
The Future of AI: Machine
Learning and Knowledge Graphs
Bringing knowledge graph and machine learning technology
together can improve the accuracy of the outcomes and augment
the potential of machine learning approaches. With knowledge
graphs, AI language models are able to represent the
relationships and accurate meaning of data instead of simply
generating words based on patterns.

Read this special report to dive into key uses cases, best
practices for getting started, and technology solutions every
organization should know about.

The Future of AI: Machine Learning and Knowledge Graphs

Natural Language Processing
and Machine Learning in
AllegroGraph
The majority of our customers build Knowledge Graphs with
Natural Language and Machine learning components. Because of
this trend AllegroGraph now offers strong support for the use
of Natural Language Processing and Machine learning.

Franz Inc has a team of NLP engineers and Taxonomy experts
that can help with building turn-key solutions. In general
however, our customers already have some expertise in house.
In those cases we train customers in how to take the output of
NLP and ML processing and turn that into an efficient

https://allegrograph.com/the-future-of-ai-machine-learning-and-knowledge-graphs/
https://allegrograph.com/the-future-of-ai-machine-learning-and-knowledge-graphs/
https://allegrograph.com/wp-content/uploads/2021/04/THE-FUTURE-OF-AI-Machine-Learning-and-Knowledge-Graphs-2021.pdf
https://allegrograph.com/natural-language-processing-and-machine-learning-in-allegrograph/
https://allegrograph.com/natural-language-processing-and-machine-learning-in-allegrograph/
https://allegrograph.com/natural-language-processing-and-machine-learning-in-allegrograph/

Knowledge Graph based on best practices in the industry.

This document primarily describes the NLP and ML plug-in
AllegroGraph.

Note that many enterprises already have a data science team
with NLP experts that use modern open source NLP tools like
Spacy, Gensim or Polyglot, or Machine Learning based NLP tools
like BERT and Scikit-Learn. In another blog about Document
Handling we describe a pipeline of how to deal with NLP in
Document Knowledge Graphs by using our NLP and ML plugin and
mix that with open source tools.

PlugIn features for Natural Language Processing and Machine
Learning in AllegroGraph.

Here is the outline of the plugin features that we are going
to describe in more detail.

Machine learning

data acquisition
classifier training
feature extraction support
performance analysis
model persistence

NLP

handling languages
handling dictionaries
tokenization
entity extraction
Sentiment analysis
basic pattern matching

SPARQL Access

Future development

https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/
https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/
https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/

Machine Learning

ML: Data Acquisition
Given that the NLP and ML functions operate within
AllegroGraph, after loading the plugins, data acquisition can
be performed directly from the triple-store, which drastically
simplifies the data scientist workflow. However, if the data
is not in AllegroGraph yet we can also import it directly from
ten formats of triples or we can use our additional
capabilities to import from CSV/JSON/JSON-LD.

Part of the Data Acquisition is also that we need to pre-
process the data for training so we provide these three
functions:

prepare-training-data
split-dev-test
equalize (for resampling)

Machine Learning: Classifiers

Currently we provide simple linear classifiers. In case
there’s a need for neural net or other advanced
classifiers, those can be integrated on-demand.
We also provide support for online learning (online
machine learning is an ML method in which data becomes
available in a sequential order and is used to update
the best predictor for future data at each step, as
opposed to batch learning techniques which generate the
best predictor by learning on the entire training data
set at once). This feature is useful for many real-world
data sets that are constantly updated.
The default classifiers available are Averaged
Perceptron and AROW

Machine Learning: Feature Extraction

Each classifier is expecting a vector of features: either
feature indices (indicative features) or pairs of numbers

(index – value). These are obtained in a two-step process:

1. A classifier-specific extract-features method should be
defined that will return raw feature vector with features
identified by strings of the following form:
prefix|feature.

The prefix should be provided as a keyword argument to the
collect-features method call, and it is used to distinguish
similar features from different sources (for instance, for
distinct predicates).

2. Those features will be automatically transformed to
unique integer ids. The resulting feature vector of
indicator features may look like the following: #(1 123
2999 …)

Note that these features may be persisted to AllegroGraph for
repeated re-use (e.g. for experimenting with classifier
hyperparameter tuning or different classification models).

Many possible features may be extracted from data, but there
is a set of common ones, such as:

1. individual tokens of the text field
2. ngrams (of a specified order) of the text field
3. presence of a token in a specific dictionary (like, the
dictionary of slang words)
4. presence/value of a certain predicate for the subject of
the current triple
5. length of the text

And in case the user has a need for special types of tokens we
can write specific token methods, here is an example (in Lisp)
that produces an indicator feature of a presence of emojis in
the text:

(defmethod collect-features ((method (eql :emoji)) toks &key
pred)
(dolist (tok toks)

(when (some #'(lambda (code)
 (or (<= #x1F600 code #x1F64F)
 (<= #x1F650 code #x1F67F)
 (<= #x1F680 code #x1F6FF)))
 (map 'vector #'char-code tok))
(return (list "emoji")))))

Machine Learning: Integration with Spacy

The NLP and ML community invents new features and capabilities
at an incredible speed. Way faster than any database company
can keep up with. So why not embrace that? Whenever we need
something that we don’t have in AllegroGraph yet we can call
out to Spacy or any other external NLP tool. Here is an
example of using feature extraction from Spacy to collect
indicator features of the text dependency parse relations:

(defmethod collect-features ((method (eql :dep)) deps &key
pred dep-type dep-labels)
 (loop :for ds :in deps :nconc
 (loop :for dep :in ds
 :when (and (member (dep-tag dep) dep-labels)
 (dep-head dep)
 (dep-tok dep))
 :collect (format nil "dep|~a|~a_~a"
 dep-type
 (tok-word (dep-head dep)
 (tok-word (dep-tok dep))))))

The demonstrated integration uses Spacy Docker instance and
its HTTP API.

Machine Learning: Classifier Analysis

We provide all the basic tools and metrics for classifier
quality analysis:

accuracy
f1, precision, recall

confusion matrix
and an aggregated classification report

Machine Learning: Model Persistence

The idea behind model persistence is that all the data can be
stored in AllegroGraph, including features and classifier
models. AllegroGraph stores classifiers directly as triples.
This is a far more robust and language-independent approach
than currently popular among data scientists reliance on
Python pickle files. For the storage we provide a basic
triple-based format, so it is also possible to interchange the
models using standard RDF data formats.

The biggest advantage of this approach is that when adding
text to AllegroGraph we don’t have to move the data externally
to perform the classification but can keep the whole pipeline
entirely internal.

Natural Language Procession (NLP)

NLP: Language Packs

Most of the NLP tools are language-dependent: i.e. there’s a
general function that uses language-specific model/rules/etc.
In AllegroGraph, support for particular languages is provided
on-demand and all the language-specific is grouped in the so
called “language pack” or langpack, for short – a directory
with a number of text and binary files with predefined names.

Currently, the langpack for English is provided at
nlp/langs/en.zip, with the following files:

contractions.txt – a dictionary of contractions
abbrs.txt – a dictionary of abbreviations
stopwords.txt – a dictionary of stopwords

pos-dict.txt – positive sentiment words
neg-dict.txt – negative sentiment words
word-tok.txt – a list of word tokenization rules

Additionally, we use a general dictionary, a word-form
dictionary (obtained from Wiktionary), and custom lexicons.

Loading a langpack for a particular language is performed
using load-langpack.

Creating a langpack is just a matter of adding the properly
named files to the directory and can be done manually. The
names of the files should correspond to the names of the
dictionary variables that will be filled by the pack. The
dictionaries that don’t have a corresponding file will be just
skipped.We have just finished creating a langpack for Spanish
and it will be published soon. In case you need other
dictionaries we use our AG/Spacy infrastructure. Spacy
recently added a comprehensive list of new languages:

NLP: Dictionaries

Dictionaries are read from the language packs or other sources
and are kept in memory as language-specific hash-tables.
Alongside support for storing the dictionaries as text files,
there are also utilities for working with them as triples and
putting them into the triple store.

Note that we at Franz Inc specialize in Taxonomy Building
using various commercial taxonomy building tools. All these

tools can now export these taxonomies as a mix of SKOS
taxonomies and OWL. We have several functions to read directly
from these SKOS taxonomies and turn them into dictionaries
that support efficient phrase-level lookup.

NLP: Tokenization

Tokenization is performed using a time-proven rule-based
approach. There are 3 levels of tokenization that have both a
corresponding specific utility function and an :output format
of the tokenize function:

:parags – splits the text into a list of lists of tokens
for paragraphs and sentences in each paragraph
:sents – splits the text into a list of tokens for each
sentence
:words – splits the text into a plain list of tokens

Paragraph-level tokenization considers newlines as paragraph
delimiters. Sentence-level tokenization is geared towards
western-style writing that uses dot and other punctuation
marks to delimit sentences. It is, currently, hard-coded, but
if the need arises, additional handling may be added for other
writing systems. Word-level tokenization is performed using a
language-specific set of rules.

NLP: Entity Extraction

Entity extraction is performed by efficient matching (exactly
or fuzzy) of the token sequences to the existing dictionary
structure.

It is expected that the entities come from the triple store
and there’s a special utility function that builds lookup
dictionaries from all the triples of the repository identified
by certain graphs that have a skos:prefLabel or skos:altLabel
property. The lookup may be case-insensitive with the
exception of abbreviations (default) or case-sensitive.

Similar to entity extraction, there’s also support for
spotting sentiment words. It is performed using the
positive/negative words dictionaries from the langpack.

One feature that we needed to develop for our customers is
‘heuristic entity extraction’ . In case you want to extract
complicated product names from text or call-center
conversations between customers and agents you run into the
problem that it becomes very expensive to develop altLabels in
a taxonomy tool. We created special software to facilitate the
automatic creation of altlabels.

NLP: Basic Pattern Matching for relationship and event
detection

Getting entities out of text is now well understood and
supported by the software community. However, to find complex
concepts or relationships between entities or even events is
way harder and requires a flexible rule-based pattern matcher.
Given our long time background in Lisp and Prolog one can
imagine we created a very powerful pattern matcher.

SPARQL Access

Currently all the features above can be controlled as stored
procedures or using Lisp as the command language. We have a
new (beta) version that uses SPARQL for most of the control.
Here are some examples. Note that fai is a magic-property
namespace for “AI”-related stuff and inc is a custom namespace
of an imaginary client:

1. Entity extraction

select ?ent {
 ?subj fai:entityTaxonomy inc:products .
 ?subj fai:entityTaxonomy inc:salesTerms .
 ?subj fai:textPredicate inc:text .
 ?subj fai:entity(fai:language "en", fai:taxonomy
inc:products) ?ent .
}

The expressions ?subj fai:entityTaxonomy inc:poducts and ?subj
fai:entityTaxonomy inc:salesTerms specify which taxonomies to
use (the appropriate matchers are cached).
The expression ?subj fai:entity ?ent will either return the
already extracted entities with the specified predicate
(fai:entity) or extract the new entities according to the
taxonomies in the texts accessible by fai:textPredicate.

2. fai:sentiment will return a single triple with sentiment
score:

select ?sentiment {
 ?subj fai:textPredicate inc:text .
 ?subj fai:sentiment ?sentiment .
 ?subj fai:language "en" .
 ?subj fai:sentimentTaxonomy franz:sentiwords .
}

3. Text classification:
Provided inc:customClassifier was already trained previously,
this query will return labels for all texts as a result of
classification.

select ?label {
?subj fai:textPredicate inc:text .
?subj fai:classifier inc:customClassifier .
?subj fai:classify ?label .
?label fai:storeResultPredicate inc:label .
}

Further Development
Our team is currently working on these new features:

A more accessible UI (python client & web) to facilitate
NLP and ML pipelines
Addition of various classifier models
Sequence classification support (already implemented for

a customer project)
Pre-trained models shipped with AllegroGraph (e.g.
English NER)
Graph ML algorithms (deepwalk, Google Expander)
Clustering algorithms (k-means, OPTICS)

Document Knowledge Graphs
with NLP and ML
A core competency for Franz Inc is turning text and documents
into Knowledge Graphs (KG) using Natural Language Processing
(NLP) and Machine Learning (ML) techniques in combination with
AllegroGraph. In this document we discuss how the techniques
described in [NLP and ML components of AllegroGraph] can be
combined with popular software tools to create a robust
Document Knowledge Graph pipeline.

We have applied these techniques for several Knowledge Graphs
but in this document we will primarily focus on three
completely different examples that we summarize below. First
is the Chomsky Legacy Project where we have a large set of
very dense documents and very different knowledge sources,
Second is a knowledge graph for an intelligent call center
where we have to deal with high volume dynamic data and real-
time decision support and finally, a large government
organization where it is very important that people can do a
semantic search against documents and policies that steadily

https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/
https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/
https://allegrograph.com/natural-language-processing-and-machine-learning-in-allegrograph/

change over time and where it is important that you can see
the history of documents and policies.

Example [1] Chomsky Knowledge Graph
The Chomsky Legacy Project is a project run by a group of
admirers of Noam Chomsky with the primary goal to preserve all
his written work, including all his books, papers and
interviews but also everything written about him. Ultimately
students, researchers, journalists, lobbyists, people from the
AI community, and linguists can all use this knowledge graph
for their particular goals and questions.

The biggest challenges for this project are finding causal
relationships in his work using event and relationship
extraction. A simple example we extracted from an author
quoting Chomsky is that neoliberalism ultimately causes
childhood death.

Example 2: N3 Results and the Intelligent Call Center
This is a completely different use case (See a recent KMWorld
Articlehttps://allegrograph.com/knowledge-graphs-enhance-custo
mer-experience-through-speed-and-accuracy/). Whereas the
previous use case was very static, this one is highly dynamic.
We analyze in real-time the text chats and spoken
conversations between call center agents and customers. Our
knowledge graph software provides real-time decision support
to make the call center agents more efficient. N3 Results

helps big tech companies to sell their high tech solutions,
mostly cloud-based products and services but also helps their
clients sell many other technologies and services.

The main challenge we tackle is to really deeply understand
what the customer and agent are talking about. None of this
can be solved by only simple entity extraction but requires
elaborate rule-based and machine learning techniques. Just to
give a few examples. We want to know if the agent talked about
their most important talking points: that is, did the agent
ask if the customer has a budget, or the authority to make a
decision or a timeline about when they need the new technology
or whether they actually have expressed their need. But also
whether the agent reached the right person, and whether the
agent talked about the follow-up. In addition, if the customer
talks about competing technology we need to recognize that and
provide the agent in real-time with a battle card specific to
the competing technology. And in order to be able to do the
latter, we also analyzed the complicated marketing materials
of the clients of N3.

Example 3: Complex Government Documents
Imagine a regulatory body with tens of thousands of documents.
Where nearly every paragraph has reference to other paragraphs
in the same document or other documents and the documents
change over time. The goal here is to provide the end-users in
the government with the right document given their current
task at hand. The second goal is to keep track of all the
changes in the documents (and the relationship between
documents) over time.

The Document to Knowledge Graph Pipeline

Let us first give a quick summary in words of how we turn
documents into a Knowledge Graph.

[1] Taxonomy Creation

Taxonomy of all the concepts important to the business using
open source or commercial taxonomy builders. An available
industry taxonomy is a good starting point for additional
customizations.

[2] Document Preparation

We then take a document and turn it into an intermediate XML
using Apache Tika. Apache Tika supports more than 1000
document types and although Apache Tika is a fantastic tool,
the output is still usually not clean enough to create a graph
from, so we use Spacy rules to clean up the XML to make it as
uniform as possible.

[3] Extract Document MetaData

Most documents also contain document metadata (author, date,
version, title, etc) and Apache Tika will also deliver the
metadata for a document as a JSON object.

[4] XML to Triples

Our tools ingest the XML and metadata and transform that into
a graph-based document tree. The document is the root and from
that, it branches out into chapters, optionally sections, all
the way down to paragraphs. The ultimate text content is in
the paragraphs. In the following example we took the XML
version of Noam Chomsky’s book Media Control and turned that
into a tree. The following shows a tiny part of that tree. We
start with the Media Control node, then we show three (of the
11) chapters, for one chapter we show three (of the 6)
paragraphs, and then we show the actual text in that
paragraph. We sometimes can go even deeper to the level of
sentences and tokens but for most projects that is overkill.

[5] Entity Extractor

AllegroGraph’s entity extractor takes as input the text of
each paragraph in the document tree and one or more of the
taxonomies and returns recognized SKOS concepts based on
prefLabels and altLabels. AllegroGraph’s entity extractor is
state of the art and especially powerful when it comes to
complex terms like product names. We find that in our call
center a technical product name can sometimes have up to six
synonyms or very specific jargon. For example the Cisco
product Catalyst 9000 will also be abbreviated as the cat 9k.
Instead of developing altLabels for every possible permutation
that human beings *will* use, we have specialized heuristics
to optimize the yield from the entity extractor. The following
picture shows 4 (of the 14) concepts discovered in paragraph
16. Plus one person that was extracted by IBM’s NLU.

[6] Linked Data Enrichment

In many use cases, AllegroGraph can link extracted entities to
concepts in the linked data cloud. The most prominent being
DBpedia, wikidata, the census database, GeoNames, but also
many Linked Open Data repositories. One tool that is very
useful for this is IBM’s Natural Language Understanding
program but there are others available. In the following image
we see that the Nelson Mandela entity (Red) is linked to the
dbpedia entity for Nelson Mandela and that then links to the
DBpedia itself. We extracted some of his spouses and a child
with their pictures.

[7] Complex Relationship and Event Extraction

Entity extraction is a first good step to ‘see’ what is in
your documents but it is just the first step. For example: how
do you find in a text whether company C1 merged with company
C2. There are many different ways to express the fact that a
company fired a CEO. For example: Uber got rid of Kalanick,
Uber and Kalanick parted ways, the board of Uber kicked out
the CEO, etc. We need to write explicit symbolic rules for
this or we need a lot of training data to feed a machine
learning algorithm.

[8] NLP and Machine Learning

There are many many AI algorithms that can be applied in
Document Knowledge Graphs. We provide best practices for
topics like:

[a] Sentiment Analysis, using good/bad word lists or
training data.
[b] Paragraph or Chapter similarity using statistical
techniques like Gensim similarity or symbolic techniques
where we just the overlap of recognized entities as a
function of the size of a text.
[c] Query answering using word2vec or more advanced
techniques like BERT
[d] Semantic search using the hierarchy in SKOS taxonomies.
[e] Summarization techniques for Abstractive or Extractive
abstracts using Gensim or Spacy.

[9] Versioning and Document tracking

Several of our customers with Document Knowledge Graphs have
noted the one constant in all of these KGs is that documents
change over time. As part of our solution, we have created
best practices where we deal with these changes. A crucial
first step is to put each document in its own graph (i.e. the
fourth element of every triple in the document tree is the
document id itself). When we get a new version of a document
the document ID changes but the new document will point back
to the old version. We then compute which paragraphs stayed
the same within a certain margin (there are always changes in
whitespace) and we materialize what paragraphs disappeared in
the new version and what new paragraphs appeared compared to
the previous version. Part of the best practice is to put the
old version of a document in a historical database that at all
times can be federated with the ‘current’ set of documents.

Note that in the following picture we see the progression of a
document. On the right hand side we have a newer version of a
document 1100.161 with a chapter -> section -> paragraph ->
contents where the content is almost the same as the one in

the older version. But note that the newer one spells
‘decision making’ as one word whereas the older version said
‘decision-making’. Note that also the chapter titles and the
section titles are almost the same but not entirely. Also,
note that the new version has a back-pointer (changed-from) to
the older version.

[10] Statistical Relationships

One important analytic one can do on documents is to look at
the co-occurrence of terms. Although, given that certain words
might occur more frequently in text, we have to correct the
co-occurrence between words for the frequency of the two terms
in a co-occurrence to get a better idea of the
‘surprisingness’ of a co-occurrence. The platform offers
several techniques in Python and Lisp to compute these co-
occurrences. Note that in the following picture we computed
the odds ratios between recognized entities and so we see in

the following gruff picture that if Noam Chomsky talks about
South Africa then the chances are very high he will also talk
about Nelson Mandela.

