
Franz Inc. to Present at The
Global Graph Summit and Data
Day Texas
Dr. Jans Aasman, CEO, Franz Inc., will be presenting,
“Creating Explainable AI with Rules” at the Global Graph

Summit, a part of Data Day Texas.
The abstract for Dr. Aasman’s
presentation:

“There’s a fascinating dichotomy in artificial intelligence
between statistics and rules, machine learning and expert
systems. Newcomers to artificial intelligence (AI) regard
machine learning as innately superior to brittle rules-
based systems, while the history of this field reveals both
rules and probabilistic learning are integral components of
AI. This fact is perhaps nowhere truer than in
establishing explainable AI, which is central to the long-
term business value of AI front-office use cases.”

“The fundamental necessity for explainable AI spans
regulatory compliance, fairness, transparency, ethics and
lack of bias — although this is not a complete list. For
example, the effectiveness of counteracting financial
crimes and increasing revenues from advanced machine
learning predictions in financial services could be greatly
enhanced by deploying more accurate deep learning models.
But all of this would be arduous to explain to regulators.
Translating those results into explainable rules is the
basis for more widespread AI deployments producing a more

https://allegrograph.com/franz-inc-to-present-at-the-global-graph-summit-and-data-day-texas/
https://allegrograph.com/franz-inc-to-present-at-the-global-graph-summit-and-data-day-texas/
https://allegrograph.com/franz-inc-to-present-at-the-global-graph-summit-and-data-day-texas/
http://datadaytexas.com/2020-graph-summit/sessions#aasman
http://datadaytexas.com/
http://datadaytexas.com/
https://www.forbes.com/sites/cognitiveworld/2018/12/20/geoff-hinton-dismissed-the-need-for-explainable-ai-8-experts-explain-why-hes-wrong/#7e5b5d7b756d

meaningful impact on society.”

The Global Graph Summit is an independently organized vendor-
neutral conference, bringing leaders from every corner of the
graph and linked-data community for sessions, workshops, and
its well-known before and after parties. Originally launched
in January 2011 as one of the first NoSQL / Big Data
conferences, Data Day Texas each year highlights the latest
tools, techniques, and projects in the data space, bringing
speakers and attendees from around the world to enjoy the
hospitality that is uniquely Austin. Since its inception, Data
Day Texas has continually been the largest independent data-
centric event held within 1000 miles of Texas.

Franz’s 2020 Predictions in
the News
Looking to the future of AI, KnowledgeGraph and Semantics we
had a number of publications cover our views of where
AllegroGraph is headed.

Datanami

20 AI Predictions for 2020

We’re still in the midst of a fake news crisis, and with the
emergence of deep fakes, it will likely get worse. Luckily, we
have the technology available to begin to address it, says Dr.
Jans Aasman, the CEO of Franz.

“Knowledge graphs, in combination with deep learning, will be
used to identify photos and video that have been altered by

https://allegrograph.com/franzs-2020-predictions-in-the-news/
https://allegrograph.com/franzs-2020-predictions-in-the-news/
https://www.datanami.com/2019/12/30/20-ai-predictions-for-2020/

superimposing existing images and videos onto source images,”
Aasman says. “Machine learning knowledge graphs will also
unveil the origin of digital information that has been
published by a foreign source. Media outlets and social
networks will use AI knowledge graphs as a tool to determine
whether to publish information or remove it.”

DBTA

Ten Predictions for AI and Machine Learning in 2020

AI Knowledge Graphs will Debunk Fake News:“Knowledge Graphs in
combination with deep learning will be used to identify photos
and video that have been altered by superimposing existing
images and videos onto source images. Machine learning
knowledge graphs will also unveil the origin of digital
information that has been published by a foreign source. Media
outlets and social networks will use AI Knowledge Graphs as a
tool to determine whether to publish information or remove
it.” – Dr. Jans Aasman, CEO of Franz, Inc.

SD Times

Software predictions for 2020 from around the industry

Jans Aasman, CEO of Franz, Inc.
Digital immortality will emerge: We will see digital
immortality emerge in 2020 in the form of AI digital personas
for public figures. The combination of Artificial Intelligence
and Semantic Knowledge Graphs will be used to transform the
works of scientists, technologists, politicians and scholars
into an interactive response system that uses the person’s
actual voice to answer questions. AI digital personas will
dynamically link information from various sources – such as
books, research papers and media interviews – and turn the

http://www.dbta.com/Editorial/News-Flashes/Ten-Predictions-for-AI-and-Machine-Learning-in-2020-135852.aspx
https://sdtimes.com/softwaredev/software-predictions-for-2020-from-around-the-industry/

disparate information into a knowledge system that people can
interact with digitally. These AI digital personas could also
be used while the person is still alive to broaden the
accessibility of their expertise.

Dataversity

Semantic Web and Semantic Technology Trends in 2020
“The big-name Silicon Valley companies (LinkedIN, Airbnd,
Apple, Uber) are all building knowledge graphs. But more
importantly, Fortune 500 companies, especially banks, are also
investing in knowledge graph solutions.”

IoT gets into the picture too. Aasman points to “digital
twins,” which can be thought of as specialized knowledge
graphs, as an exceptionally lucrative element of the
technology with an applicability easily lending itself to
numerous businesses. Its real-time streaming data, simulation
capabilities, and relationship awareness may well prove to be
the ‘killer app’ that takes the IoT mainstream, he said. As an
example, by consuming data transmitted by IoT sensors, digital
twins will inform the monitoring, diagnostics, and prognostics
of power grid assets to optimize asset performance and
utilization in near real-time.

InsideBigData

2020 Trends in Data Modeling: Unparalleled Advancement

Shapes Constraint Language (SHACL): SHACL is a framework that
assists with data modeling by describing the various shapes of
data in knowledge graph settings, which produces the desirable
downstream effect of enabling organizations to automate “the
validation of your data,” remarked Franz CEO Jans Aasman.
SHACL operates at a granular level involving classifications

https://www.dataversity.net/semantic-web-and-semantic-technology-trends-in-2020/
https://insidebigdata.com/2019/11/29/2020-trends-in-data-modeling-unparalleled-advancement/

and specific data properties.

Workflow

2020 Trends in CyberSecurity

Software-defined perimeter transmissions also guard
information at the data layer by utilizing Datagram Transport
Layer Security (DTLS) encryption and Public Key
Authentication. Fortifying information assets at the data
layer is likely the most dependable method of protecting them,
because it’s the layer in which the data are actually stored.
It’s important to distinguish data layer security versus
access layer security. The latter involves a process known as
security filtering in which, based on particular roles or
responsibilities, users can access data. “You can specify
filters where for a particular user or a particular role
whether you could see or not see particular [data],” Franz CEO
Jans Aasman said. “You could say if someone has the role
administrator, we’re telling the system ‘administrators cannot
see [certain data]’.”

Moreover, triple attributes can be based on compliance needs
specific to regulations — which is immensely utilitarian in
the post-GDPR data landscape. “For the government you could
have a feature of whether you’re a foreigner or not,” Aasman
said. “HIPAA doesn’t care whether you’re a foreigner or not,
but you can do a separate mechanism for it.”

https://workflowotg.com/2020-trends-in-cybersecurity/

2020 Trend Setting Products –
AllegroGraph
Franz Inc. is proud to announce that it has been named to the
2020 Trend Setting Products in Data Management by Database
Trends and Application Magazine.

Database Trends and Applications (DBTA) magazine announced its
seventh annual list of trend-setting products in data
management and analysis. The list, “DBTA Trend-Setting
Products for 2020,” recognizes products in the marketplace
that are both innovative and effective in helping customers
address evolving challenges and opportunities. In all, 100
products are highlighted in the special December edition of
Database Trends and Applications magazine and on the DBTA
website, www.dbta.com.

“The world of data management and analytics continues to
evolve rapidly with new technologies and strategies,” remarked
Thomas Hogan, Group Publisher of Database Trends and
Applications. “Cutting through the hype and identifying
products that deliver results in the real world is more
important than ever. This list highlights products that are
truly transformative in bringing greater agility, efficiency
and innovation to market.”

“We are honored to receive this acknowledgement for our
efforts in delivering Enterprise Knowledge Graph Solutions,”
said Dr. Jans Aasman, CEO, Franz Inc. “In the past year, we
have seen demand for Enterprise Knowledge Graphs take off
across industries along with recognition from top technology
analyst firms that Knowledge Graphs provide the critical
foundation for artificial intelligence applications and
predictive analytics. Our AllegroGraph Knowledge Graph
Platform Solution offers a unique comprehensive approach for
helping companies accelerate the creation of Enterprise

https://allegrograph.com/2020-trend-setting-products-allegrograph/
https://allegrograph.com/2020-trend-setting-products-allegrograph/
http://www.dbta.com

Knowledge Graphs that deliver new value to their
organization.”

AllegroGraph – KMWorld
Readers Choice Finalist
KMWorld 2019 Readers’ Choice Awards: Best Knowledge Graph

AllegroGraph – Finalist

The ability for knowledge graphs to amass information and
relationships and connect those facts allows companies to find
context in data, which is important for extracting value as
well as complying with new data regulations.

The concept of the enterprise knowledge graph (EKG) is fairly
new and made possible by machine learning and big data
technologies, including automated text analysis and graph
engines, explained analyst Amy Stapleton in an Opus Research
article. “An IA [intelligent assistant] that taps into an EKG
can infer the context and intent of questions, generate direct
answers, make recommendations, and automatically expand its
understanding as the knowledge graph adds new content,” she
noted.

KMWorld Readers Choice

https://allegrograph.com/allegrograph-kmworld-readers-choice-finalist/
https://allegrograph.com/allegrograph-kmworld-readers-choice-finalist/
https://www.kmworld.com/Articles/Editorial/Features/The-2019-KMWorld-Readers-Choice-Awards-Winners-134856.aspx?pageNum=1

Multi-Master Replication
Clusters in Kubernetes and
Docker Swarm
For more examples visit –
https://github.com/franzinc/agraph-examples

Introduction

In this document we primarily discuss running a Multi-Master
Replication cluster (MMR) inside Kubernetes. We will also show
a Docker Swarm implementation.

This directory and subdirectories contain code you can use to
run an MMR cluster. The second half of this document is
entitled Setting up and running MMR under Kubernetes and that
is where you’ll see the steps needed to run the MMR cluster in
Kubernetes.

MMR replication clusters are different from distributed
AllegroGraph clusters in these important ways:

Each member of the cluster needs to be able to make a1.
TCP connection to each other member of the cluster. The
connection is to a port computed at run time. The range
of port numbers to which a connection is made can be
constrained by the agraph.cfg file but typically this
will be a large range to ensure that at least one port
in that range is not in used.
All members of the cluster hold the complete database2.
(although for brief periods of time they can be out of
sync and catching up with one another).

MMR replication clusters don’t quite fit the Kubernetes model
in these ways

When the cluster is running normally each instance knows1.

https://allegrograph.com/multi-master-replication-clusters-in-kubernetes-and-docker-swarm/
https://allegrograph.com/multi-master-replication-clusters-in-kubernetes-and-docker-swarm/
https://allegrograph.com/multi-master-replication-clusters-in-kubernetes-and-docker-swarm/
https://github.com/franzinc/agraph-examples
https://franz.com/agraph/support/documentation/current/multi-master.html
https://franz.com/agraph/support/documentation/current/multi-master.html

the DNS name or IP address of each other instance. In
Kubernetes you don’t want to depend on the IP address of
another cluster’s pod as those pods can go away and a
replacement started at a different IP address. We’ll
describe below our solution to this.
Services are a way to hide the actual location of a pod2.
however they are designed to handle a set of known
ports.. In our case we need to connect from one pod to a
known-at-runtime port of another pod and this isn’t what
services are designed for.
A key feature of Kubernetes is the ability to scale up3.
and down the number of processes in order to handle the
load appropriately. Processes are usually single purpose
and stateless. An MMR process is a full database server
with a complete copy of the repository. Scaling up is
not a quick and simple operation – the database must be
copied from another node. Thus scaling up is a more
deliberate process rather than something automatically
done when the load on the system changes during the day.

The Design

We have a headless service for our controlling instance1.
StatefulSet and that causes there to be a DNS entry for
the name controlling that points to the current IP
address of the node in which the controlling instance
runs. Thus we don’t need to hardwire the IP address of
the controlling instance (as we do in our AWS load
balancer implementation).
The controlling instance uses two PersistentVolumes to2.
store: 1. The repo we’re replicating and 2. The token
that other nodes can use to connect to this node. Should
the controlling instance AllegroGraph server die (or the
pod in which it runs dies) then when the pod is started
again it will have access to the data on those two
persistent volumes.
We call the other instances in the cluster Copy3.

https://github.com/franzinc/agraph-examples/blob/master/clustering/terraform-elb/using-terraform.md
https://github.com/franzinc/agraph-examples/blob/master/clustering/terraform-elb/using-terraform.md

instances. These are full read-write instances of the
repository but we don’t back up their data in a
persistent volume. This is because we want to scale up
and down the number of Copy instances. When we scale
down we don’t want to save the old data since when we
scale down we remove that instance from the cluster thus
the repo in the cluster can never join the cluster
again. We denote the Copy instances by their IP
addresses. The Copy instances can find the address of
the controlling instance via DNS. The controlling
instance will pass the cluster configuration to the Copy
instance and that configuration information will have
the IP addresses of the other Copy instances. This is
how the Copy instances find each other.
We have a load balancer that allows one to access a4.
random Copy instance from an external IP address. This
load balancer doesn’t support sessions so it’s only
useful for doing queries and quick inserts that don’t
need a session.
We have a load balancer that allows access to the5.
Controlling instance via HTTP. While this load balancer
also doesn’t have session support, because there is only
one controlling instance it’s not a problem if you start
an AllegroGraph session because all sessions will live
on the single controlling instance.

We’ve had the most experience with Kubernetes on the Google
Cloud Platform. There is no requirement that the load balancer
support sessions and the GCP version does not at this time,
but that doesn’t mean that session support isn’t present in
the load balancer in other cloud platforms. Also there is a
large community of Kubernetes developers and one may find a
load balancer with session support available from a third
party.

Implementation

We build and deploy in three subdirectories. We’ll describe

the contents of the directories first and then give step by
step instructions on how to use the contents of the
directories.

Directory ag/

In this directory we build a Docker image holding an installed
AllegroGraph. The Dockerfile is

FROM centos:7

#
AllegroGraph root is /app/agraph
#

RUN yum -y install net-tools iputils bind-utils wget hostname

ARG agversion=agraph-6.6.0
ARG agdistfile=${agversion}-linuxamd64.64.tar.gz

This ADD command will automatically extract the contents
of the tar.gz file
ADD ${agdistfile} .

needed for agraph 6.7.0 and can't hurt for others
change to 11 if you only have OpenSSL 1.1 installed
ENV ACL_OPENSSL_VERSION=10

so prompts are readable in an emacs window
ENV PROMPT_COMMAND=

RUN groupadd agraph && useradd -d /home/agraph -g agraph
agraph
RUN mkdir /app

declare ARGs as late as possible to allow previous lines to
be cached
regardless of ARG values

ARG user
ARG password

RUN (cd ${agversion} ; ./install-agraph /app/agraph -- --non-
interactive \
 --runas-user agraph \
 --super-user $user \
 --super-password $password)

remove files we don't need
RUN rm -fr /app/agraph/lib/doc /app/agraph/lib/demos

we will attach persistent storage to this directory
VOLUME ["/app/agraph/data/rootcatalog"]

patch to reduce cache time so we’ll see when the controlling
instance moves.
ag 6.7.0 has config parameter StaleDNSRetainTime which
allows this to be
done in the configuration.
COPY dnspatch.cl /app/agraph/lib/patches/dnspatch.cl

RUN chown -R agraph.agraph /app/agraph

The Dockerfile installs AllegroGraph in /app/agraph and
creates an AllegroGraph super user with the name and password
passed in as arguments. It creates a user agraph so that the
AllegroGraph server will run as the user agraph rather than
as root.

We have to worry about the controlling instance process dying
and being restarted in another pod with a different IP
address. Thus if we’ve cached the DNS mapping
of controlling we need to notice as soon as possible that the
mapping as changed. The dnspatch.cl file changes a parameter
in the AllegroGraph DNS code to reduce the time we trust our
DNS cache to be accurate so that we’ll quickly notice if the
IP address of controlling changes.

We also install a number of networking tools. AllegroGraph
doesn’t need these but if we want to do debugging inside the
container they are useful to have installed.

The image created by this Dockerfile is pushed to the Docker
Hub using an account you’ve specified (see the Makefile in
this directory for details).

Directory agrepl/

Next we take the image created above and add the specific code
to support replication clusters.

The Dockerfile is

ARG DockerAccount=specifyaccount

FROM ${DockerAccount}/ag:latest

#
AllegroGraph root is /app/agraph

RUN mkdir /app/agraph/scripts
COPY . /app/agraph/scripts

since we only map one port from the outside into our cluster
we need any sessions created to continue to use that one
port.
RUN echo "UseMainPortForSessions true" >>
/app/agraph/lib/agraph.cfg

settings/user will be overwritten with a persistent mount so
copy
the data to another location so it can be restored.
RUN cp -rp /app/agraph/data/settings/user
/app/agraph/data/user

ENTRYPOINT ["/app/agraph/scripts/repl.sh"]

When building an image using this Dockerfile you must specify

--build-arg DockerAccount=MyDockerAccount

where MyDockerAccount is a Docker account you’re authorized to
push images to.

The Dockerfile installs the
scripts repl.sh, vars.sh and accounts.sh. These are run when
this container starts.

We modify the agraph.cfg with a line that ensures that even if
we create a session that we’ll continue to access it via port
10035 since the load balancer we’ll use to access AllegroGraph
only forwards 10035 to AllegroGraph.

Also we know that we’ll be installing a persistent volume
at /app/agraph/data/user so we make a copy of that directory
in another location since the current contents will be
invisible when a volume is mounted on top of it. We need the
contents as that is where the credentials for the user we
created when AllegroGraph was installed.

Initially the file settings/user/username will contain the
credentials we specified when we installed AllegroGraph in
first Dockerfile. When we create a cluster instance a new
token is created and this is used in place of the password for
the test account. This token is stored
in settings/user/username which is why we need this to be an
instance-specific and persistent filesystem for the
controlling instance.

When this container starts it runs repl.sh which first
runs accounts.sh and vars.sh.

accounts.sh is a file created by the top level Makefile to
store the account information for the user account we created
when we installed AllegroGraph.

vars.sh is

constants need by scripts
port=10035
reponame=myrepl

compute our ip address, the first one printed by hostname
myip=$(hostname -I | sed -e 's/ .*$//')

In vars.sh we specify the information about the repository
we’ll create and our IP address.

The script repl.sh is this:

#!/bin/bash
#
to start ag and then create or join a cluster
##

cd /app/agraph/scripts

set -x
. ./accounts.sh
. ./vars.sh

agtool=/app/agraph/bin/agtool

echo ip is $myip

move the copy of user with our login to the newly mounted
volume
if this is the first time we've run agraph on this volume
if [! -e /app/agraph/data/rootcatalog/$reponame] ; then

 cp -rp /app/agraph/data/user/*
/app/agraph/data/settings/user
fi

due to volume mounts /app/agraph/data could be owned by root
so we have to take back ownership
chown -R agraph.agraph /app/agraph/data

start agraph
/app/agraph/bin/agraph-control --config
/app/agraph/lib/agraph.cfg start

term_handler() {
 # this signal is delivered when the pod is
 # about to be killed. We remove ourselves
 # from the cluster.

 echo got term signal
 /bin/bash ./remove-instance.sh
 exit
}

sleepforever() {
 # This unusual way of sleeping allows
 # a TERM signal sent when the pod is to
 # die to then cause the shell to invoke
 # the term_handler function above.
 date
 while true
 do
 sleep 99999 & wait ${!}
 done
}

if [-e /app/agraph/data/rootcatalog/$reponame] ; then
 echo repository $reponame already exists in this
persistent volume
 sleepforever
fi

controllinghost=controlling

controllingspec=$authuser:$authpassword@$controllinghost:$port
/$reponame

if [x$Controlling == "xyes"] ;
then
 # It may take a little time for the dns record for
'controlling' to be present
 # and we need that record because the agtool program below
will use it
 until host controlling ; do echo controlling not in DNS
yet; sleep 5 ; done
 ## create first and controlling cluster instance
 $agtool repl create-cluster $controllingspec controlling

else
 # wait for the controlling ag server to be running

 until curl -s
http://$authuser:$authpassword@$controllinghost:$port/version
; do echo wait for controlling ; sleep 5; done

 # wait for server in this container to be running
 until curl -s

http://$authuser:$authpassword@$myip:$port/version ; do echo
wait for local server ; sleep 5; done

 # wait for cluster repo on the controlling instance to be
present
 until $agtool repl status $controllingspec > /dev/null ; do
echo wait for repo ; sleep 5; done
 myiname=i-$myip
 echo $myiname > instance-name.txt

 # construct the remove-instance.sh shell script to remove
this instance
 # from the cluster when the instance is terminated.
 echo $agtool repl remove $controllingspec $myiname >
remove-instance.sh
 chmod 755 remove-instance.sh
 #

 # note that
 # % docker kill container
 # will send a SIGKILL signal by default we can't trap on
SIGKILL.
 # so
 # % docker kill -s TERM container
 # in order to test this handler
 trap term_handler SIGTERM SIGHUP SIGUSR1
 trap -p
 echo this pid is $$

 # join the cluster
 echo joining the cluster
 $agtool repl grow-cluster $controllingspec

$authuser:$authpassword@$myip:$port/$reponame $myiname
fi
sleepforever

This script can be run under three different conditions

Run when the Controlling instance is starting for the1.
first time
Run when the Controlling instance is restarting having2.
run before and died (perhaps the machine on which it was
running crashed or the AllegroGraph process had some
error)
Run when a Copy instance is starting for the first time.3.
Copy instances are not restarted when they die. Instead
a new instance is created to take the place of the dead
instance. Therefore we don’t need to handle the case of
a Copy instance restarting.

In cases 1 and 2 the environment variable Controlling will
have the value “yes”.

In case 2 there will be a directory
at /app/agraph/data/rootcatalog/$reponame.

In all cases we start an AllegroGraph server.

In case 1 we create a new cluster. In case 2 we just sleep and
let the AllegroGraph server recover the replication repository
and reconnect to the other members of the cluster.

In case 3 we wait for the controlling instance’s AllegroGraph
to be running. Then we wait for our AllegroGraph server to be
running. Then we wait for the replication repository we want
to copy to be up and running. At that point we can grow the
cluster by copying the cluster repository.

We also create a script which will remove this instance from
the cluster should this pod be terminated. When the pod is
killed (likely due to us scaling down the number of Copy
instances) a termination signal will be sent first to the
process allowing it to run this remove script before the pod
completely disappears.

Directory kube/

This directory contains the yaml files that create kubernetes
resources which then create pods and start the containers that
create the AllegroGraph replication cluster.

controlling-service.yaml

We begin by defining the services. It may seem logical to
define the applications before defining the service to expose
the application but it’s the service we create that puts the
application’s address in DNS and we want the DNS information
to be present as soon as possible after the application
starts. In the repl.sh script above we include a test to check
when the DNS information is present before allowing the
application to proceed.

apiVersion: v1
kind: Service
metadata:
 name: controlling
spec:
 clusterIP: None
 selector:
 app: controlling
 ports:
 - name: http
 port: 10035
 targetPort: 10035

This selector defines a service for any container with a label
with a key app and a value controlling. There aren’t any such
containers yet but there will be. You create this service with

% kubectl create -f controlling-service.yaml

In fact for all the yaml files shown below you create the
object they define by running

% kubectl create -f filename.yaml

copy-service.yaml

We do a similar service for all the copy applications.

apiVersion: v1
kind: Service
metadata:
 name: copy
spec:
 clusterIP: None
 selector:
 app: copy
 ports:
 - name: main
 port: 10035
 targetPort: 10035

controlling.yaml

This is the most complex resource description for the cluster.
We use a StatefulSet so we have a predictable name for the
single pod we create. We define two persistent volumes. A
StatefulSet is designed to control more than one pod so rather
than a VolumeClaim we have a VolumeClaimTemplate so that each
Pod can have its own persistent volume… but as it turns out we
have only one pod in this set and we never scale up. There
must be exactly one controlling instance.

We setup a liveness check so that if the AllegroGraph server
dies Kubernetes will restart the pod and thus the AllegroGraph
server. Because we’ve used a persistent volume for the
AllegroGraph repositories when the AllegroGraph server
restarts it will find that there is an existing MMR
replication repository that was in use when the AllegroGraph
server was last running. AllegroGraph will restart that
replication repository which will cause that replication
instance to reconnect to all the copy instances and become
part of the cluster again.

We set the environment variable Controlling to yes and this
causes this container to start up as a controlling instance
(you’ll find the check for the Controlling environment

variable in the repl.sh script above).

We have a volume mount for /dev/shm, the shared memory
filesystem, because the default amount of shared memory
allocated to a container by Kubernetes is too small to support
AllegroGraph.

#
stateful set of controlling instance
#

apiVersion: apps/v1beta1
kind: StatefulSet
metadata:
 name: controlling
spec:
 serviceName: controlling
 replicas: 1
 template:
 metadata:
 labels:
 app: controlling
 spec:
 containers:
 - name: controlling
 image: dockeraccount/agrepl:latest
 imagePullPolicy: Always
 livenessProbe:
 httpGet:
 path: /hostname
 port: 10035
 initialDelaySeconds: 30
 volumeMounts:
 - name: shm
 mountPath: /dev/shm
 - name: data
 mountPath: /app/agraph/data/rootcatalog
 - name: user
 mountPath: /app/agraph/data/settings/user
 env:
 - name: Controlling

 value: "yes"
 volumes:
 - name: shm
 emptyDir:
 medium: Memory
 volumeClaimTemplates:
 - metadata:
 name: data
 spec:
 resources:
 requests:
 storage: 20Gi
 accessModes:
 - ReadWriteOnce
 - metadata:
 name: user
 spec:
 resources:
 requests:
 storage: 10Mi
 accessModes:
 - ReadWriteOnce

copy.yaml

This StatefulSet is responsible for starting all the other
instances. It’s much simpler as it doesn’t use Persistent
Volumes

#
stateful set of copies of the controlling instance
#

apiVersion: apps/v1beta1
kind: StatefulSet
metadata:
 name: copy
spec:
 serviceName: copy
 replicas: 2
 template:
 metadata:

 labels:
 app: copy
 spec:
 volumes:
 - name: shm
 emptyDir:
 medium: Memory
 containers:
 - name: controlling
 image: dockeraccount/agrepl:latest
 imagePullPolicy: Always
 livenessProbe:
 httpGet:
 path: /hostname
 port: 10035
 initialDelaySeconds: 30
 volumeMounts:
 - name: shm
 mountPath: /dev/shm

controlling-lb.yaml

We define a load balancer so applications on the internet
outside of our cluster can communicate with the controlling
instance. The IP address of the load balancer isn’t specified
here. The cloud service provider (i.e. Google Cloud Platform
or AWS) will determine an address after a minute or so and
will make that value visible if you run

% kubectl get svc controlling-loadbalancer

The file is

apiVersion: v1
kind: Service
metadata:
 name: controlling-loadbalancer
spec:
 type: LoadBalancer
 ports:
 - port: 10035
 targetPort: 10035

 selector:
 app: controlling

copy-lb.yaml

As noted earlier the load balancer for the copy instances does
not support sessions. However you can use the load balancer to
issue queries or simple inserts that don’t require a session.

apiVersion: v1
kind: Service
metadata:
 name: copy-loadbalancer
spec:
 type: LoadBalancer
 ports:
 - port: 10035
 targetPort: 10035
 selector:
 app: copy

copy-0-lb.yaml

If you wish to access one of the copy instances explicitly so
that you can create sessions you can create a load balancer
which links to just one instance, in this case the first copy
instance which is named “copy-0”.

apiVersion: v1
kind: Service
metadata:
 name: copy-0-loadbalancer
spec:
 type: LoadBalancer
 ports:
 - port: 10035
 targetPort: 10035
 selector:
 app: copy
 statefulset.kubernetes.io/pod-name: copy-0

Setting up and running MMR under Kubernetes

The code will build and deploy an AllegroGraph MMR cluster in
Kubernetes. We’ve tested this in Google Cloud Platform and
Amazon Web Service. This code requires Persistent Volumes and
load balancers and thus requires a sophisticated platform to
run (such as GCP or AWS).

Prerequisites

In order to use the code supplied you’ll need two additional
things

A Docker Hub account (https://hub.docker.com). A free1.
account will work. You’ll want to make sure you can push
to the hub without needing a password (use the docker
login command to set that up).
An AllegroGraph distribution in tar.gz format. We’ve2.
been using agraph-6.6.0-linuxamd64.64.tar.gz in our
testing. You can find the current set of server files
at https://franz.com/agraph/downloads/server This file
should be put in the ag subdirectory. Note that the
Dockerfile in that directory has the line ARG
agversion=agraph-6.6.0 which specifies the version of
agraph to install. This must match the version of
the ...tar.gz file you put in that directory.

Steps

Do Prerequisites

Fullfill the prerequisites above

Set parameters

There are 5 parameters

Docker account – Must Specify1.
AllegroGraph user – May want to specify2.
AllegroGraph password – May want to specify3.
AllegroGraph repository name – Unlikely to want to4.
change

https://hub.docker.com/

AllegroGraph port – Very unlikely to want to change5.

The first three parameters can be set using the Makefile in
the top level directory. The last two parameters are found
in agrepl/vars.sh if you wish to change them. Note that the
port number of 10035 is found in the yaml files in
the kube subdirectory. If you change the port number you’ll
have edit the yaml files as well.

The first three parameters are set via

% make account=DockerHubAccount user=username
password=password

The account must be specified but the last two can be omitted
and default to an AllegroGraph account name of test and a
password of xyzzy.

If you choose to specify a password make it a simple one
consisting of letters and numbers. The password will appear in
shell commands and URLs and our simple scripts don’t escape
characters that have a special meaning to the shell or URLs.

Install AllegroGraph

Change to the ag directory and build an image with
AllegroGraph installed. Then push it to the Docker Hub

% cd ag
% make build
% make push
% cd ..

Create cluster-aware AllegroGraph image

Add scripts to create an image that will either create an
AllegroGraph MMR cluster or join a cluster when started.

% cd agrepl
% make build
% make push

% cd ..

Setup a Kubernetes cluster

Now everything is ready to run in a Kubernetes cluster. You
may already have a Kubernetes cluster running or you may need
to create one. Both Google Cloud Platform and AWS have ways of
creating a cluster using a web UI or a shell command. When
you’ve got your cluster running you can do

% kubectl get nodes

and you’ll see your nodes listed. Once this works you can move
into the next step.

Run an AllegroGraph MMR cluster

Starting the MMR cluster involves setting up a number of
services and deploying pods. The Makefile will do that for
you.

% cd kube
% make doall

You’ll see when it displays the services that there isn’t an
external IP address allocated for the load balancers It can
take a few minutes for an external IP address to be allocated
and the load balancers setup so keep running

% kubectl get svc

until you see an IP address given, and even then it may not
work for a minute or two after that for the connection to be
made.

Verify that the MMR cluster is running

You can use AllegroGraph Webview to see if the MMR cluster is
running. Once you have an external IP address for the
controlling-load-balancer go to this address in a web browser

http://external-ip-address:10035

Login with the credentials you used when you created the
Docker images (the default is user test and password xyzzy).
You’ll see a repository myrepl listed. Click on that. Midway
down you’ll see a link titled

Manage Replication Instances as controller

Click on that link and you’ll see a table of three instances
which now serve the same repository. This verifies that three
pods started up and all linked to each other.

Namespaces

All objects created in Kubernetes have a name that is chosen
either by the user or Kubernetes based on a name given by the
user. Most names have an associated namespace. The combination
of namespace and name must be unique among all objects in a
Kubernetes cluster. The reason for having a namespace is that
it prevents name clashes between multiple projects running in
the same cluster that both choose to use the same name for an
object.

The default namespace is named default.

Another big advantage using namespaces is that if you delete a
namespace you delete all objects whose name is in that
namespace. This is useful because a project in Kubernetes uses
a lot of different types of objects and if you want to delete
all the objects you’ve added to a Kubernetes cluster it can
take a while to find all the objects by type and then delete
them. However if you put all the objects in one namespace then
you need only delete the namespace and you’re done.

In the Makefile we have this line

Namespace=testns

which is used by this rule

reset:
 -kubectl delete namespace ${Namespace}
 kubectl create namespace ${Namespace}
 kubectl config set-context `kubectl config current-
context` --namespace ${Namespace}

The reset rule deletes all members of the Namespace named at
the top of the Makefile (here testns) and then recreates the
namespace and switches to it as the active namespace. After
doing the reset all objects created will be created in
the testns namespace.

We include this in the Makefile because you may find it
useful.

Docker Swarm

The focus of this document is Kubernetes but we also have a
Docker Swarm implementation of an AllegroGraph MMR cluster.
Docker Swarm is significantly simpler to setup and manage than
Kubernetes but has far fewer bells and whistles. Once you’ve
gotten the ag and agrepl images built and pushed to the Docker
Hub you need only link a set of machines running Docker
together into a Docker Swarm and then

% cd swarm ; make controlling copy

and the AllegroGraph MMR cluster is running Once it is running
you can access the cluster using Webview at

http://localhost:10035/

Graphorum – Dr. Aasman

https://allegrograph.com/graphorum-dr-aasman-presenting/

Presenting
Graph-Driven Event Processing for Intelligent Customer
Operations

Wednesday, October 16, 2019
10:15 AM – 11:15 AM
Level: Case Study

In the typical organization, the
contents of the actual chat or
voice conversation between agent
and customer is a black hole. In
the modern Intelligent Customer
Operations center, the interactions
between agent and customer are a
source of rich information that
helps agents to improve the quality

of the interaction in real time, creates more sales, and
provides far better analytics for management. The Intelligent
Customer Operations center is enabled by a taxonomy of the
products and services sold, speech recognition to turn
conversations into text, a taxonomy-driven entity extractor to
take the important concepts out of conversations, and machine
learning to classify chats in various ways. All of this is
stored in a real-time Knowledge Graph that also knows (and
stores) everything about customers and agents and provides the
raw data for machine learning to improve the agent/customer
interaction.

In this presentation, we describe a real-world Intelligent
Customer Organization that uses graph-based technology for
taxonomy-driven entity extraction, speech recognition, machine
learning, and predictive analytics to improve quality of
conversations, increase sales, and improve business
visibility.

https://allegrograph.com/graphorum-dr-aasman-presenting/

https://graphorum2019.dataversity.net/sessionPop.cfm?confid=13
2&proposalid=11010

The Importance of FAIR Data
in Earth Science
Franz’s CEO, Jans Aasman’s recent Marine Technology News:

Data’s valuation as an enterprise asset is most acutely
realized over time. When properly managed, the same dataset

supports a plurality of use cases,
becomes almost instantly available
upon request, and is exchangeable
between departments or
organizations to systematically
increase its yield with each
deployment.

These boons of leveraging data as an enterprise asset are the
foundation of GO FAIR’s Findable Accessible Interoperable
Reusable (FAIR) principles profoundly impacting the data
management rigors of geological science. Numerous
organizations in this space have embraced these tenets to
swiftly share information among a diversity of disciplines to
safely guide the stewardship of the earth.

According to Dr. Annie Burgess, Lab Director of Earth Science
Information Partners (ESIP), the “most pressing global
challenges cannot be solved by a single organization.
Scientists require data collected across multiple disciplines,

https://allegrograph.com/the-importance-of-fair-data-in-earth-science/
https://allegrograph.com/the-importance-of-fair-data-in-earth-science/

which are often managed by many different agencies and
institutions.” As numerous members of the earth science
community are realizing, the most effectual means of managing
those disparate data according to FAIR principles is by
utilizing the semantic standards underpinning knowledge
graphs.

Read the full article at Marine Technology News

AllegroGraph Named to DBTA
Top 100 That Matter Most in
Data
Franz Inc., an early innovator in Artificial Intelligence (AI)
and leading supplier of Graph and Document Database technology
for Knowledge Graphs, today announced that it has been named
to Database Trends and Applications (DBTA) – 2019 Top 100 That
Matter Most in Data.

“We’re excited to announce our seventh annual list, as the
industry continues to grow and evolve,” remarked Thomas Hogan,
Group Publisher at Database Trends and Applications. “Today,
more than ever, businesses are looking to increase their
efficiency, agility and ability to innovate by managing and
leveraging data in new and novel ways. This list seeks to
highlight those companies that have been successful in
establishing themselves as unique resources for data
professionals and stakeholders.”

“We are honored to receive this acknowledgement for our
efforts in delivering Enterprise Knowledge Graph Solutions,”
said Dr. Jans Aasman, CEO, Franz Inc. “In the past year, we

https://www.marinetechnologynews.com/news/importance-earth-science-593757
https://allegrograph.com/allegrograph-named-to-dbta-top-100-that-matter-most-in-data/
https://allegrograph.com/allegrograph-named-to-dbta-top-100-that-matter-most-in-data/
https://allegrograph.com/allegrograph-named-to-dbta-top-100-that-matter-most-in-data/
http://www.dbta.com/Magazine/Database-Trends-and-Applications-Magazine-June-July-2019-Issue-9074.aspx
http://www.dbta.com/Magazine/Database-Trends-and-Applications-Magazine-June-July-2019-Issue-9074.aspx
https://en.wikipedia.org/wiki/Jans_Aasman

have seen demand for Enterprise Knowledge Graphs take off
across industries along with recognition from top technology
analyst firms that Knowledge Graphs provide the critical
foundation for artificial intelligence applications and
predictive analytics. Our AllegroGraph Knowledge Graph
Platform Solution offers a unique comprehensive approach for
helping companies accelerate the creation of Enterprise
Knowledge Graphs that deliver new value to their
organization.”

Franz’s Knowledge Graph Platform Solution includes both
technology and services for building industrial strength
Knowledge Graphs based on best-of-class tools, products,
knowledge, skills and experience. At the core of the solution
is Franz’s graph database technology, AllegroGraph, which is
utilized by dozens of the top F500 companies worldwide and
enables businesses to extract sophisticated decision insights
and predictive analytics from highly complex, distributed data
that cannot be uncovered with conventional databases.

Franz delivers the expertise for designing ontology and
taxonomy-based solutions by utilizing standards-based
development processes and tools. Franz also offers data
integration services from siloed data using W3C industry
standard semantics, which can then be continually integrated
with information that comes from other data sources. In
addition, the Franz data science team provides expertise in
custom algorithms to maximize data analytics and uncover
hidden knowledge.

Companies Across the Globe Use Franz Knowledge Graph Solutions

Organizations in customer service, healthcare, life science,
publishing and technology have relied on Franz to help develop
their knowledge graph solutions.

Global B2B technology firm N3 Results has utilized Franz’s
Knowledge Graph Solution to build an ‘Intelligent Sales

https://allegrograph.com/consulting

Organization,’ which uses graph based technology for taxonomy
driven entity extraction, speech recognition, machine learning
and predictive analytics to improve quality of conversations,
increase sales and improve business visibility.

“In a typical sales organization, the valuable content within
the online chat or voice conversation between the agent and
customer goes into a black hole,” said Shannon Copeland, COO
of N3. “Franz helped us build a modern Intelligent Sales
Organization (ISO) by creating a real-time Knowledge Graph
that knows everything about customers and agents and provides
the raw data for machine learning to improve doing the
business of ISO. Now we use the rich information between
agents and customers to improve the quality of the interaction
in real time, which ultimately creates more sales and provides
far better analytics for management.”

In 2015, Dr. Parsa Mirhaji, his colleagues and industry
partners, including Franz Inc. embarked on a project to bring
Knowledge Graph technology to Montefiore, a Bronx-based
medical center. “Our strategy at Montefiore is to build a
data-driven and evidence-based health system – essentially a
learning healthcare system – that can understand its own
population thoroughly, understand and improve its practices,
and develop the highest quality of services for the people it
serves,” said Parsa Mirhaji, MD, PhD, Director of the Center
for Health Data Innovations at Montefiore and the Albert
Einstein College of Medicine. “In order to accomplish that
goal, we have created a system that harvests every piece of
data that we can possibly find, from our own EMRs and devices
to patient-generated data to socioeconomic data from the
community. It’s extremely important to use anything we can
find that can help us categorize our patients more
accurately.” (Health IT Analytics, At Montefiore, Artificial
Intelligence Becomes Key to Patient Care, September 10, 2018)

Wolters Kluwer is using graph analytic techniques to
accelerate the knowledge discovery process for its clients.

“What we’re really interested in is achieving insights that
today take a person to analyze and that are prohibitive
computationally,” said Greg Tatham, Wolters Kluwer CTO of
Global Platforms. “We’re providing this live feedback. As
you’re typing, we’re providing question and suggestions for
you live. AllegroGraph gives us a performant way to be able to
just work our way through the whole knowledge model and come
up with suggestions to the user in real time.” (Datanami, How
AI Boosts Human Expertise at Wolters Kluwer, June 6, 2018)

Gartner Identifies Knowledge Graphs and Semantics as Key
Technologies for AI
Gartner recently recognized knowledge graphs as a key new
technology in both their Hype Cycle for Artificial
Intelligence and Hype Cycle for Emerging Technologies.
Gartner’s Hype Cycle for Artificial Intelligence 2018 states,
“The rising role of content and context for delivering
insights with AI technologies, as well as recent knowledge
graph offerings for AI applications have pulled knowledge
graphs to the surface.”

Semantics has also been identified by Gartner as critical for
effectively utilizing enterprise data assets. “Unprecedented
levels of data scale and distribution are making it almost
impossible for organizations to effectively exploit their data
assets. Data and analytics leaders must adopt a semantic
approach to their enterprise data assets or face losing the
battle for competitive advantage.” (Gartner, How to Use
Semantics to Drive the Business Value of Your Data, Guido De
Simoni, November 27, 2018) For more information about the
Gartner report, visit the Gartner Report Order Page.

About Franz Inc.
Franz Inc. is an early innovator in Artificial Intelligence
(AI) and leading supplier of Semantic Graph Database
technology with expert knowledge in developing and deploying
Knowledge Graph solutions. The foundation for Knowledge Graphs
and AI lies in the facets of semantic technology provided by

https://gtnr.it/2H5ZCyY

AllegroGraph and Allegro CL. The ability to rapidly integrate
new knowledge is the crux of the Knowledge Graph and Franz
Inc. provides the key technologies and services to address
your complex challenges. Franz Inc. is your Knowledge Graph
technology partner.

About Database Trends and Applications
Database Trends and Applications (DBTA), published by
Information Today, Inc., is a bimonthly magazine that delivers
advanced trends analysis and case studies in data management
and analysis developed by a team with more than 25 years of
industry experience. Visit www.dbta.com for subscription
information. DBTA also delivers groundbreaking market research
exclusively through its Unisphere Research group.

Creating Explainable AI With
Rules
Franz’s CEO, Jans Aasman’s recent Forbes article:

There’s a fascinating dichotomy in artificial intelligence
between statistics and rules, machine learning and expert
systems. Newcomers to artificial intelligence (AI) regard
machine learning as innately superior to brittle rules-based
systems, while the history of this field reveals both rules
and probabilistic learning are integral components of AI.

This fact is perhaps nowhere truer than in establishing
explainable AI, which is central to the long-term business
value of AI front-office use cases.

Granted, simple machine learning can automate backend
processes. However, the full extent of deep learning or

https://allegrograph.com/creating-explainable-ai-with-rules/
https://allegrograph.com/creating-explainable-ai-with-rules/
http://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/
https://www.forbes.com/sites/cognitiveworld/2018/12/20/geoff-hinton-dismissed-the-need-for-explainable-ai-8-experts-explain-why-hes-wrong/#7fde9083756d
https://www.forbes.com/sites/cognitiveworld/2018/12/20/geoff-hinton-dismissed-the-need-for-explainable-ai-8-experts-explain-why-hes-wrong/#7fde9083756d

complex neural networks — which are much more accurate than
basic machine learning — for mission-critical decision-making
and action requires explainability.

Using rules (and rules-based systems) to explicate machine
learning results creates explainable AI. Many of the far-
reaching applications of AI at the enterprise level —
deploying it to combat financial crimes, to predict an
individual’s immediate and long-term future in health care,
for example — require explainable AI that’s fair, transparent
and regulatory compliant.

Rules can explain machine learning results for these purposes
and others.

Read the full article at Forbes

New!!! AllegroGraph v6.5 –
Multi-model Semantic Graph
and Document Database
Download – AllegroGraph v6.5 and Gruff v7.3

AllegroGraph – Documentation

Gruff – Documentation

Adding JSON/JSON-LD Documents to a Graph Database

Traditional document databases (e.g. MongoDB) have excelled at
storing documents at scale, but are not designed for linking
data to other documents in the same database or in different
databases. AllegroGraph 6.5 delivers the unique power to

https://www.forbes.com/sites/forbestechcouncil/2019/05/17/creating-explainable-ai-with-rules/
https://allegrograph.com/new-allegrograph-v6-5-multi-model-semantic-graph-and-document-database/
https://allegrograph.com/new-allegrograph-v6-5-multi-model-semantic-graph-and-document-database/
https://allegrograph.com/new-allegrograph-v6-5-multi-model-semantic-graph-and-document-database/
https://allegrograph.com/downloads/
https://allegrograph.com/downloads/
https://franz.com/agraph/support/documentation/current/agraph-introduction.html
https://franz.com/agraph/gruff/gruff_documentation.html

define many different types of documents that can all point to
each other using standards-based semantic linking and then run
SPARQL queries, conduct graph searches, execute complex joins
and even apply Prolog AI rules directly on a diverse sea of
objects.

AllegroGraph 6.5 provides free text indexes of JSON documents
for retrieval of information about entities, similar to
document databases. But unlike document databases, which only
link data objects within documents in a single database,
AllegroGraph 6.5 moves the needle forward in data analytics by
semantically linking data objects across multiple JSON
document stores, RDF databases and CSV files. Users can run a
single SPARQL query that results in a combination of
structured data and unstructured information inside documents
and CSV files. AllegroGraph 6.5 also enables retrieval of
entire documents.

There are many reasons for working with JSON-LD. The big
search engines force ecommerce companies to mark up their
webpages with a systematic description of their products and
more and more companies use it as an easy serialization format
to share data.

A direct benefit for companies using AllegroGraph is that they
now can combine their documents with graphs, graph search and
graph algorithms. Normally when you store documents in a
document database you set up your documents in such a way that
it is optimized for certain direct retrieval queries.
Performing complex joins for multiple types of documents or
even performing a shortest path through a mass of object
(types) is too complicated. Storing JSON-LD objects in
AllegroGraph gives users all the benefits of a document
database AND the ability to semantically link objects
together, run complex joins, and perform graph search queries.

Another key benefit for companies is that your application
developers don’t have to learn the entire semantic technology

stack, especially the part where developers have to create
individual RDF triples or edges. Application developers love
to work with JSON data as serialization for objects. In
JavaScript the JSON format is syntactically identical to the
code for creating JavaScript objects and in Python the most
import data structure is the ‘dictionary’ which is also near
identical to JSON.

Key AllegroGraph v6.5 Features:

Support for loading JSON-LD and also some non-RDF data
files, that is files which are not already organized
into triples or quads. See Loading non-RDF data section
in the Data Loading document for more information on
loading non-RDF data files. Loading JSON-LD files is
described along with other RDF formats in the Data
Loading document. The section Supported RDF
formats lists all supported RDF formats.

Support for two phase commits (2PC), which allows
AllegroGraph to participate in distributed transactions
compromising a number of AllegroGraph and non-
AllegroGraph databases (e.g. MongoDB, Solr, etc), and to
ensure that the work of a transaction must either be
committed on all participants or be rolled back on all
participants. Two-phase commit is described in the Two-
phase commit document.

An event scheduler: Users can schedule events in the
future. The event specifies a script to run. It can run
once or repeatedly on a regular schedule. See the Event
Scheduler document for more information.

AllegroGraph is 100 percent ACID, supporting

https://franz.com/agraph/support/documentation/current/agload.html#loading-raw-data
https://franz.com/agraph/support/documentation/current/agload.html
https://franz.com/agraph/support/documentation/current/agload.html
https://franz.com/agraph/support/documentation/current/agload.html
https://franz.com/agraph/support/documentation/current/agload.html#supported-rdf
https://franz.com/agraph/support/documentation/current/agload.html#supported-rdf
https://franz.com/agraph/support/documentation/current/two-phase-commit.html
https://franz.com/agraph/support/documentation/current/two-phase-commit.html
https://franz.com/agraph/support/documentation/current/scheduler.html
https://franz.com/agraph/support/documentation/current/scheduler.html

Transactions: Commit, Rollback, and Checkpointing. Full
and Fast Recoverability. Multi-Master Replication
Triple Attributes – Quads/Triples can now have
attributes which can provide fine access control.
Data Science – Anaconda, R Studio
3D and multi-dimensional geospatial functionality
SPARQL v1.1 Support for Geospatial, Temporal, Social
Networking Analytics, Hetero Federations
Cloudera, Solr, and MongoDB integration
JavaScript stored procedures
RDF4J Friendly, Java Connection Pooling
Graphical Query Builder for SPARQL and Prolog – Gruff
SHACL (Beta) and SPIN Support (SPARQL Inferencing
Notation)
AGWebView – Visual Graph Search, Query Interface, and DB
Management
Transactional Duplicate triple/quad deletion and
suppression
Advanced Auditing Support
Dynamic RDFS++ Reasoning and OWL2 RL Materializer
AGLoad with Parallel loader optimized for both
traditional spinning media and SSDs.

Numerous other optimizations, features, and enhancements.
Read the release notes –
https://franz.com/agraph/support/documentation/current/release
-notes.html

https://franz.com/agraph/support/documentation/current/release-notes.html
https://franz.com/agraph/support/documentation/current/release-notes.html

