
Embedding Gruff In a Web Page
Gruff can be embedded in any web page to use Gruff inside your
own web site or web application. The file embedding.html in
the Gruff installation folder provides a complete example of
this. Display that file in a web browser to see the complete
instructions for setting everything up. That same file serves
as an example web page, with buttons at the bottom for
embedding Gruff into that web page after doing the setup.

A Gruff feature allows a single
launcher instance of Gruff to be
running as a server and
listening for requests from web
browsers. It will launch a
separate instance of Gruff for
each web page that requests one,
up to a specified limit. It can

optionally use the launcher instance itself for one client, to
minimize the number of Gruff executables that are running.
Running Gruff as a server uses various command line options
that are described under Running Gruff in a Web Browser.

Your web page needs to include an HTML iframe where Gruff will
be placed, plus a link or button that asks a remote Gruff
server to launch an instance of Gruff for the reader to use in
that iframe. You will need to adapt the JavaScript code that’s
in embedding.html to make your link or button handle the reply
from the Gruff server.

Simply embedding Gruff in an
HTML iframe allows a reader to
use Gruff by itself as usual
inside your web page. A more
advanced feature is that your
web application can also send
custom commands to Gruff. For

https://allegrograph.com/embedding-gruff-in-a-web-page/
https://allegrograph.com/products/gruff/
https://franz.com/agraph/support/documentation/current/gruff.html#RunningGruffinaWebBrowser

example, your application could
derive a set of triples that it wants Gruff to display, and
then send those triples to Gruff. The code in embedding.html
also demonstrates this ability. The complete documentation for
sending commands to Gruff is at The HTTP Interface to Gruff.

KM Global Network Conference
– Visualizing Knowledge
(Recording)
The Knowledge Management Global Network (KMGN) is a not for
profit community founded in 2014. It is composed of a network
of national communities for Knowledge Management
practitioners. KMGN is the formalization of a relationship
between KM partner association to share resources and work
collaboratively.

Dr. Jans Aasman presented – Visualizing Knowledge

Using Microsoft Power BI with
AllegroGraph
There are multiple methods to integrate AllegroGraph SPARQL
results into Microsoft Power BI. In this document we describe

https://franz.com/agraph/support/documentation/current/gruff.html#TheHTTPInterfacetoGruff
https://allegrograph.com/km-global-network-conference-2021/
https://allegrograph.com/km-global-network-conference-2021/
https://allegrograph.com/km-global-network-conference-2021/
https://allegrograph.com/using-microsoft-power-bi-with-allegrograph/
https://allegrograph.com/using-microsoft-power-bi-with-allegrograph/

two best practices to automate queries and refresh results if
you have a production AllegroGraph database with new streaming
data:

The first method uses Python scripts to feed Power BI. The
second method issues SPARQL queries directly from Power BI
using POST requests.

Method 1: Python Script:

Assuming you know Python and have it installed locally, this
is definitely the easiest way to incorporate SPARQL results
into Power BI. The basic idea of the method is as follows:
First, the Python script enables a connection to your desired
AllegroGraph repository. Then we utilize AllegroGraph’s
Python API within our script to run a SPARQL query and return
it as a Pandas dataframe. When running this script within
Power BI Desktop, the Python scripting service recognizes all
unique dataframes created, and allows you to import the
dataframe into Power BI as a table, which can then be used to
create visualizations.

Requirements:

You must have the AllegroGraph Python API installed. If1.
you do not, installation instructions are here:
https://franz.com/agraph/support/documentation/current/p
ython/install.html
Python scripting must be enabled in Power BI Desktop.2.
Instructions to do so are here:
https://docs.microsoft.com/en-us/power-bi/connect-data/d
esktop-python-scripts

a) As mentioned in the article, pandas and matplotlib
must be installed. This can be done with ‘pip install
pandas’ and ‘pip install matplotlib’ in your terminal.

The Process:

https://franz.com/agraph/support/documentation/current/python/install.html
https://franz.com/agraph/support/documentation/current/python/install.html
https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-python-scripts
https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-python-scripts

Once these requirements have been met, create a Python file
with whatever script editor you usually use. The following
code will create a connection to your desired repository. For
this example, we will be using the Kennedy dataset that is
available with the AllegroGraph distribution (See the
‘Tutorial’ directory). Load the Kennedy.ntriples file into
your running AllegroGraph. (Replace the ‘****’ in the code
with your corresponding username and password.)

#the necessary imports

import os

from franz.openrdf.connect import ag_connect

from franz.openrdf.query.query import QueryLanguage

import pandas as pd

#connect to your agraph repository

def setup_env_var(var_name, value, description):

os.environ[var_name] = value

print("{}: {}".format(description, value))

setup_env_var('AGRAPH_HOST', 'localhost', 'Hostname')

setup_env_var('AGRAPH_PORT', '10035', 'Port')

setup_env_var('AGRAPH_USER', '****', 'Username')

setup_env_var('AGRAPH_PASSWORD', '****', 'Password')

conn = ag_connect('kennedy', create=False, clear=False)

2. We then want to create a query. For this example, we will

first show what our data looks like, what the visual query of
the information is, and what the written query looks like.
With the following query we want every person’s first and last
names, as well as their birth years. Here is a small portion
of the data visualized in Gruff, and then the visualization of
the query:

3. Then add the written query to the python script as a
variable string (we added an additional line to the query to
sort on birth year). Next use the API functionality to simply
execute the query and turn the results into a pandas

dataframe.

query = """select ?person ?first_name ?last_name ?birth_year
where
{ ?person <http://www.franz.com/simple#first-name> ?first_name
;
 <http://www.franz.com/simple#birth-year> ?birth_year
;
 rdf:type <http://www.franz.com/simple#person> ;
 <http://www.franz.com/simple#last-name> ?last_name .
}
order by desc(?birth_year)"""

with conn.executeTupleQuery(query) as result:
 df = result.toPandas()

When looking at the result, we see that we have a DataFrame!

4. Now we will use this script in Power BI. When in Power BI
Desktop, go to ‘Get Data’ and look for the python script
option. Then simply copy and paste your entire script into the
text box, and run the script. In this case, our output looks
like this:

5. Next simply ‘Load’ the data, and then you can use the
Power BI Desktop interface to create whatever visualizations
you want! If you do have a lot of additional operations to
perform on your dataframe, we recommend doing these in your
python script.

Method 2: POST Request:

For the SPARQL query via POST requests to work you need to
url-encode the query. Every modern programming language will
support that, but in our example we will be using Python
again. This method is better for when you do not have python
locally installed or prefer a different programming language.

It is possible to send a GET request from Power BI, but once
the results from the query reach a certain size, a POST
request is required, which is confusing to do within the Power
BI Desktop interface. The following steps will show you how to
do SPARQL Queries using POST requests. It looks a bit odd but
it works well.

The Process:

1. In your AG WebView create an ‘anonymous’ user. (Go to
admin -> Users -> [add a user] -> and add ‘anonymous’ as
username without adding a password). You can use these
settings:

2. Go to your desired repository in WebView and Click on
‘Queries’ -> ‘New’

3. Write a simple SPARQL query, and run it to make sure you
get the correct response back.

4. In python create the following script: (Assuming your
AllegroGraph is on your localhost port 10035 and your repo is
called ‘kennedy’)

import urllib

def CreatePOSTquery(query):
 start =

"http://anonymous:@localhost:10035/repositories/kennedy?queryL
n=SPARQL&limit=1000&infer=false&returnQueryMetadata=false&chec
kVariables=false&query="
 response = start + urllib.parse.quote(query)
 return response

This function url-encodes the query and attaches it to the
POST request. Replace the ‘localhost:10035’ and ‘kennedy’
strings in the start variable with your corresponding data.
Then, using the same query as our previous example, we create
our url-encoded POST query:

query = """select ?person ?first_name ?last_name ?birth_year
where
{ ?person <http://www.franz.com/simple#first-name> ?first_name
;
 <http://www.franz.com/simple#birth-year> ?birth_year
;
 rdf:type <http://www.franz.com/simple#person> ;
 <http://www.franz.com/simple#last-name> ?last_name .
}
order by desc(?birth_year)"""

result = CreatePOSTquery(query)
print(result)

This gives us the following result:

5. Within Power BI Desktop we go to ‘Get data’ and create a
‘Blank query’ and go into the ‘Advanced Editor’ window. Using
the following format we will get our desired results (please
note that due to the length of the url-encoded request, it did
not all fit in the image. Copy and pasting into the url field
works fine. The ‘url’ variable needs to be in quotes and have
a comma at the end):

We see the following results:

6. One last step is to turn the top row into the column
names, which can be achieved by pressing the ‘Use first row as
headers’:

The best part about both of these methods is that once the
query has been created, Power BI can refresh the visuals using
the same queries if your data changed. This can be achieved by

scheduling refreshes within the Power BI Desktop interface
(https://docs.microsoft.com/en-us/power-bi/connect-data/refres
h-data#configure-scheduled-refresh)

Please send any questions or issues to: support@franz.com

Advanced Knowledge Graph
Visualization with New Gruff
v8
High Performance Data Visualizations Accelerate Graph Search
and Query Building — Driving Data Discoveries for Banks,
Healthcare Providers and Enterprises Globally

OAKLAND, Calif., May 12, 2020 — Franz Inc., an early innovator
in Artificial Intelligence (AI) and leading supplier of
Semantic Graph Database technology for Knowledge Graph
Solutions, today announced Gruff 8, a browser-based graph
visualization software tool for exploring and discovering
connections within enterprise Knowledge Graphs. Gruff 8, which
has been integrated into AllegroGraph 7, enables users to
visually build queries and visualize connections between data
without writing code, which speeds discoveries and enhances
the ability to uncover hidden connections within data.

“By augmenting Knowledge Graphs with visualizations, users can
determine insights that would otherwise elude them,” said Jans
Aasman, CEO of Franz Inc. “Gruff’s dynamic data visualizations
increase users’ understanding of data by instantly
illustrating relevant relationships, hidden patterns and

https://docs.microsoft.com/en-us/power-bi/connect-data/refresh-data#configure-scheduled-refresh
https://docs.microsoft.com/en-us/power-bi/connect-data/refresh-data#configure-scheduled-refresh
mailto:support@franz.com
https://allegrograph.com/advanced-knowledge-graph-visualization-with-new-gruff-v8/
https://allegrograph.com/advanced-knowledge-graph-visualization-with-new-gruff-v8/
https://allegrograph.com/advanced-knowledge-graph-visualization-with-new-gruff-v8/
https://franz.com

data’s significance to outcomes. Gruff also helps make data
actionable by displaying it in a way that decision-makers can
see the significance of data relative to a business problem or
solution.”

“Few tools exist that can quickly turn arbitrary RDF graph
pattern matches into clear visualizable results,” said Michael
Pool, Global Head of Semantic Modeling and Engineering, Senior
Director at BNY Mellon Bank. “Gruff is invaluable in turning
our knowledge graph data into useful and actionable analytic
insights.”

Gruff enables users to create visual Knowledge Graphs that
display data relationships in views that are driven by the
user. Ad hoc and exploratory analysis can be performed by
simply clicking on different graph nodes to answer questions.
Gruff’s unique ‘Time Machine’ feature provides the capability
to explore temporal context and connections within data. The
visual query builder within Gruff empowers both novice and
expert users to create simple to highly complex queries
without writing any code.

Browser-based Graph Visualization – Gruff 8 is a browser-based
application that does not require an additional download or
application installation once AllegroGraph is installed. All
AllegroGraph users need is a web browser and internet
connection to login. This approach gives users the convenience
to access Gruff from anywhere on any type of system, while
also simplifying deployment and streamlining updates within
enterprise environments.

Louis Rumanes at UnitedHealth Group Research and Development
recognizes the value of using Gruff as a browser-based app and
commented, “Nice job on Gruff in a browser and I think this
will be a gamechanger.”

Accelerated Visual Graph Rendering – Visual renderings within
Gruff are now up to 3X faster. Users can dynamically lay out

cyclical graphs, display tables of properties and build SPARQL
or Prolog queries as visual diagrams.

Dynamic Graph Visualizations within AllegroGraph – Gruff is
fully integrated with AllegroGraph 7, Franz’s leading semantic
knowledge graph solution, which seamlessly leverages Gruff’s
advanced graph visualizations and graphical query builder to
reveal hidden connections in knowledge graph data.
AllegroGraph 7, with FedShard™, is a breakthrough Knowledge
Graph solution that allows infinite data integration through a
patented approach that unifies all data and knowledge base
silos into an Entity-Event Knowledge Graph solution that can
support massive big data analytics. AllegroGraph 7 utilizes
unique federated sharding capabilities that drive 360-degree
insights and enable complex reasoning across distributed
Knowledge Graphs.

To support ubiquitous AI, a Knowledge Graph system needs to
fuse and integrate data, not just in representation, but in
context (ontologies, metadata, domain knowledge, terminology
systems), and time (temporal relationships between components
of data). The rich functional and contextual integration of
multi-modal, predictive modeling, artificial intelligence
suitable for large scale analytics is what distinguishes
AllegroGraph 7 as a modern, scalable enterprise analytic
platform.

AllegroGraph 7 is the first big temporal Knowledge Graph
technology that encapsulates a novel entity-event model
natively integrated with domain ontologies and metadata with
dynamic ways of setting the analytics lens on all entities in
the system (patient, person, devices, transactions, events,
and operations) as prime objects that can be the focus of an
analytic (AI, ML, DL) process.

“AllegroGraph 7’s support of Entity-Event Data Modeling is the
most welcome innovation and addition to our arsenal in
reimagining healthcare and implementing Precision Medicine,”

said Dr. Parsa Mirhaji, Director of Center for Health Data
Innovations at the Albert Einstein College of Medicine and
Montefiore Health System, NY. “Precision Medicine is about
moving away from statistical averages and broad-based
patterns. It is about connecting many dots, from different
contexts and throughout time, to support precision diagnosis
and to recommend the precision care that can take into account
all the subtle differences and nuisances of individuals and
their personal experiences throughout their life. This
technology is about saving lives, by leveraging data, context
and analytics and is what Franz’s Entity-Event Data Modeling
brings to the table.”

Gruff 8 Availability and Pricing

Guff 8 is immediately available as a free download from
AllegroGraph.com and is integrated as part of AllegroGraph’s
cloud offering on the Amazon Marketplace.

Gruff Webinar
Join Franz’s webcast discussing Gruff 8 entitled “Visualizing
and Exploring Knowledge Graphs with the New Browser based

Gruff” – by registering for the May 14th Webinar.

About Franz Inc.

Franz Inc. is an early innovator in Artificial Intelligence
(AI) and leading supplier of Semantic Graph Database
technology with expert knowledge in developing and deploying
Knowledge Graph solutions. The foundation for Knowledge Graphs
and AI lies in the facets of semantic technology provided by
AllegroGraph and Allegro CL. AllegroGraph is a database
technology that enables businesses to extract sophisticated
decision insights and predictive analytics from highly
complex, distributed data that cannot be uncovered with
conventional databases. Unlike traditional relational
databases or other NoSQL databases, AllegroGraph employs
semantic graph technologies that process data with contextual

https://allegrograph.com/
https://aws.amazon.com/marketplace/seller-profile?id=0f392d00-70ea-430b-ac7a-b7dec2b83285&ref=dtl_B085S7JBWF
https://allegrograph.com/webcasts/visualizing-and-exploring-knowledge-graphs-with-the-new-browser-based-gruff/
https://allegrograph.com/webcasts/visualizing-and-exploring-knowledge-graphs-with-the-new-browser-based-gruff/
https://allegrograph.com/webcasts/visualizing-and-exploring-knowledge-graphs-with-the-new-browser-based-gruff/
https://allegrograph.com/

and conceptual intelligence. AllegroGraph is able run queries
of unprecedented complexity to support predictive analytics
that help organizations make more informed, real-time
decisions. AllegroGraph is utilized by dozens of the top F500
companies worldwide. To learn more about Franz and
AllegroGraph, go to www.franz.com.

Document Knowledge Graphs
with NLP and ML
A core competency for Franz Inc is turning text and documents
into Knowledge Graphs (KG) using Natural Language Processing
(NLP) and Machine Learning (ML) techniques in combination with
AllegroGraph. In this document we discuss how the techniques
described in [NLP and ML components of AllegroGraph] can be
combined with popular software tools to create a robust
Document Knowledge Graph pipeline.

We have applied these techniques for several Knowledge Graphs
but in this document we will primarily focus on three
completely different examples that we summarize below. First
is the Chomsky Legacy Project where we have a large set of
very dense documents and very different knowledge sources,
Second is a knowledge graph for an intelligent call center
where we have to deal with high volume dynamic data and real-
time decision support and finally, a large government
organization where it is very important that people can do a
semantic search against documents and policies that steadily
change over time and where it is important that you can see
the history of documents and policies.

Example [1] Chomsky Knowledge Graph

https://franz.com
https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/
https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/
https://allegrograph.com/natural-language-processing-and-machine-learning-in-allegrograph/

The Chomsky Legacy Project is a project run by a group of
admirers of Noam Chomsky with the primary goal to preserve all
his written work, including all his books, papers and
interviews but also everything written about him. Ultimately
students, researchers, journalists, lobbyists, people from the
AI community, and linguists can all use this knowledge graph
for their particular goals and questions.

The biggest challenges for this project are finding causal
relationships in his work using event and relationship
extraction. A simple example we extracted from an author
quoting Chomsky is that neoliberalism ultimately causes
childhood death.

Example 2: N3 Results and the Intelligent Call Center
This is a completely different use case (See a recent KMWorld
Articlehttps://allegrograph.com/knowledge-graphs-enhance-custo
mer-experience-through-speed-and-accuracy/). Whereas the
previous use case was very static, this one is highly dynamic.
We analyze in real-time the text chats and spoken
conversations between call center agents and customers. Our
knowledge graph software provides real-time decision support
to make the call center agents more efficient. N3 Results
helps big tech companies to sell their high tech solutions,
mostly cloud-based products and services but also helps their
clients sell many other technologies and services.

The main challenge we tackle is to really deeply understand
what the customer and agent are talking about. None of this
can be solved by only simple entity extraction but requires
elaborate rule-based and machine learning techniques. Just to
give a few examples. We want to know if the agent talked about
their most important talking points: that is, did the agent
ask if the customer has a budget, or the authority to make a
decision or a timeline about when they need the new technology
or whether they actually have expressed their need. But also
whether the agent reached the right person, and whether the
agent talked about the follow-up. In addition, if the customer
talks about competing technology we need to recognize that and
provide the agent in real-time with a battle card specific to
the competing technology. And in order to be able to do the
latter, we also analyzed the complicated marketing materials
of the clients of N3.

Example 3: Complex Government Documents
Imagine a regulatory body with tens of thousands of documents.
Where nearly every paragraph has reference to other paragraphs
in the same document or other documents and the documents
change over time. The goal here is to provide the end-users in
the government with the right document given their current
task at hand. The second goal is to keep track of all the
changes in the documents (and the relationship between
documents) over time.

The Document to Knowledge Graph Pipeline

Let us first give a quick summary in words of how we turn
documents into a Knowledge Graph.

[1] Taxonomy Creation

Taxonomy of all the concepts important to the business using
open source or commercial taxonomy builders. An available
industry taxonomy is a good starting point for additional
customizations.

[2] Document Preparation

We then take a document and turn it into an intermediate XML
using Apache Tika. Apache Tika supports more than 1000
document types and although Apache Tika is a fantastic tool,
the output is still usually not clean enough to create a graph
from, so we use Spacy rules to clean up the XML to make it as
uniform as possible.

[3] Extract Document MetaData

Most documents also contain document metadata (author, date,
version, title, etc) and Apache Tika will also deliver the
metadata for a document as a JSON object.

[4] XML to Triples

Our tools ingest the XML and metadata and transform that into
a graph-based document tree. The document is the root and from
that, it branches out into chapters, optionally sections, all
the way down to paragraphs. The ultimate text content is in
the paragraphs. In the following example we took the XML
version of Noam Chomsky’s book Media Control and turned that
into a tree. The following shows a tiny part of that tree. We
start with the Media Control node, then we show three (of the
11) chapters, for one chapter we show three (of the 6)
paragraphs, and then we show the actual text in that
paragraph. We sometimes can go even deeper to the level of
sentences and tokens but for most projects that is overkill.

[5] Entity Extractor

AllegroGraph’s entity extractor takes as input the text of
each paragraph in the document tree and one or more of the
taxonomies and returns recognized SKOS concepts based on
prefLabels and altLabels. AllegroGraph’s entity extractor is
state of the art and especially powerful when it comes to
complex terms like product names. We find that in our call
center a technical product name can sometimes have up to six
synonyms or very specific jargon. For example the Cisco
product Catalyst 9000 will also be abbreviated as the cat 9k.
Instead of developing altLabels for every possible permutation
that human beings *will* use, we have specialized heuristics
to optimize the yield from the entity extractor. The following
picture shows 4 (of the 14) concepts discovered in paragraph
16. Plus one person that was extracted by IBM’s NLU.

[6] Linked Data Enrichment

In many use cases, AllegroGraph can link extracted entities to
concepts in the linked data cloud. The most prominent being
DBpedia, wikidata, the census database, GeoNames, but also
many Linked Open Data repositories. One tool that is very
useful for this is IBM’s Natural Language Understanding
program but there are others available. In the following image
we see that the Nelson Mandela entity (Red) is linked to the
dbpedia entity for Nelson Mandela and that then links to the
DBpedia itself. We extracted some of his spouses and a child
with their pictures.

[7] Complex Relationship and Event Extraction

Entity extraction is a first good step to ‘see’ what is in
your documents but it is just the first step. For example: how
do you find in a text whether company C1 merged with company
C2. There are many different ways to express the fact that a
company fired a CEO. For example: Uber got rid of Kalanick,
Uber and Kalanick parted ways, the board of Uber kicked out
the CEO, etc. We need to write explicit symbolic rules for
this or we need a lot of training data to feed a machine
learning algorithm.

[8] NLP and Machine Learning

There are many many AI algorithms that can be applied in
Document Knowledge Graphs. We provide best practices for
topics like:

[a] Sentiment Analysis, using good/bad word lists or
training data.
[b] Paragraph or Chapter similarity using statistical
techniques like Gensim similarity or symbolic techniques
where we just the overlap of recognized entities as a
function of the size of a text.
[c] Query answering using word2vec or more advanced
techniques like BERT
[d] Semantic search using the hierarchy in SKOS taxonomies.
[e] Summarization techniques for Abstractive or Extractive
abstracts using Gensim or Spacy.

[9] Versioning and Document tracking

Several of our customers with Document Knowledge Graphs have
noted the one constant in all of these KGs is that documents
change over time. As part of our solution, we have created
best practices where we deal with these changes. A crucial
first step is to put each document in its own graph (i.e. the
fourth element of every triple in the document tree is the
document id itself). When we get a new version of a document
the document ID changes but the new document will point back
to the old version. We then compute which paragraphs stayed
the same within a certain margin (there are always changes in
whitespace) and we materialize what paragraphs disappeared in
the new version and what new paragraphs appeared compared to
the previous version. Part of the best practice is to put the
old version of a document in a historical database that at all
times can be federated with the ‘current’ set of documents.

Note that in the following picture we see the progression of a
document. On the right hand side we have a newer version of a
document 1100.161 with a chapter -> section -> paragraph ->
contents where the content is almost the same as the one in

the older version. But note that the newer one spells
‘decision making’ as one word whereas the older version said
‘decision-making’. Note that also the chapter titles and the
section titles are almost the same but not entirely. Also,
note that the new version has a back-pointer (changed-from) to
the older version.

[10] Statistical Relationships

One important analytic one can do on documents is to look at
the co-occurrence of terms. Although, given that certain words
might occur more frequently in text, we have to correct the
co-occurrence between words for the frequency of the two terms
in a co-occurrence to get a better idea of the
‘surprisingness’ of a co-occurrence. The platform offers
several techniques in Python and Lisp to compute these co-
occurrences. Note that in the following picture we computed
the odds ratios between recognized entities and so we see in

the following gruff picture that if Noam Chomsky talks about
South Africa then the chances are very high he will also talk
about Nelson Mandela.

Graphorum – Dr. Aasman
Presenting
Graph-Driven Event Processing for Intelligent Customer
Operations

Wednesday, October 16, 2019
10:15 AM – 11:15 AM
Level: Case Study

https://allegrograph.com/graphorum-dr-aasman-presenting/
https://allegrograph.com/graphorum-dr-aasman-presenting/

In the typical organization, the
contents of the actual chat or
voice conversation between agent
and customer is a black hole. In
the modern Intelligent Customer
Operations center, the interactions
between agent and customer are a
source of rich information that
helps agents to improve the quality

of the interaction in real time, creates more sales, and
provides far better analytics for management. The Intelligent
Customer Operations center is enabled by a taxonomy of the
products and services sold, speech recognition to turn
conversations into text, a taxonomy-driven entity extractor to
take the important concepts out of conversations, and machine
learning to classify chats in various ways. All of this is
stored in a real-time Knowledge Graph that also knows (and
stores) everything about customers and agents and provides the
raw data for machine learning to improve the agent/customer
interaction.

In this presentation, we describe a real-world Intelligent
Customer Organization that uses graph-based technology for
taxonomy-driven entity extraction, speech recognition, machine
learning, and predictive analytics to improve quality of
conversations, increase sales, and improve business
visibility.

https://graphorum2019.dataversity.net/sessionPop.cfm?confid=13
2&proposalid=11010

Ontology Summit 2020 –
Knowledge Graphs
The Ontology Summit is an annual series of events that
involves the ontology community and communities related to
each year’s theme chosen for the summit. The Ontology Summit
was started by Ontolog and NIST, and the program has been co-
organized by Ontolog, NIST, NCOR, NCBO, IAOA, NCO_NITRD along
with the co-sponsorship of other organizations that are
supportive of the Summit goals and objectives.

Knowledge graphs, closely related to ontologies and semantic
networks, have emerged in the last few years to be an
important semantic technology and research area. As structured
representations of semantic knowledge that are stored in a
graph, KGs are lightweight versions of semantic networks that
scale to massive datasets such as the entire World Wide Web.
Industry has devoted a great deal of effort to the development
of knowledge graphs, and they are now critical to the
functions of intelligent virtual assistants such as Siri and
Alexa. Some of the research communities where KGs are relevant
are Ontologies, Big Data, Linked Data, Open Knowledge Network,
Artificial Intelligence, Deep Learning, and many others.

Dr. Jans Aasman presented – “Why Knowledge Graphs Hit the Hype
Cycle and What they have in common”

Presentation Page

Presentation Slides

https://allegrograph.com/ontology-summit-2020-knowledge-graphs/
https://allegrograph.com/ontology-summit-2020-knowledge-graphs/
https://ontologforum.org/index.php/ConferenceCall_2019_09_04
https://ontologforum.s3.amazonaws.com/OntologySummit2020/Introduction/Why-Knowledge-Graphs-Now--JansAasman_20190904.pdf

Gruff Time Machine Tutorial

Here is an example for trying out the new time slider in
Gruff’s graph view. It uses triples from crunchbase.com that
contain a history of corporate acquisitions and funding events
over several years. Gruff’s time bar allows you to examine
those events chronologically, and also to display only the
nodes that have events within a specified date range.

Download the Crunchbase triples from the bottom of the
Gruff
download page at
https://allegrograph.com/products/gruff/

Create a new triple-store and used “File | Load Triples
| Load
N-Triples” to load that triples file into the new
triple-store. Use
“File | Commit” to ensure that the loaded triples get
saved.

Select “Visual Graph Options | Time Bar | Momentary Time
Predicates”
and paste the following five predicate IRIs into the
dialog that
appears. The time bar will then work with the date
properties that
are provided by these predicates, whenever you are
browsing this

https://allegrograph.com/gruff-time-machine-tutorial/
https://allegrograph.com/products/gruff/

particular triple-store.

http://www.franz.com/hasfunded_at
http://www.franz.com/hasfirst_funding_at
http://www.franz.com/hasfounded_at
http://www.franz.com/haslast_funding_at
http://www.franz.com/hasacquired_at

Select “View | Optional Graph View Panes | Show Time
Bar” to reveal
the time bar at the bottom of the graph view. The
keyboard shortcut
for this command is Shift+A to allow quickly toggling
the time bar
on and off.

Select “Display | Display Some Sample Triples” to do
just that. The
time bar will now display a vertical line for each of
the requested
date properties of the displayed nodes. Moving the mouse
cursor
over these “date property markers” will display more
information
about those events.

Click down on the yellow-orange rectangle at the right
end of the
time bar and drag it to the left. This will make the
“time filter
range” smaller, and nodes that have date properties that
are no
longer in this range will temporarily disappear from the
display.
They will reappear if you drag the slider back to the

right or
toggle the time bar back off.

For more information, the full time bar introduction is in the
Gruff documentation under the command “View | Optional Graph
View Panes | Show Time Bar”.

Check out the “Chart Widget” for showing date properties of
the visible nodes.

New Gruff v7.4 – Now
Available!
DOWNLOAD – Gruff

Gruff is the Knowledge Graph industry’s leading Graph
Visualization software for exploring and discovering
connections within data. Gruff provides novice users and graph
experts the ability to visually build queries and explore
connections as they developed over time.

Gruff produces dynamic data visualizations that organize
connections between data in views that are driven by the user.
This visual flexibility can instantly unveil new discoveries
and knowledge that turn complex data into actionable business
insights. Gruff was developed by Franz to address Graph Search
in large data sets and empower users to intelligently explore
graphs in multiple views including:

Graphical View with “Time Machine” feature – See the

https://allegrograph.com/new-gruff-v7-4-now-available/
https://allegrograph.com/new-gruff-v7-4-now-available/
https://allegrograph.com/downloads/

shape and density of graph data evolve over time
Tabular view – Understand objects as a whole
Outline view – Explore the often hierarchical nature of
graphs
Query view – Write Prolog or SPARQL queries
Graphical Query Builder – Create queries visually via
drag and drop

Gruff’s ‘Time Machine’ feature provides users an important
capability to explore temporal connections in your data.
Users can see how relationships are created over time and are
able to replay the evolving graph for new temporal based
insights.

Key New Features and Updates in Gruff v7.4 – To see the full
list – Release Notes.

The new command “File | Connect to Gruff Demo Server”
lets you try out Gruff on the “extended actors” database
at a public AllegroGraph server that’s provided by
Franz, when you don’t have an AllegroGraph server
yourself. See the Example button in the query view and
in the graphical query view for a few example queries.
“Help | Animated Demo” also works there.
The graphical query view has new grouper boxes for graph
group graph pattens, either for a particular graph or
for a graph variable.
The graphical query view now has node filters for the
SPARQL operators IN and NOT IN (for limiting a node
variable to a particular set of values), for langMatches
(for selecting only literals of a particular language),
and for CONTAINS, STRSTARTS, and STRENDS (for finding
literals that contain specified text). Also, the “bound”
and “not bound” filters were broken, and the LIMIT and

https://franz.com/agraph/support/documentation/current/gruff.html#ReleaseNotes

OFFSET values will now be included when saving a
graphical query.
Gruff can now connect to AllegroGraph servers through an
HTTP proxy (as was possible with SPARQL endpoints
already). See Global Options | Communications | HTTP
Proxy.
Additional triple file formats can now be loaded with
the new commands “File | Load Triples | Load JSON-LD”,
“Load TriG”, and “Load N-Quads Extended”. Corresponding
new commands are also on the “File | Export Displayed
Data As” child menu. Also, the new command “Global
Options | Miscellaneous | Commit Frequency When Loading
Triples” lets you control whether and how often commits
will happen during loading.
The query view’s “Create Visual Graph” button will now
create link lines for additional SPARQL property path
operators, namely InversePath (^) and AlternativePath
(|). And it will draw the correct character for
ZeroOrOnePath (?). (See “Query Options | Show Links
for Property Paths in Visual Graphs” for turning this
off.)
If the triple store defines label properties for
predicates, then Gruff will now display those labels for
the predicate objects as it has always done for nodes,
as long as “Global Options | Node Label Predicates | Use
Label Predicates for Node Labels” is on.
When “Visual Graph Options | Node Labels | Show Full
URIs on Nodes” is on, full URIs will be also displayed
for the predicates in link labels. And full URIs will be
shown in the legend as well.

Gruff Documentation

https://franz.com/agraph/support/documentation/current/gruff.html

Webcast – Speech Recognition,
Knowledge Graphs, and AI for
Intelligent Customer
Operations – April 3, 2019
Presenters – Burt Smith, N3 Results and Jans Aasman, Franz
Inc.

In the typical sales organization the contents of the actual
chat or voice conversation between agent and customer is a
black hole. In the modern Intelligent Customer
Operations center (e.g. N3 Results – www.n3results.com) the
interactions between agent and customer are a source of rich
information that helps agents to improve the quality of the
interaction in real time, creates more sales, and provides far
better analytics for management.

Join us for this Webinar where we describe a real world
Intelligent Customer Operations center that uses graph based
technology for taxonomy driven entity extraction, speech
recognition, machine learning and predictive analytics to
improve quality of conversations, increase sales and improve
business visibility.

View the recorded webinar.

https://allegrograph.com/webcast-speech-recognition-knowledge-graphs-and-ai-for-intelligent-customer-operations/
https://allegrograph.com/webcast-speech-recognition-knowledge-graphs-and-ai-for-intelligent-customer-operations/
https://allegrograph.com/webcast-speech-recognition-knowledge-graphs-and-ai-for-intelligent-customer-operations/
https://allegrograph.com/webcast-speech-recognition-knowledge-graphs-and-ai-for-intelligent-customer-operations/
https://n3results.com/
https://youtu.be/mUZq_-HHD4g

