
IEEE – Entity Event Knowledge
Graph for Powerful Health
Informatics
As part of Franz’s participation in the IEEE – ICHI
conference, our paper has been published and is available from
the IEEE Website.

ICHI 2022 is a premier community
forum concerned with the
application of computer science,
information science, data

science, and informatics principles, as well as information
technology, and communication science and technology to
address problems and support research in healthcare, medicine,
life science, public health, and everyday wellness.

Franz Inc. presented on June 14th – Entity Event Knowledge
Graph for Powerful Health Informatics

Download Franz’s IEEE Publication – Entity Event Knowledge
Graph for Powerful Health Informatics.

Conference Website

https://allegrograph.com/ieee-ichi-healthcare-informatics-2/
https://allegrograph.com/ieee-ichi-healthcare-informatics-2/
https://allegrograph.com/ieee-ichi-healthcare-informatics-2/
https://ieeexplore.ieee.org/document/9874697
https://ieeexplore.ieee.org/document/9874697
https://allegrograph.com/wp-content/uploads/2022/06/Entity-Event-KG-for-Powerful-Health-Informatics-IEEE-ICHI-6-14-2022-copy.pdf
https://allegrograph.com/wp-content/uploads/2022/06/Entity-Event-KG-for-Powerful-Health-Informatics-IEEE-ICHI-6-14-2022-copy.pdf
https://ohnlp.github.io/IEEEICHI2022/

No-Code Queries Can
Accelerate AI and Data
Analytics
By Dr. Jans Aasman, CEO

The low-code, no-code methodology is becoming highly sought-
after throughout the modern IT ecosystem—and with good reason.
Options that minimize manually writing code capitalize on the
self-service, automation idiom that’s imperative in a world in
which working remotely and doing more with less keeps
organizations in business.

Most codeless or low-code approaches avoid the need for
writing language-specific code and replace it with a visual
approach in which users simply manipulate on-screen objects
via a drag-and-drop, point-and-click interface to automate
code generation. The intuitive ease of this approach — which
is responsible for new standards of efficiency and
democratization of no-code development — has now extended to
no-code query writing.

No-code querying provides two unassailable advantages to the
enterprise. First, it considerably expedites what is otherwise
a time-consuming ordeal, thereby accelerating data analytics
and AI-driven applications and second, it can help
organizations overcome the talent shortage of developers and
knowledge engineers. Moreover, it does so by furnishing all
the above benefits that make codeless and low-code options
mandatory for success.

Read the full article at DZone.

https://allegrograph.com/no-code-queries-can-accelerate-ai-and-data-analytics/
https://allegrograph.com/no-code-queries-can-accelerate-ai-and-data-analytics/
https://allegrograph.com/no-code-queries-can-accelerate-ai-and-data-analytics/
https://dzone.com/articles/no-code-queries-can-accelerate-ai-and-data-analyti

Data-Centric Architecture
Forum – DCAF 2021
Data and the subsequent knowledge derived from information are
the most valuable strategic asset an organization possesses.
Despite the abundance of sophisticated technology
developments, most organizations don’t have disciplines or a
plan to enable data-centric principles.

DCAF 2021 will help provide clarity.
Our overarching theme for this conference is to make it REAL.
Real in the sense that others are becoming data-centric, it is
achievable, and you are not alone in your efforts.

Join us in understanding how data as an open, centralized
resource outlives any application. Once globally integrated by
sharing a common meaning, internal and external data can be
readily integrated, unlike the traditional “application-
centric” mindset predominantly used in systems development.

The compounding problem is these application systems each have
their own completely idiosyncratic data models. The net result
is that after a few decades, hundreds or thousands of
applications implemented have given origin to a segregated
family of disparate data silos. Integration debt rises and
unsustainable architectural complexity abounds with every
application bought, developed, or rented (SaaS).

Becoming data-centric will improve data characteristics of
findability, accessibility, interoperability, and re-usability
(FAIR principles), thereby allowing data to be exported into
any needed format with virtually free integration.\

https://allegrograph.com/data-centric-architecture-forum-dcaf-2021/
https://allegrograph.com/data-centric-architecture-forum-dcaf-2021/

Dr. Jans Aasman to present –
Franz’s approach to Entity Event
Data Modeling for Enterprise
Knowledge Fabrics

Text Analytics Forum 2020 –
KMWorld Connect
Join us November 17, 2020 – Text Analytics has the ability to
add depth, meaning, and intelligence to any organization’s
most under-utilized resource – text. Through text analytics,
enterprises can unlock a wealth of information that would not
otherwise be available. Join us as we explore the power of
text analytics to provide relevant, valuable, and actionable
data for enterprises of all kinds.

Jans Aasman to present – Analyzing Spoken Conversations for
Real-Time Decision Support in Mission-Critical Applications

November 17, 2020 at 2PM Eastern

https://www.dcaforum.com/presenters/
https://www.dcaforum.com/presenters/
https://www.dcaforum.com/presenters/
https://allegrograph.com/text-analytics-forum-2020-kmworld-connect/
https://allegrograph.com/text-analytics-forum-2020-kmworld-connect/
https://pheedloop.com/kmwconnect/site/sessions/?id=SESD7IZ1KCQJ3Q7EQ
https://pheedloop.com/kmwconnect/site/sessions/?id=SESD7IZ1KCQJ3Q7EQ

Sharing Ontologies Globally
To Speed Science And
Healthcare Solutions –
OntoPortal
International Ontology Sharing Is Becoming A Reality

A consortium of researchers recently formed an organization
dedicated to standardizing how scientists define their
ontologies, which are essential for retrieving datasets as
well as understanding and reproducing research. The group
called OntoPortal Alliance is creating a public repository of
internationally shared domain-specific ontologies. All the
repositories will be managed with a common OntoPortal
appliance that has been tested with AllegroGraph Semantic
Knowledge Graph software. This enables any OntoPortal adopter
to get all the power, features, maintainability, and support
benefits that come from using a widely adopted, state-of-the-
art semantic knowledge graph database.

Read the full article at HealthIT Outcomes –

As Dr. Jans Aasman, CEO of Franz Inc. explains, “When building
a Knowledge Graph as your enterprise’s single source of truth,
it’s critical to include ontologies and taxonomies. AI
applications and complex reasoning analytics require
information from both databases and knowledge bases that
contain domain information, taxonomies, and ontologies to
solve complex questions. To make this possible, we developed a
novel hybrid sharding technology called FedShard, which
facilitates the combination of data and knowledge required by
applications like Montefiore’s PALM. But this approach is not
unique or specific to Healthcare, it is applicable in many

https://allegrograph.com/sharing-ontologies-globally-to-speed-science-and-healthcare-solutions-ontoportal/
https://allegrograph.com/sharing-ontologies-globally-to-speed-science-and-healthcare-solutions-ontoportal/
https://allegrograph.com/sharing-ontologies-globally-to-speed-science-and-healthcare-solutions-ontoportal/
https://allegrograph.com/sharing-ontologies-globally-to-speed-science-and-healthcare-solutions-ontoportal/
https://ontoportal.org/
https://ontoportal.org/allegrograph-inside/
https://www.healthitoutcomes.com/doc/sharing-ontologies-globally-to-speed-science-and-healthcare-solutions-0001

other industries, which is why we are excited about
OntoPortal’s plans to bring sharing of domain ontologies to a
broad audience.”

Knowledge Graphs: A Single
Source of Truth for the
Enterprise

https://allegrograph.com/knowledge-graphs-a-single-source-of-truth-for-the-enterprise/
https://allegrograph.com/knowledge-graphs-a-single-source-of-truth-for-the-enterprise/
https://allegrograph.com/knowledge-graphs-a-single-source-of-truth-for-the-enterprise/

The notion of a “single source of
truth” for the enterprise has been
the proverbial moving goalpost for
generations of CIOs, only to be
waylaid by brittle technology and
unending legacy systems. Truth-
seeking visions rebuffed by
technological trends have
continuously confounded business

units trying to achieve growth and market penetration. But
technology innovation has finally led us to a point where CIOs
can now deliver that truth.

Graphing the Truth

Knowledge graphs possess the power to deliver a single source
of truth by linking together any assortment of data sources
required, standardizing their diversity of data elements, and
eliminating silos. They support the most advanced analytics
options and decentralized transactions, which is why they’re
now deployed as systems of records for some of the most
significant, mission-critical use cases affecting our
population.

Because they scale to include almost any number of
applications — and link to other knowledge graphs as well —
these repositories are the ideal solution for real-time
information necessary to inform business users’ performances
with concrete, data-supported facts. Most importantly, users
can get an exhaustive array of touchpoints pertaining to any
customer, product, or interaction with an organization from
the knowledge graph, making it a single source of truth.

Read the full article at Dataversity.

https://www.dataversity.net/solving-knowledge-graph-data-prep-standards/
https://www.dataversity.net/knowledge-graphs-a-single-source-of-truth-for-the-enterprise/

Using Microsoft Power BI with
AllegroGraph
There are multiple methods to integrate AllegroGraph SPARQL
results into Microsoft Power BI. In this document we describe
two best practices to automate queries and refresh results if
you have a production AllegroGraph database with new streaming
data:

The first method uses Python scripts to feed Power BI. The
second method issues SPARQL queries directly from Power BI
using POST requests.

Method 1: Python Script:

Assuming you know Python and have it installed locally, this
is definitely the easiest way to incorporate SPARQL results
into Power BI. The basic idea of the method is as follows:
First, the Python script enables a connection to your desired
AllegroGraph repository. Then we utilize AllegroGraph’s
Python API within our script to run a SPARQL query and return
it as a Pandas dataframe. When running this script within
Power BI Desktop, the Python scripting service recognizes all
unique dataframes created, and allows you to import the
dataframe into Power BI as a table, which can then be used to
create visualizations.

Requirements:

You must have the AllegroGraph Python API installed. If1.
you do not, installation instructions are here:
https://franz.com/agraph/support/documentation/current/p
ython/install.html
Python scripting must be enabled in Power BI Desktop.2.
Instructions to do so are here:
https://docs.microsoft.com/en-us/power-bi/connect-data/d
esktop-python-scripts

https://allegrograph.com/using-microsoft-power-bi-with-allegrograph/
https://allegrograph.com/using-microsoft-power-bi-with-allegrograph/
https://franz.com/agraph/support/documentation/current/python/install.html
https://franz.com/agraph/support/documentation/current/python/install.html
https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-python-scripts
https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-python-scripts

a) As mentioned in the article, pandas and matplotlib
must be installed. This can be done with ‘pip install
pandas’ and ‘pip install matplotlib’ in your terminal.

The Process:

Once these requirements have been met, create a Python file
with whatever script editor you usually use. The following
code will create a connection to your desired repository. For
this example, we will be using the Kennedy dataset that is
available with the AllegroGraph distribution (See the
‘Tutorial’ directory). Load the Kennedy.ntriples file into
your running AllegroGraph. (Replace the ‘****’ in the code
with your corresponding username and password.)

#the necessary imports

import os

from franz.openrdf.connect import ag_connect

from franz.openrdf.query.query import QueryLanguage

import pandas as pd

#connect to your agraph repository

def setup_env_var(var_name, value, description):

os.environ[var_name] = value

print("{}: {}".format(description, value))

setup_env_var('AGRAPH_HOST', 'localhost', 'Hostname')

setup_env_var('AGRAPH_PORT', '10035', 'Port')

setup_env_var('AGRAPH_USER', '****', 'Username')

setup_env_var('AGRAPH_PASSWORD', '****', 'Password')

conn = ag_connect('kennedy', create=False, clear=False)

2. We then want to create a query. For this example, we will
first show what our data looks like, what the visual query of
the information is, and what the written query looks like.
With the following query we want every person’s first and last
names, as well as their birth years. Here is a small portion
of the data visualized in Gruff, and then the visualization of
the query:

3. Then add the written query to the python script as a
variable string (we added an additional line to the query to
sort on birth year). Next use the API functionality to simply
execute the query and turn the results into a pandas
dataframe.

query = """select ?person ?first_name ?last_name ?birth_year
where
{ ?person <http://www.franz.com/simple#first-name> ?first_name
;
 <http://www.franz.com/simple#birth-year> ?birth_year
;
 rdf:type <http://www.franz.com/simple#person> ;
 <http://www.franz.com/simple#last-name> ?last_name .
}
order by desc(?birth_year)"""

with conn.executeTupleQuery(query) as result:
 df = result.toPandas()

When looking at the result, we see that we have a DataFrame!

4. Now we will use this script in Power BI. When in Power BI
Desktop, go to ‘Get Data’ and look for the python script
option. Then simply copy and paste your entire script into the

text box, and run the script. In this case, our output looks
like this:

5. Next simply ‘Load’ the data, and then you can use the
Power BI Desktop interface to create whatever visualizations
you want! If you do have a lot of additional operations to
perform on your dataframe, we recommend doing these in your
python script.

Method 2: POST Request:

For the SPARQL query via POST requests to work you need to
url-encode the query. Every modern programming language will
support that, but in our example we will be using Python
again. This method is better for when you do not have python
locally installed or prefer a different programming language.

It is possible to send a GET request from Power BI, but once
the results from the query reach a certain size, a POST
request is required, which is confusing to do within the Power
BI Desktop interface. The following steps will show you how to
do SPARQL Queries using POST requests. It looks a bit odd but
it works well.

The Process:

1. In your AG WebView create an ‘anonymous’ user. (Go to
admin -> Users -> [add a user] -> and add ‘anonymous’ as

username without adding a password). You can use these
settings:

2. Go to your desired repository in WebView and Click on
‘Queries’ -> ‘New’

3. Write a simple SPARQL query, and run it to make sure you
get the correct response back.

4. In python create the following script: (Assuming your
AllegroGraph is on your localhost port 10035 and your repo is
called ‘kennedy’)

import urllib

def CreatePOSTquery(query):
 start =

"http://anonymous:@localhost:10035/repositories/kennedy?queryL
n=SPARQL&limit=1000&infer=false&returnQueryMetadata=false&chec
kVariables=false&query="
 response = start + urllib.parse.quote(query)
 return response

This function url-encodes the query and attaches it to the
POST request. Replace the ‘localhost:10035’ and ‘kennedy’
strings in the start variable with your corresponding data.
Then, using the same query as our previous example, we create

our url-encoded POST query:

query = """select ?person ?first_name ?last_name ?birth_year
where
{ ?person <http://www.franz.com/simple#first-name> ?first_name
;
 <http://www.franz.com/simple#birth-year> ?birth_year
;
 rdf:type <http://www.franz.com/simple#person> ;
 <http://www.franz.com/simple#last-name> ?last_name .
}
order by desc(?birth_year)"""

result = CreatePOSTquery(query)
print(result)

This gives us the following result:

5. Within Power BI Desktop we go to ‘Get data’ and create a
‘Blank query’ and go into the ‘Advanced Editor’ window. Using
the following format we will get our desired results (please
note that due to the length of the url-encoded request, it did
not all fit in the image. Copy and pasting into the url field
works fine. The ‘url’ variable needs to be in quotes and have
a comma at the end):

We see the following results:

6. One last step is to turn the top row into the column
names, which can be achieved by pressing the ‘Use first row as
headers’:

The best part about both of these methods is that once the
query has been created, Power BI can refresh the visuals using
the same queries if your data changed. This can be achieved by

scheduling refreshes within the Power BI Desktop interface
(https://docs.microsoft.com/en-us/power-bi/connect-data/refres
h-data#configure-scheduled-refresh)

Please send any questions or issues to: support@franz.com

AllegroGraph Named to 100
Companies That Matter Most in
Data
Franz Inc. Acknowledged as a Leader for Knowledge Graph
Solutions

Lafayette, Calif., June 23, 2020 — Franz Inc., an early
innovator in Artificial Intelligence (AI) and leading supplier
of Semantic Graph Database technology for Knowledge Graph
Solutions, today announced that it has been named to The 100
Companies That Matter in Data by Database Trends and
Applications. The annual list reflects the urgency felt among
many organizations to provide a timely flow of targeted
information. Among the more prominent initiatives is the use
of AI and cognitive computing, as well as related capabilities
such as machine learning, natural language processing, and
text analytics. This list recognizes companies based on
their presence, execution, vision and innovation in delivering
products and services to the marketplace.

“We’re excited to announce our eighth annual list, as the
industry continues to grow and evolve,” remarked Thomas Hogan,
Group Publisher at Database Trends and Applications. “Now,

https://docs.microsoft.com/en-us/power-bi/connect-data/refresh-data#configure-scheduled-refresh
https://docs.microsoft.com/en-us/power-bi/connect-data/refresh-data#configure-scheduled-refresh
mailto:support@franz.com
https://allegrograph.com/allegrograph-named-to-100-companies-that-matter-most-in-data/
https://allegrograph.com/allegrograph-named-to-100-companies-that-matter-most-in-data/
https://allegrograph.com/allegrograph-named-to-100-companies-that-matter-most-in-data/
https://franz.com
https://allegrograph.com/products/knowledgegraph/
https://allegrograph.com/products/knowledgegraph/
https://www.dbta.com/Editorial/Trends-and-Applications/DBTA-100-2020-The-Companies-That-Matter-Most-in-Data-141182.aspx
https://www.dbta.com/Editorial/Trends-and-Applications/DBTA-100-2020-The-Companies-That-Matter-Most-in-Data-141182.aspx

more than ever, businesses are looking for ways transform how
they operate and deliver value to customers with greater
agility, efficiency and innovation. This list seeks to
highlight those companies that have been successful in
establishing themselves as unique resources for data
professionals and stakeholders.”

“We are honored to receive this acknowledgement for our
efforts in delivering Enterprise Knowledge Graph Solutions,”
said Dr. Jans Aasman, CEO, Franz Inc. “In the past year, we
have seen demand for Enterprise Knowledge Graphs take off
across industries along with recognition from top technology
analyst firms that Knowledge Graphs provide the critical
foundation for artificial intelligence applications and
predictive analytics.

Our recent launch of AllegroGraph 7 with FedShard, a
breakthrough that allows infinite data integration to unify
all data and siloed knowledge into an Entity-Event Knowledge
Graph solution will catalyze Knowledge Graph deployments
across the Enterprise.”

Gartner recently released a report “How to Build Knowledge
Graphs That Enable AI-Driven Enterprise Applications” and have
previously stated, “The application of graph processing and
graph databases will grow at 100 percent annually through 2022
to continuously accelerate data preparation and enable more
complex and adaptive data science.” To that end, Gartner named
graph analytics as a “Top 10 Data and Analytics Trend” to
solve critical business priorities. (Source: Gartner, Top 10
Data and Analytics Trends, November 5, 2019).

“Graph databases and knowledge graphs are now viewed as a
must-have by enterprises serious about leveraging AI and
predictive analytics within their organization,” said Dr.
Aasman “We are working with organizations across a broad range
of industries to deploy large-scale, high-performance Entity-
Event Knowledge Graphs that serve as the foundation for AI-

https://en.wikipedia.org/wiki/Jans_Aasman
https://allegrograph.com/products/allegrograph/
https://www.gartner.com/en/documents/3985680/how-to-build-knowledge-graphs-that-enable-ai-driven-ente
https://www.gartner.com/en/documents/3985680/how-to-build-knowledge-graphs-that-enable-ai-driven-ente
https://www.gartner.com/smarterwithgartner/gartner-top-10-data-analytics-trends/

driven applications for personalized medicine, predictive call
centers, digital twins for IoT, predictive supply chain
management and domain-specific Q&A applications – just to name
a few.”

Forrester Shortlists AllegroGraph

AllegroGraph was shortlisted in the February 3, 2020 Forrester
Now Tech: Graph Data Platforms, Q1 2020 report, which
recommends that organizations “Use graph data platforms to
accelerate connected-data initiatives.” Forrester states, “You
can use graph data platforms to become significantly more
productive, deliver accurate customer recommendations, and
quickly make connections to related data.”

Bloor Research covers AllegroGraph with FedShard

Bloor Research Analyst, Daniel Howard noted “With the 7.0
release of AllegroGraph, arguably the most compelling new
capability is its ability to create what Franz refers to as
“Entity-Event Knowledge Graphs” (or EEKGs) via its patented
FedShard technology.” Mr. Howard goes on to state “Franz
clearly considers this a major release for AllegroGraph.
Certainly, the introduction of an explicit entity-event graph
is not something I’ve seen before. The newly introduced text
to speech capabilities also seem highly promising.”

AllegroGraph Named to KMWorld’s 100 Companies That Matter in
Knowledge Management

AllegroGraph was also recently named to KMWorld’s 100
Companies That Matter in Knowledge Management. The KMWorld
100 showcases organizations that are advancing their products
and capabilities to meet changing requirements in Knowledge
Management.

Franz Knowledge Graph Technology and Services

Franz’s Knowledge Graph Solution includes both technology and

https://www.forrester.com/report/Now+Tech+Graph+Data+Platforms+Q1+2020/-/E-RES159276#figure2
https://www.forrester.com/report/Now+Tech+Graph+Data+Platforms+Q1+2020/-/E-RES159276#figure2
https://www.bloorresearch.com/2020/06/franz-inc-releases-allegrograph-7-0/
https://allegrograph.com/press_room/allegrograph-named-to-kmworlds-100-companies-that-matter-in-knowledge-management/
https://allegrograph.com/press_room/allegrograph-named-to-kmworlds-100-companies-that-matter-in-knowledge-management/

services for building industrial strength Entity-Event
Knowledge Graphs based on best-of-class tools, products,
knowledge, skills and experience. At the core of the solution
is Franz’s graph database technology, AllegroGraph with
FedShard, which is utilized by dozens of the top F500
companies worldwide and enables businesses to extract
sophisticated decision insights and predictive analytics from
highly complex, distributed data that cannot be uncovered with
conventional databases.

Franz delivers the expertise for designing ontology and
taxonomy-based solutions by utilizing standards-based
development processes and tools. Franz also offers data
integration services from siloed data using W3C industry
standard semantics, which can then be continually integrated
with information that comes from other data sources. In
addition, the Franz data science team provides expertise in
custom algorithms to maximize data analytics and uncover
hidden knowledge.

Ubiquitous AI Demands A New
Type Of Database Sharding
Forbes published the following article by Dr. Jans Aasman,
Franz Inc.’s CEO.

https://allegrograph.com/ubiquitous-ai-demands-a-new-type-of-database-sharding/
https://allegrograph.com/ubiquitous-ai-demands-a-new-type-of-database-sharding/

The notion of sharding has become
increasingly crucial for selecting and
optimizing database architectures. In
many cases, sharding is a means of
horizontally distributing data; if
properly implemented, it results in
near-infinite scalability. This option
enables database availability for

business continuity, allowing organizations to replicate
databases among geographic locations. It’s equally useful for
load balancing, in which computational necessities (like
processing) shift between machines to improve IT resource
allocation.

However, these use cases fail to actualize sharding’s full
potential to maximize database performance in today’s post-big
data landscape. There’s an even more powerful form of
sharding, called “hybrid sharding,” that drastically improves
the speed of query results and duly expands the complexity of
the questions that can be asked and answered. Hybrid sharding
is the ability to combine data that can be partitioned into
shards with data that represents knowledge that is usually un-
shardable.

This hybrid sharding works particularly well with the
knowledge graph phenomenon leveraged by the world’s top data-
driven companies. Hybrid sharding also creates the enterprise
scalability to query scores of internal and external sources
for nuanced, detailed results, with responsiveness
commensurate to that of the contemporary AI age.

Read the full article at Forbes.

https://queue.acm.org/detail.cfm?id=3332266
https://queue.acm.org/detail.cfm?id=3332266
https://www.forbes.com/sites/forbestechcouncil/2020/05/01/ubiquitous-ai-demands-a-new-type-of-database-sharding/#6e7b505c24d9

Natural Language Processing
and Machine Learning in
AllegroGraph
The majority of our customers build Knowledge Graphs with
Natural Language and Machine learning components. Because of
this trend AllegroGraph now offers strong support for the use
of Natural Language Processing and Machine learning.

Franz Inc has a team of NLP engineers and Taxonomy experts
that can help with building turn-key solutions. In general
however, our customers already have some expertise in house.
In those cases we train customers in how to take the output of
NLP and ML processing and turn that into an efficient
Knowledge Graph based on best practices in the industry.

This document primarily describes the NLP and ML plug-in
AllegroGraph.

Note that many enterprises already have a data science team
with NLP experts that use modern open source NLP tools like
Spacy, Gensim or Polyglot, or Machine Learning based NLP tools
like BERT and Scikit-Learn. In another blog about Document
Handling we describe a pipeline of how to deal with NLP in
Document Knowledge Graphs by using our NLP and ML plugin and
mix that with open source tools.

PlugIn features for Natural Language Processing and Machine
Learning in AllegroGraph.

Here is the outline of the plugin features that we are going
to describe in more detail.

https://allegrograph.com/natural-language-processing-and-machine-learning-in-allegrograph/
https://allegrograph.com/natural-language-processing-and-machine-learning-in-allegrograph/
https://allegrograph.com/natural-language-processing-and-machine-learning-in-allegrograph/
https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/
https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/
https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/

Machine learning

data acquisition
classifier training
feature extraction support
performance analysis
model persistence

NLP

handling languages
handling dictionaries
tokenization
entity extraction
Sentiment analysis
basic pattern matching

SPARQL Access

Future development

Machine Learning

ML: Data Acquisition
Given that the NLP and ML functions operate within
AllegroGraph, after loading the plugins, data acquisition can
be performed directly from the triple-store, which drastically
simplifies the data scientist workflow. However, if the data
is not in AllegroGraph yet we can also import it directly from
ten formats of triples or we can use our additional
capabilities to import from CSV/JSON/JSON-LD.

Part of the Data Acquisition is also that we need to pre-
process the data for training so we provide these three
functions:

prepare-training-data
split-dev-test

equalize (for resampling)

Machine Learning: Classifiers

Currently we provide simple linear classifiers. In case
there’s a need for neural net or other advanced
classifiers, those can be integrated on-demand.
We also provide support for online learning (online
machine learning is an ML method in which data becomes
available in a sequential order and is used to update
the best predictor for future data at each step, as
opposed to batch learning techniques which generate the
best predictor by learning on the entire training data
set at once). This feature is useful for many real-world
data sets that are constantly updated.
The default classifiers available are Averaged
Perceptron and AROW

Machine Learning: Feature Extraction

Each classifier is expecting a vector of features: either
feature indices (indicative features) or pairs of numbers
(index – value). These are obtained in a two-step process:

1. A classifier-specific extract-features method should be
defined that will return raw feature vector with features
identified by strings of the following form:
prefix|feature.

The prefix should be provided as a keyword argument to the
collect-features method call, and it is used to distinguish
similar features from different sources (for instance, for
distinct predicates).

2. Those features will be automatically transformed to
unique integer ids. The resulting feature vector of
indicator features may look like the following: #(1 123
2999 …)

Note that these features may be persisted to AllegroGraph for
repeated re-use (e.g. for experimenting with classifier
hyperparameter tuning or different classification models).

Many possible features may be extracted from data, but there
is a set of common ones, such as:

1. individual tokens of the text field
2. ngrams (of a specified order) of the text field
3. presence of a token in a specific dictionary (like, the
dictionary of slang words)
4. presence/value of a certain predicate for the subject of
the current triple
5. length of the text

And in case the user has a need for special types of tokens we
can write specific token methods, here is an example (in Lisp)
that produces an indicator feature of a presence of emojis in
the text:

(defmethod collect-features ((method (eql :emoji)) toks &key
pred)
(dolist (tok toks)
(when (some #'(lambda (code)
 (or (<= #x1F600 code #x1F64F)
 (<= #x1F650 code #x1F67F)
 (<= #x1F680 code #x1F6FF)))
 (map 'vector #'char-code tok))
(return (list "emoji")))))

Machine Learning: Integration with Spacy

The NLP and ML community invents new features and capabilities
at an incredible speed. Way faster than any database company
can keep up with. So why not embrace that? Whenever we need
something that we don’t have in AllegroGraph yet we can call
out to Spacy or any other external NLP tool. Here is an
example of using feature extraction from Spacy to collect

indicator features of the text dependency parse relations:

(defmethod collect-features ((method (eql :dep)) deps &key
pred dep-type dep-labels)
 (loop :for ds :in deps :nconc
 (loop :for dep :in ds
 :when (and (member (dep-tag dep) dep-labels)
 (dep-head dep)
 (dep-tok dep))
 :collect (format nil "dep|~a|~a_~a"
 dep-type
 (tok-word (dep-head dep)
 (tok-word (dep-tok dep))))))

The demonstrated integration uses Spacy Docker instance and
its HTTP API.

Machine Learning: Classifier Analysis

We provide all the basic tools and metrics for classifier
quality analysis:

accuracy
f1, precision, recall
confusion matrix
and an aggregated classification report

Machine Learning: Model Persistence

The idea behind model persistence is that all the data can be
stored in AllegroGraph, including features and classifier
models. AllegroGraph stores classifiers directly as triples.
This is a far more robust and language-independent approach
than currently popular among data scientists reliance on
Python pickle files. For the storage we provide a basic
triple-based format, so it is also possible to interchange the
models using standard RDF data formats.

The biggest advantage of this approach is that when adding

text to AllegroGraph we don’t have to move the data externally
to perform the classification but can keep the whole pipeline
entirely internal.

Natural Language Procession (NLP)

NLP: Language Packs

Most of the NLP tools are language-dependent: i.e. there’s a
general function that uses language-specific model/rules/etc.
In AllegroGraph, support for particular languages is provided
on-demand and all the language-specific is grouped in the so
called “language pack” or langpack, for short – a directory
with a number of text and binary files with predefined names.

Currently, the langpack for English is provided at
nlp/langs/en.zip, with the following files:

contractions.txt – a dictionary of contractions
abbrs.txt – a dictionary of abbreviations
stopwords.txt – a dictionary of stopwords
pos-dict.txt – positive sentiment words
neg-dict.txt – negative sentiment words
word-tok.txt – a list of word tokenization rules

Additionally, we use a general dictionary, a word-form
dictionary (obtained from Wiktionary), and custom lexicons.

Loading a langpack for a particular language is performed
using load-langpack.

Creating a langpack is just a matter of adding the properly
named files to the directory and can be done manually. The
names of the files should correspond to the names of the
dictionary variables that will be filled by the pack. The
dictionaries that don’t have a corresponding file will be just
skipped.We have just finished creating a langpack for Spanish
and it will be published soon. In case you need other

dictionaries we use our AG/Spacy infrastructure. Spacy
recently added a comprehensive list of new languages:

NLP: Dictionaries

Dictionaries are read from the language packs or other sources
and are kept in memory as language-specific hash-tables.
Alongside support for storing the dictionaries as text files,
there are also utilities for working with them as triples and
putting them into the triple store.

Note that we at Franz Inc specialize in Taxonomy Building
using various commercial taxonomy building tools. All these
tools can now export these taxonomies as a mix of SKOS
taxonomies and OWL. We have several functions to read directly
from these SKOS taxonomies and turn them into dictionaries
that support efficient phrase-level lookup.

NLP: Tokenization

Tokenization is performed using a time-proven rule-based
approach. There are 3 levels of tokenization that have both a
corresponding specific utility function and an :output format
of the tokenize function:

:parags – splits the text into a list of lists of tokens
for paragraphs and sentences in each paragraph
:sents – splits the text into a list of tokens for each
sentence
:words – splits the text into a plain list of tokens

Paragraph-level tokenization considers newlines as paragraph
delimiters. Sentence-level tokenization is geared towards
western-style writing that uses dot and other punctuation
marks to delimit sentences. It is, currently, hard-coded, but
if the need arises, additional handling may be added for other
writing systems. Word-level tokenization is performed using a
language-specific set of rules.

NLP: Entity Extraction

Entity extraction is performed by efficient matching (exactly
or fuzzy) of the token sequences to the existing dictionary
structure.

It is expected that the entities come from the triple store
and there’s a special utility function that builds lookup
dictionaries from all the triples of the repository identified
by certain graphs that have a skos:prefLabel or skos:altLabel
property. The lookup may be case-insensitive with the
exception of abbreviations (default) or case-sensitive.

Similar to entity extraction, there’s also support for
spotting sentiment words. It is performed using the
positive/negative words dictionaries from the langpack.

One feature that we needed to develop for our customers is
‘heuristic entity extraction’ . In case you want to extract
complicated product names from text or call-center
conversations between customers and agents you run into the
problem that it becomes very expensive to develop altLabels in
a taxonomy tool. We created special software to facilitate the
automatic creation of altlabels.

NLP: Basic Pattern Matching for relationship and event
detection

Getting entities out of text is now well understood and
supported by the software community. However, to find complex
concepts or relationships between entities or even events is

way harder and requires a flexible rule-based pattern matcher.
Given our long time background in Lisp and Prolog one can
imagine we created a very powerful pattern matcher.

SPARQL Access

Currently all the features above can be controlled as stored
procedures or using Lisp as the command language. We have a
new (beta) version that uses SPARQL for most of the control.
Here are some examples. Note that fai is a magic-property
namespace for “AI”-related stuff and inc is a custom namespace
of an imaginary client:

1. Entity extraction

select ?ent {
 ?subj fai:entityTaxonomy inc:products .
 ?subj fai:entityTaxonomy inc:salesTerms .
 ?subj fai:textPredicate inc:text .
 ?subj fai:entity(fai:language "en", fai:taxonomy
inc:products) ?ent .
}

The expressions ?subj fai:entityTaxonomy inc:poducts and ?subj
fai:entityTaxonomy inc:salesTerms specify which taxonomies to
use (the appropriate matchers are cached).
The expression ?subj fai:entity ?ent will either return the
already extracted entities with the specified predicate
(fai:entity) or extract the new entities according to the
taxonomies in the texts accessible by fai:textPredicate.

2. fai:sentiment will return a single triple with sentiment
score:

select ?sentiment {
 ?subj fai:textPredicate inc:text .
 ?subj fai:sentiment ?sentiment .
 ?subj fai:language "en" .
 ?subj fai:sentimentTaxonomy franz:sentiwords .
}

3. Text classification:
Provided inc:customClassifier was already trained previously,
this query will return labels for all texts as a result of
classification.

select ?label {
?subj fai:textPredicate inc:text .
?subj fai:classifier inc:customClassifier .
?subj fai:classify ?label .
?label fai:storeResultPredicate inc:label .
}

Further Development
Our team is currently working on these new features:

A more accessible UI (python client & web) to facilitate
NLP and ML pipelines
Addition of various classifier models
Sequence classification support (already implemented for
a customer project)
Pre-trained models shipped with AllegroGraph (e.g.
English NER)
Graph ML algorithms (deepwalk, Google Expander)
Clustering algorithms (k-means, OPTICS)

