling environment

variable in the repl.sh script above).

We have a volume mount for /dev/shm, the shared memory
filesystem, because the default amount of shared memory
allocated to a container by Kubernetes is too small to support
AllegroGraph.

#
stateful set of controlling instance
#

apiVersion: apps/v1beta1
kind: StatefulSet
metadata:
 name: controlling
spec:
 serviceName: controlling
 replicas: 1
 template:
 metadata:
 labels:
 app: controlling
 spec:
 containers:
 - name: controlling
 image: dockeraccount/agrepl:latest
 imagePullPolicy: Always
 livenessProbe:
 httpGet:
 path: /hostname
 port: 10035
 initialDelaySeconds: 30
 volumeMounts:
 - name: shm
 mountPath: /dev/shm
 - name: data
 mountPath: /app/agraph/data/rootcatalog
 - name: user
 mountPath: /app/agraph/data/settings/user
 env:
 - name: Controlling

 value: "yes"
 volumes:
 - name: shm
 emptyDir:
 medium: Memory
 volumeClaimTemplates:
 - metadata:
 name: data
 spec:
 resources:
 requests:
 storage: 20Gi
 accessModes:
 - ReadWriteOnce
 - metadata:
 name: user
 spec:
 resources:
 requests:
 storage: 10Mi
 accessModes:
 - ReadWriteOnce

copy.yaml

This StatefulSet is responsible for starting all the other
instances. It’s much simpler as it doesn’t use Persistent
Volumes

#
stateful set of copies of the controlling instance
#

apiVersion: apps/v1beta1
kind: StatefulSet
metadata:
 name: copy
spec:
 serviceName: copy
 replicas: 2
 template:
 metadata:

 labels:
 app: copy
 spec:
 volumes:
 - name: shm
 emptyDir:
 medium: Memory
 containers:
 - name: controlling
 image: dockeraccount/agrepl:latest
 imagePullPolicy: Always
 livenessProbe:
 httpGet:
 path: /hostname
 port: 10035
 initialDelaySeconds: 30
 volumeMounts:
 - name: shm
 mountPath: /dev/shm

controlling-lb.yaml

We define a load balancer so applications on the internet
outside of our cluster can communicate with the controlling
instance. The IP address of the load balancer isn’t specified
here. The cloud service provider (i.e. Google Cloud Platform
or AWS) will determine an address after a minute or so and
will make that value visible if you run

% kubectl get svc controlling-loadbalancer

The file is

apiVersion: v1
kind: Service
metadata:
 name: controlling-loadbalancer
spec:
 type: LoadBalancer
 ports:
 - port: 10035
 targetPort: 10035

 selector:
 app: controlling

copy-lb.yaml

As noted earlier the load balancer for the copy instances does
not support sessions. However you can use the load balancer to
issue queries or simple inserts that don’t require a session.

apiVersion: v1
kind: Service
metadata:
 name: copy-loadbalancer
spec:
 type: LoadBalancer
 ports:
 - port: 10035
 targetPort: 10035
 selector:
 app: copy

copy-0-lb.yaml

If you wish to access one of the copy instances explicitly so
that you can create sessions you can create a load balancer
which links to just one instance, in this case the first copy
instance which is named “copy-0”.

apiVersion: v1
kind: Service
metadata:
 name: copy-0-loadbalancer
spec:
 type: LoadBalancer
 ports:
 - port: 10035
 targetPort: 10035
 selector:
 app: copy
 statefulset.kubernetes.io/pod-name: copy-0

Setting up and running MMR under Kubernetes

The code will build and deploy an AllegroGraph MMR cluster in
Kubernetes. We’ve tested this in Google Cloud Platform and
Amazon Web Service. This code requires Persistent Volumes and
load balancers and thus requires a sophisticated platform to
run (such as GCP or AWS).

Prerequisites

In order to use the code supplied you’ll need two additional
things

A Docker Hub account (https://hub.docker.com). A free1.
account will work. You’ll want to make sure you can push
to the hub without needing a password (use the docker
login command to set that up).
An AllegroGraph distribution in tar.gz format. We’ve2.
been using agraph-6.6.0-linuxamd64.64.tar.gz in our
testing. You can find the current set of server files
at https://franz.com/agraph/downloads/server This file
should be put in the ag subdirectory. Note that the
Dockerfile in that directory has the line ARG
agversion=agraph-6.6.0 which specifies the version of
agraph to install. This must match the version of
the ...tar.gz file you put in that directory.

Steps

Do Prerequisites

Fullfill the prerequisites above

Set parameters

There are 5 parameters

Docker account – Must Specify1.
AllegroGraph user – May want to specify2.
AllegroGraph password – May want to specify3.
AllegroGraph repository name – Unlikely to want to4.
change

https://hub.docker.com/

AllegroGraph port – Very unlikely to want to change5.

The first three parameters can be set using the Makefile in
the top level directory. The last two parameters are found
in agrepl/vars.sh if you wish to change them. Note that the
port number of 10035 is found in the yaml files in
the kube subdirectory. If you change the port number you’ll
have edit the yaml files as well.

The first three parameters are set via

% make account=DockerHubAccount user=username
password=password

The account must be specified but the last two can be omitted
and default to an AllegroGraph account name of test and a
password of xyzzy.

If you choose to specify a password make it a simple one
consisting of letters and numbers. The password will appear in
shell commands and URLs and our simple scripts don’t escape
characters that have a special meaning to the shell or URLs.

Install AllegroGraph

Change to the ag directory and build an image with
AllegroGraph installed. Then push it to the Docker Hub

% cd ag
% make build
% make push
% cd ..

Create cluster-aware AllegroGraph image

Add scripts to create an image that will either create an
AllegroGraph MMR cluster or join a cluster when started.

% cd agrepl
% make build
% make push

% cd ..

Setup a Kubernetes cluster

Now everything is ready to run in a Kubernetes cluster. You
may already have a Kubernetes cluster running or you may need
to create one. Both Google Cloud Platform and AWS have ways of
creating a cluster using a web UI or a shell command. When
you’ve got your cluster running you can do

% kubectl get nodes

and you’ll see your nodes listed. Once this works you can move
into the next step.

Run an AllegroGraph MMR cluster

Starting the MMR cluster involves setting up a number of
services and deploying pods. The Makefile will do that for
you.

% cd kube
% make doall

You’ll see when it displays the services that there isn’t an
external IP address allocated for the load balancers It can
take a few minutes for an external IP address to be allocated
and the load balancers setup so keep running

% kubectl get svc

until you see an IP address given, and even then it may not
work for a minute or two after that for the connection to be
made.

Verify that the MMR cluster is running

You can use AllegroGraph Webview to see if the MMR cluster is
running. Once you have an external IP address for the
controlling-load-balancer go to this address in a web browser

http://external-ip-address:10035

Login with the credentials you used when you created the
Docker images (the default is user test and password xyzzy).
You’ll see a repository myrepl listed. Click on that. Midway
down you’ll see a link titled

Manage Replication Instances as controller

Click on that link and you’ll see a table of three instances
which now serve the same repository. This verifies that three
pods started up and all linked to each other.

Namespaces

All objects created in Kubernetes have a name that is chosen
either by the user or Kubernetes based on a name given by the
user. Most names have an associated namespace. The combination
of namespace and name must be unique among all objects in a
Kubernetes cluster. The reason for having a namespace is that
it prevents name clashes between multiple projects running in
the same cluster that both choose to use the same name for an
object.

The default namespace is named default.

Another big advantage using namespaces is that if you delete a
namespace you delete all objects whose name is in that
namespace. This is useful because a project in Kubernetes uses
a lot of different types of objects and if you want to delete
all the objects you’ve added to a Kubernetes cluster it can
take a while to find all the objects by type and then delete
them. However if you put all the objects in one namespace then
you need only delete the namespace and you’re done.

In the Makefile we have this line

Namespace=testns

which is used by this rule

reset:
 -kubectl delete namespace ${Namespace}
 kubectl create namespace ${Namespace}
 kubectl config set-context `kubectl config current-
context` --namespace ${Namespace}

The reset rule deletes all members of the Namespace named at
the top of the Makefile (here testns) and then recreates the
namespace and switches to it as the active namespace. After
doing the reset all objects created will be created in
the testns namespace.

We include this in the Makefile because you may find it
useful.

Docker Swarm

The focus of this document is Kubernetes but we also have a
Docker Swarm implementation of an AllegroGraph MMR cluster.
Docker Swarm is significantly simpler to setup and manage than
Kubernetes but has far fewer bells and whistles. Once you’ve
gotten the ag and agrepl images built and pushed to the Docker
Hub you need only link a set of machines running Docker
together into a Docker Swarm and then

% cd swarm ; make controlling copy

and the AllegroGraph MMR cluster is running Once it is running
you can access the cluster using Webview at

http://localhost:10035/

Adding Properties to Triples

https://allegrograph.com/adding-properties-to-triples-in-allegrograph/

in AllegroGraph
AllegroGraph provides two ways to add metadata to triples. The
first one is very similar to what typical property graph
databases provide: we use the named graph of triples to store
meta data about that triple. The second approach is what we
have termed triple attributes. An attribute is a key/value
pair associated with an individual triple. Each triple can
have any number of attributes. This approach, which is built
into AllegroGraph’s storage layer, is especially handy for
security and bookkeeping purposes. Most of this article will
discuss triple attributes but first we quickly discuss the
named graph (i.e. fourth element or quad) approach.

1.0 The Named Graph for Properties

Semantic Graph Databases are actually defined by the W3C
standard to store RDF as ‘Quads’ (Named Graph, Subject,
Predicate, and Object). The ‘Triple Store’ terminology has
stuck even though the industry has moved on to storing
quads. We believe using the named graph approach to store
metadata about triples is richer model that the property graph
database method.

The best way to understand this is to give an example. Below
we see two statements about Bruce weighing 105 kilos. The
triple portions (subject, predicate, object) are identical but
the named graphs (fourth elements) differ. They are used to
provide additional information about the triples. The graph
values are S1 and S2. By looking at these graphs we see that

The author of the first triple (with graph S1) is Sophia
and the author of the second (with graph S2) is Bruce
(who is also the subject of the two triples).
Sophia is 100% certain about her statement while Bruce
is only 10% certain about his.

https://allegrograph.com/adding-properties-to-triples-in-allegrograph/
https://franz.com/agraph/support/documentation/current/agraph-introduction.html
https://franz.com/agraph/support/documentation/current/triple-attributes.html

Using the named graph we can do even more than a property
graph database, as the value of a graph can itself be a node,
and is the subject of various triples which specify the
original triple’s author, date, and certainty. Additional
triples tell us the ages of the authors and the fact that the
authors are married.

Here is the data displayed in Gruff, AllegroGraph’s associated
triple store browser:

Using named graphs for a triple’s metadata is a powerful tool
but it does have limitations: (1) only one graph value can be
associated with a triple, (2) it can be important that
metadata is stored directly and physically with the triple
(with named graphs, the actual metadata is usually stored in
additional triples with the graph as the subject, as in the
example above), and (3) named graphs have competing uses and
may not be available for metadata.

2.0 The Triple Attributes approach

AllegroGraph uniquely offers a mechanism called triple
attributes where a collection of user defined key/value pairs
can be stored with each individual triple. The advantage of
this approach is manyfold, but the original use case was
designed for triple level security for an Intelligence agency.

By having triple attributes physically connected to the
triples in the storage layer we can provide a very powerful
and flexible mechanism to protect triples at the lowest
possible level in AllegroGraph’s architecture. Our first
example below shows this use case in great detail. Other use
cases are for example to add weights or costs to triples, to
be used in graph algorithms. Or we can add a recorded time or
expiration times to a triple and use that to provide a time
machine in AllegroGraph or do automatic clean-up of old data.

Example with Attributes:

 Subject – <http://dbpedia.org/resource/Arif_Babayev>
 Predicate – <http://dbpedia.org/property/placeOfDeath>
 Object – <http://dbpedia.org/resource/Baku>
 Named Graph – <http://ex#trans@@1142684573200001>
 Triple Attributes – {“securityLevel”: “high”,

“department”: “hr”, “accessToken”: [“E”, “D”]}

This article provides an initial introduction to attributes
and the associated concept of static filters, showing how they
are set up and used. We start with a security example which
also describes the basics of adding attributes to triples and
filtering query results based on attribute values. Then we
discuss other potential uses of attributes.

2.1 Triple Attribute Basics: a Security Example

One important purpose of attributes, when they were added as a
feature, was to allow for very fine triple-level security, so
that triples would be visible or invisible to users according
to the attributes of the triples and the permissions
associated with the query being posed by the user.

Note that users as such do not have attributes. Instead,
attribute values are assigned when a query is posed. This is
an important point: it is natural to think that there can be
an attribute SECURITY-LEVEL, and a triple can have attribute
SECURITY-LEVEL=3, and USER1 can have an attribute SECURITY-
LEVEL=2 and USER2 can have an attribute SECURITY-LEVEL=4, and
the system can require that the user SECURITY-LEVEL attribute
must be greater than the triple SECURITY-LEVEL for the triple
to be visible to the user. But that is not how attributes
work. The triples can have the attribute SECURITY-LEVEL=2 but
users do not have attributes. Instead, the filter is made part
of the query.

Here is a simple example. We define attributes and static
attribute filters using AGWebView. We have a repository named
repo. Here is a portion of its AGWebView page:

The red arrow points to the commands of interest: Manage
attribute definitions and Set static attribute filter. We
click on Set static attribute filter to define an attribute.
We have filled in the attribute information (name security-
level, minimum and maximum number allowed per triple, allowed
values, and whether order or not (yes in our case):

We click Save and the attribute is defined:

Then we define a filter (on the Set static attribute filter
page):

We defined the filter (attribute-set> user.security-level
triple.security-level) and clicked Save (the definition
appears in both the Edit and the Current fields). The filter
says that the “user” security level must be greater than the
triple security level. We put “user” in quotes because the
user security level is specified as part of the query, and has
no direct connection to any specific user.

Here are some triples in a nqx file fr.nqx. The first triple
has no attributes and the other three each has a security-
level attribute value.

 <http://www.franz.com#emp0>

<http://www.franz.com#position> “intern” .

 <http://www.franz.com#emp1>
<http://www.franz.com#position> “worker” {“security-level”:
“2”} .

 <http://www.franz.com#emp2>
<http://www.franz.com#position> “manager” {“security-level”:
“3”} .

 <http://www.franz.com#emp3>
<http://www.franz.com#position> “boss” {“security-level”: “4”}
.

We load this file into a repository which has the security-
level attribute defined as above and the static filter
mentioned above also defined. (Triples with attributes can
also be entered directly when using AGWebView with the Import
RDF from a text area input command).

Once the triples are loaded, we click View triples in
AGWebView and we see no triples:

This result is often surprising to users just beginning to
work with attributes and filters, who may expect the first
triple, abbreviated to [emp0 position intern], to be visible,
but the system is doing what it is supposed to do. It will
only show triples where the security-level of the user posing
the query is greater than the security level of the triple.
The user has no security level and so the comparison fails,
even with triples that have no security-level attribute value.
We will describe below how to ensure you can see triples with
no attributes.

So we need to specify an attribute value to the user posing
the query. (As said above, users do not themselves have
attribute values. But the attribute value of a user posing a
query can be specified as part of the query.) “User”
attributes are specified with a prefix like the following:

 prefix franzOption_userAttributes: <franz:%7B%22security-

level%22%3A%223%22%7D>

so the query should be

 prefix franzOption_userAttributes: <franz:%7B%22security-
level%22%3A%223%22%7D>

 select ?s ?p ?o { ?s ?p ?o . }

We will show the results below, but first what are all the %
signs and numbers doing there? Why isn’t the prefix just
prefix franzOption_userAttributes: <franz:{“security-
level”:”3″}>? The issue is that {“security-level”:”3″} won’t
read correctly. It must be URL encoded. We do this by going to
https://www.urlencoder.org/ (there are other websites that do
this as well) and put {“security-level”:”3″} in the first box,
click Encode and get %7B%22security-level%22%3A%223%22%7D. We
then paste that into the query, as shown above.

When we try that query in AGWebView, we get one result:

If we encode {“security-level”:”5″} to get the query

prefix franzOption_userAttributes: <franz:%7B%22security-
level%22%3A%225%22%7D>
select ?s ?p ?o { ?s ?p ?o . }

we get three results:

 emp3 position “boss”
 emp2 position “manager”
 emp1 position “worker”

since now the “user” security-level is greater than that of
any triples with a security-level attribute. But what about

the triple with subject emp0, the triple with no attributes?
It does not pass the filter which required that the user
attribute be greater than the triple attribute. Since the
triple has no attribute value so the comparison failed.

Let us redefine the filter to:

(or (attribute-set> user.security-level triple.security-level)
 (empty triple.security-level))

Now a triple will pass the filter if either (1) the “user”
security-level is greater than the triple security-level or

(2) the triple does not have a security-level attribute. Now
the query from above where the user has attribute security-
level:”5” will show all the triples with security-level less
than 5 and with no attributes at all. That happens to be all
four triples so far defined:

The triple

 emp0 position “intern”

will now appears as a result in any query where it satisfies
the SPARQL select regardless of the security-level of the

“user”.

It would be a useful feature that we could associate
attributes with actual users. However, this is not as simple
as it sounds. Attributes are features of repositories. If I
have a REPO1 repository, it can have a bunch of defined
attributes and filters but my REPO2 may know nothing about
them and its triples may not have any attributes at all, and
no attributes are defined, and (as a result) no filters. But
users are not repository-linked objects. While a repository
can be made read-only or unreadable for a user, users do not
have finer repository features. So an interface for providing
users with attributes, since it would only make sense on a
per-repository basis, requires a complicated interface. That
is not yet implemented (though we are considering how it can
be done).

Instead, users can have specific prefixes associated with them
and that prefix and be included in any query made by the user.

But if all it takes to specify “user” attributes is to put the
right line at the top of your SPARQL query, that does not seem
to provide much security. There is a feature for users “Allow
user attributes via SPARQL PREFIX franzOption_userAttributes”
which can restrict a user’s ability to specify “user”
attributes in a query, but that is a rather blunt instrument.
Instead, the model is that most users (outside of trusted
administrators) are not actually allowed to pose SPARQL
queries directly. Instead, there is an intermediary program
which takes the query a user requests and, having determined
the status of the user and what attribute values should be
given to the user, modifies the query with the appropriate
franzOption_userAttributes prefixes and then sends the query
on to the server, following which it captures the results and

sends them back to the requesting user. That intermediate
program will store the prefix suitable for a user and thus
associate “user” attributes with specific users.

2.2 Using attributes as additional data

Although triple security is one powerful use of attributes,
security is far from the only use. Just as the named graph can
serve as additional data, so can attributes. SPARQL queries
can use attribute values just as static filters can filter out
triples before displaying them. Let us take a simple example:
the attribute timeAdded. Every triple we add will have a
timeAdded attribute value which will be a string whose
contents are a datetime value, such as “2017-09-11T:15:52”. We
define the attribute:

Now let us define some triples:

 <http://www.franz.com#emp0>
<http://www.franz.com#callRank> “2” {“timeAdded”:
“2019-01-12T10:12:45” } .
 <http://www.franz.com#emp0>
<http://www.franz.com#callRank> “1” {“timeAdded”:
“2019-01-14T14:16:12” } .
 <http://www.franz.com#emp0>
<http://www.franz.com#callRank> “3” {“timeAdded”:
“2019-01-11T11:15:52” } .

 <http://www.franz.com#emp1>
<http://www.franz.com#callRank> “5” {“timeAdded”:
“2019-01-13T11:03:22” } .
 <http://www.franz.com#emp0>
<http://www.franz.com#callRank> “2” {“timeAdded”:
“2019-01-13T09:03:22” } .

We have a call center with employees making calls. Each call
has a ranking from 1 to 5, with 1 the lowest and 5 the
highest. We have data on five calls, four from emp0 and one
from emp1. Each triples has a timeAdded attribute with a
string containing a dateTime value. We load these into a empty
repository named at-test where the timeAdded attribute is
defined as above:

SPARQL queries can use the attribute magic properties (see
https://franz.com/agraph/support/documentation/current/triple-
attributes.html#Querying-Attributes-using-SPARQL). We use the
attributesNameValue magic property to see the subject, object,
and attribute value:

 select ?s ?o ?value {
 (?ta ?value)

https://franz.com/agraph/support/documentation/current/triple-attributes.html#Querying-Attributes-using-SPARQL
https://franz.com/agraph/support/documentation/current/triple-attributes.html#Querying-Attributes-using-SPARQL

<http://franz.com/ns/allegrograph/6.2.0/attributesNameValue>
 (?s ?p ?o) .
 }

But we are really interested just in emp0 and we would like to
see the results ordered by time, that is by the attribute
value, so we restrict the query to emp0 as the subject and
order the results:

 select ?o ?value {
 (?ta ?value)

<http://franz.com/ns/allegrograph/6.2.0/attributesNameValue>
 (<http://www.franz.com#emp0> ?p ?o) .
 } order by ?value

There are the results for emp0, who is clearly having
difficulties because the call rankings have been steadily
falling over time.

Another example using timeAdded is employee salary data. In
the Human Resources data, the salary of an employee is stored:

 emp0 hasSalary 50000

Now emp0 gets a raise to 55000. So we delete the triple above
and add the triple

 emp0 hasSalary 55000

But that is not satisfactory because we have lost the salary

history. If the boss asks “How much was emp0 paid initially?”
we cannot answer. There are various solutions. We could define
a salary change object, with predicates effectiveDate,
previousSalary, newSalary, and so on:

 salaryChange017 forEmployee emp0
 salaryChange017 effectiveDate “2019-01-12T10:12:45”
 salaryChange017 oldSalary “50000”
 salaryChange017 newSalary “55000”

 emp0 hasSalaryChange salaryChange017

and that would work fine, but perhaps it is more setup and
effort than is needed. Suppose we just have hasSalary triples
each with a timeAdded attribute. Then the current salary is
the latest one and the history is the ordered list. Here that
idea is worked out:

<http://www.franz.com#emp0> <http://www.franz.com#hasSalary>
“50000”^^<http://www.w3.org/2001/XMLSchema#integer>
{“timeAdded”: “2017-01-12T10:12:45” } .
<http://www.franz.com#emp0> <http://www.franz.com#hasSalary>
“55000”^^<http://www.w3.org/2001/XMLSchema#integer>
{“timeAdded”: “2019-03-17T12:00:00” } .

What is the current salary? A simple SPARQL query tells us:

 select ?o ?value {
 (?ta ?value)

<http://franz.com/ns/allegrograph/6.2.0/attributesNameValue>
 (<http://www.franz.com#emp0>
<http://www.franz.com#hasSalary> ?o) .
 } order by desc(?value) limit 1

The salary history is provided by the same query without the
LIMIT:

 select ?o ?value {
 (?ta ?value)

<http://franz.com/ns/allegrograph/6.2.0/attributesNameValue>

 (<http://www.franz.com#emp0>
<http://www.franz.com#hasSalary> ?o) .
 } order by desc(?value)

This method of storing salary data may not easily support more
complex questions which might be easily answered if we went
the salaryChange object route mentioned above but if you are
not looking to ask those questions, you should not do the
extra work (and the risk of data errors) required.

You could use the graph of each triple for the timeAdded. All
the examples above would work with minor tweaks. But there are
many uses for the named graph of a triple. Attributes are
available and using them for one purpose does not restrict
their use for other purposes.

New!!! AllegroGraph v6.5 –
Multi-model Semantic Graph
and Document Database
Download – AllegroGraph v6.5 and Gruff v7.3

AllegroGraph – Documentation

Gruff – Documentation

Adding JSON/JSON-LD Documents to a Graph Database

Traditional document databases (e.g. MongoDB) have excelled at
storing documents at scale, but are not designed for linking
data to other documents in the same database or in different
databases. AllegroGraph 6.5 delivers the unique power to
define many different types of documents that can all point to
each other using standards-based semantic linking and then run
SPARQL queries, conduct graph searches, execute complex joins
and even apply Prolog AI rules directly on a diverse sea of
objects.

AllegroGraph 6.5 provides free text indexes of JSON documents
for retrieval of information about entities, similar to
document databases. But unlike document databases, which only
link data objects within documents in a single database,
AllegroGraph 6.5 moves the needle forward in data analytics by
semantically linking data objects across multiple JSON
document stores, RDF databases and CSV files. Users can run a
single SPARQL query that results in a combination of
structured data and unstructured information inside documents
and CSV files. AllegroGraph 6.5 also enables retrieval of
entire documents.

There are many reasons for working with JSON-LD. The big
search engines force ecommerce companies to mark up their

https://allegrograph.com/new-allegrograph-v6-5-multi-model-semantic-graph-and-document-database/
https://allegrograph.com/new-allegrograph-v6-5-multi-model-semantic-graph-and-document-database/
https://allegrograph.com/new-allegrograph-v6-5-multi-model-semantic-graph-and-document-database/
https://allegrograph.com/downloads/
https://allegrograph.com/downloads/
https://franz.com/agraph/support/documentation/current/agraph-introduction.html
https://franz.com/agraph/gruff/gruff_documentation.html

webpages with a systematic description of their products and
more and more companies use it as an easy serialization format
to share data.

A direct benefit for companies using AllegroGraph is that they
now can combine their documents with graphs, graph search and
graph algorithms. Normally when you store documents in a
document database you set up your documents in such a way that
it is optimized for certain direct retrieval queries.
Performing complex joins for multiple types of documents or
even performing a shortest path through a mass of object
(types) is too complicated. Storing JSON-LD objects in
AllegroGraph gives users all the benefits of a document
database AND the ability to semantically link objects
together, run complex joins, and perform graph search queries.

Another key benefit for companies is that your application
developers don’t have to learn the entire semantic technology
stack, especially the part where developers have to create
individual RDF triples or edges. Application developers love
to work with JSON data as serialization for objects. In
JavaScript the JSON format is syntactically identical to the
code for creating JavaScript objects and in Python the most
import data structure is the ‘dictionary’ which is also near
identical to JSON.

Key AllegroGraph v6.5 Features:

Support for loading JSON-LD and also some non-RDF data
files, that is files which are not already organized
into triples or quads. See Loading non-RDF data section
in the Data Loading document for more information on
loading non-RDF data files. Loading JSON-LD files is
described along with other RDF formats in the Data
Loading document. The section Supported RDF
formats lists all supported RDF formats.

https://franz.com/agraph/support/documentation/current/agload.html#loading-raw-data
https://franz.com/agraph/support/documentation/current/agload.html
https://franz.com/agraph/support/documentation/current/agload.html
https://franz.com/agraph/support/documentation/current/agload.html
https://franz.com/agraph/support/documentation/current/agload.html#supported-rdf
https://franz.com/agraph/support/documentation/current/agload.html#supported-rdf

Support for two phase commits (2PC), which allows
AllegroGraph to participate in distributed transactions
compromising a number of AllegroGraph and non-
AllegroGraph databases (e.g. MongoDB, Solr, etc), and to
ensure that the work of a transaction must either be
committed on all participants or be rolled back on all
participants. Two-phase commit is described in the Two-
phase commit document.

An event scheduler: Users can schedule events in the
future. The event specifies a script to run. It can run
once or repeatedly on a regular schedule. See the Event
Scheduler document for more information.

AllegroGraph is 100 percent ACID, supporting
Transactions: Commit, Rollback, and Checkpointing. Full
and Fast Recoverability. Multi-Master Replication
Triple Attributes – Quads/Triples can now have
attributes which can provide fine access control.
Data Science – Anaconda, R Studio
3D and multi-dimensional geospatial functionality
SPARQL v1.1 Support for Geospatial, Temporal, Social
Networking Analytics, Hetero Federations
Cloudera, Solr, and MongoDB integration
JavaScript stored procedures
RDF4J Friendly, Java Connection Pooling
Graphical Query Builder for SPARQL and Prolog – Gruff
SHACL (Beta) and SPIN Support (SPARQL Inferencing
Notation)
AGWebView – Visual Graph Search, Query Interface, and DB
Management
Transactional Duplicate triple/quad deletion and
suppression
Advanced Auditing Support

https://franz.com/agraph/support/documentation/current/two-phase-commit.html
https://franz.com/agraph/support/documentation/current/two-phase-commit.html
https://franz.com/agraph/support/documentation/current/scheduler.html
https://franz.com/agraph/support/documentation/current/scheduler.html

Dynamic RDFS++ Reasoning and OWL2 RL Materializer
AGLoad with Parallel loader optimized for both
traditional spinning media and SSDs.

Numerous other optimizations, features, and enhancements.
Read the release notes –
https://franz.com/agraph/support/documentation/current/release
-notes.html

https://franz.com/agraph/support/documentation/current/release-notes.html
https://franz.com/agraph/support/documentation/current/release-notes.html

