
Bloor Research Covers
AllegroGraph with FedShard
Written By: Daniel Howard
Published: 3rd June 2020

Link to Bloor Research Post on AllegroGraph 7

Graph database and “knowledge graph solution” vendor Franz
Inc. has recently released its latest version of its graph
offering, AllegroGraph, which as of the new release is in
version 7.0. Alongside this, the company also released version
8.0 of Gruff, its visualisation and discovery engine for
AllegroGraph and SPARQL endpoints. As of version 8, Gruff is
now available via a web client as well as on the desktop.

For those of you who are unfamiliar with Franz and
AllegroGraph, here is a brief description of the latter taken
from our 2019 deep dive:

Franz AllegroGraph… is a semantic graph database focused on
generating sophisticated semantic knowledge graphs, initially
from your existing data. The graph database itself is an RDF-
based quad store (in other words, a triple store where all
the triples are named) with property graph support… The
product’s primary focus is on transactional processing;
however, it is often used for analytics as well.
Consequently, it is OLTP-enabled and fully ACID compliant,
and additionally offers immediate consistency. The product is
also highly secure, and supports the requirements for various

https://allegrograph.com/bloor-research-covers-allegrograph-with-fedshard/
https://allegrograph.com/bloor-research-covers-allegrograph-with-fedshard/
https://www.bloorresearch.com/profile/daniel-howard/
https://www.bloorresearch.com/2020/06/franz-inc-releases-allegrograph-7-0/
https://franz.com/
https://franz.com/

government security standards, including HIPAA…It includes a
wealth of features, including distributed deployment and
querying, multi-modal ingestion, multi-master replication, AI
and machine learning, and natural language processing (NLP).”

The full text of this report can be found here.

As for the version 7.0 release of AllegroGraph, arguably the
most compelling new capability is its ability to create what
Franz refers to as “Entity-Event Knowledge Graphs” (or EEKGs)
via its patented FedShard technology, an example which can be
seen below. These differ from regular graphs in that they are
designed to capture a number of core entities (such as
products, patients or customers) and any events (which may be
time-stamped) relating to those entities within a hierarchical
tree structure. Notice in the image below that each node –
each event – “branches” into one or more additional events,
and that these branches usually do not interact: this is
characteristic of the tree model. Moreover, these events can
terminate in a knowledge base, such as a taxonomy or an
ontology. This allows you to bring a wealth of supporting
information into your graph when that information may be
relevant to your core entity (or entities). For example,
suppose you have a core entity that is a hospital patient. In
this case, you might use a publicly available catalogue of
drug interactions as one of your knowledge bases. This all
creates an intuitive way to visually represent your entities
and the events related to them while bringing in outside
knowledge where it is useful. In this context it is also worth
noting that AllegroGraph has probabilistic capabilities (this
is not a new feature) so that, for example, a physician can
assign a probability to a diagnosis.

Notably, your EEKGs can be built incrementally, starting with
a simple model and extending gradually and as needed, but
without requiring you to actually alter any existing parts of
your model. EEKGs also store provenance information for your

https://www.bloorresearch.com/research/franz-allegrograph-2/

events, which captures where the initial data used to generate
each of your events originally came from, and how its
transformation into a graph object was achieved, thus
providing data lineage.

The FedShard feature in the 7.0 release provides enhanced
capabilities for horizontally distributed deployment, and
EEKGs especially have been designed to take advantage of this.
Other new features include improved JSON and JSON-LD document
handling, Natural Language Processing (NLP) and speech
recognition functionality. For the latter in particular, Franz
has been able to leverage voice to text capabilities to
extract conceptual meaning from real speech, then store that
meaning in a graph and subsequently run analytics on it. This
is exciting, because in effect it allows you to analyse
recorded conversations. For organisations that collect and
store a lot of such conversations – call centres, for instance
– this could prove very useful.

Franz clearly considers this a major release for AllegroGraph.
Certainly, the introduction of an explicit entity-event graph
is not something I’ve seen before. The newly introduced text
to speech capabilities also seem highly promising.

AllegroGraph Tutorial –
Distributed Repository Using
Shards and Federation Setup

Introduction
A database in AllegroGraph is usually initially implemented as
a single repository, running in a single AllegroGraph server.
This is simple to set up and operate, but problems arise when
the size of data in the repository nears or exceeds the
resources of the server on which it resides. Problems can also
arise when the size of data fits well within the specs of the
database server, but the query patterns across that data
stress the system.

When the demands of data or query patterns outpace the ability
of a server to keep up, there are two ways to attempt to grow
your system: vertical or horizontal scaling.

With vertical scaling, you simply increase the capacity of the
server on which AllegroGraph is running. Increasing CPU power
or the amount of RAM in a server can work for modest size data
sets, but you may soon run into the limitations of the
available hardware, or the cost to purchase high end hardware
may become prohibitive.

AllegroGraph provides an alternative solution: a cluster of
database servers, and horizontal scaling
through sharding and federation, which combine in
AllegroGraph’s FedShard™ facility. An AllegroGraph cluster is
a set of AllegroGraph installations across a defined set of

https://allegrograph.com/allegrograph-tutorial-distributed-repository-using-shards-and-federation-setup/
https://allegrograph.com/allegrograph-tutorial-distributed-repository-using-shards-and-federation-setup/
https://allegrograph.com/allegrograph-tutorial-distributed-repository-using-shards-and-federation-setup/

machines. A distributed repository is a logical database
comprised of one or more repositories spread across one or
more of the AllegroGraph nodes in that cluster. A distributed
repository has a required partition key that is used when
importing statements. When adding statements to your
repository, the partition key is used to determine on which
shard each statement will be placed. By carefully choosing
your partition key, it is possible to distribute your data
across the shards in ways that supports the query patterns of
your application.

Data common to all shards is placed in knowledge base
repositories which are federated with shards when queries are
processed. This combination of shards and federated knowledge
base repos, called FedShard™, accelerates results for highly
complex queries.

This diagram shows how this works:

The three Knowledge Base repos at the top contain data needed
for all queries. The Shards below contain partitionable data.
Queries are run on federations of the knowledge base repos
with a shard (and can be run of each possible federation of a

shard and the knowledge bases with results being combined when
the query completes). The black lines show the federations
running queries.

The shards need not reside in the same AllegroGraph instance,
and indeed need not reside on the same server, as this
expanded images shows:

The Distributed Repositories Using Shards and Federation
Tutorial walks you through how to define and install to a
cluster, how to define a distributed repository, and how
various utilities can be used to manipulate AllegroGraph
clusters and distributed repositories.

This document describes all the options when setting up a
distributed repository (the tutorial just uses some options).
The last section, More information on running the cluster, has
links into the Tutorial document where things like running a
SPARQL query on a cluster are discussed.

The basic setup
You have a very large database and you want to run queries on
the database. With the data in a single repository in a single
server, queries may take a long time because a query runs on a

https://franz.com/agraph/support/documentation/7.0.0/cluster-tutorial.html
https://franz.com/agraph/support/documentation/7.0.0/cluster-tutorial.html
https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#running-cluster
https://franz.com/agraph/support/documentation/7.0.0/cluster-tutorial.html

single processor. At the moment, parallel processing of
queries using multiple cores is not supported for a single
repository.

But if you can partition your data into several logical groups
and your queries can be applied to each group without needing
information from any other group, then you can create a
distributed repository which allows multiple servers to run
queries on pieces of the data effectively in parallel.

Let us start with an example. We describe a simplified version
of the database used in the tutorial.

The data is from a hospital. There is diagnosis description
data (a list of diseases and conditions) and administration
data (a list of things that can happen to a patient while in
the hospital — check in, check out, room assignment, etc.) and
there is patient data. Over the years the hospital has served
millions of patients.

Each patient has a unique identifier, say pNNNNNNNNN, that is
the letter p followed by nine decimal digits. Everything that
happened to that patient is recorded in one or more triples,
such as:

p001034027 checkIn 2016-11-07T10:22:00Z
p001034027 seenBy doctor12872
p001034027 admitted 2016-11-07T12:45:00Z
p001034027 diagnosedHaving condition5678
p001034027 hadOperation procedure01754
p001034027 checkOut 2016-11-07T16:15:00Z

This is quite simplified. The tutorial example is richer. Here
we just want to give the general idea. Note there are three
objects which refer to other data: condition5678 (broken
arm), doctor12872 (Dr. Jones), and procedure01754 (setting a
broken bone). We will talk about these below.

So we have six triples for this hospital visit. We also have
personal data:

p001034027 name "John Smith"
p001034027 insurance "Blue Cross"
p001034027 address "123 First St. Springfield"

And then there are other visits and interactions. All in all,
there are, say, 127 triples with p001034027 as the subject.
And there are 3 million patients, with an average of 70
triples per patient, or 210 million triples of patient data.

Suppose you have queries like:

How many patients were admitted in 2016?
How many patients had a broken arm (condition5678)?
How many broken arm patients were re-admitted within 90
days?
How many patients stayed in the hospital longer than 2
days?

All of those queries apply to patients individually: that is
those questions can be answered for any patient, such
as p001034027, without needing to know about any other
patient. Contrast that with the query

What was the next operation in the operating room
where p001034027 was treated?

For that query, you need to know when p001034027 used the
operating room and what was the next use, which would have
been by some other patient. (In the simple scheme described,
it is not clear we know which operating room was used and
when, but assume that data is in triples not described, all
with p001034027 as the subject.) This query is not, in its
present form, suitable for a distributed repository since to
answer it, information has to be collected from the shard
containing p001034027 and then used in retirieving data from
other shards.

So if your queries are all of the first type, then your data
is suitable for a distributed repository.

Some data is common to all patients: the definition of
conditions, doctors, and procedures. You may need to know
these data when answering queries. Not if the query is How
many patients were diagnosed with condition5678?' but if it
is How many patients had a broken arm? as the latter requires
knowing that condition5678` is a broken arm. Thus, triples
like

condition5678 hasLabel "broken arm"

are needed on all shards so that queries like

SELECT ?s WHERE { ?c hasLabel "broken arm" .
 ?s diagnosedHaving ?c . }

will return results. As we describe, we have an additional
repository. the kb (knowledge base) repo which is federated
with all shards and provides triples specifying the general
taxonomy and ontology.

Resource requirements
The Memory Usage document discusses requirements for repos.
Each shard in a distributed repository is a repo so each must
have the resources discussed in that document.

Also distributed repositories use many file descriptors, not
only for file access but also for pipes and sockets. When
AllegroGraph starts up, if the system determines that there
may be too few file descriptors allowed, a warning is printed:

AllegroGraph Server Edition 7.0.0
Copyright (c) 2005-2020 Franz Inc. All Rights Reserved.
AllegroGraph contains patented and patent-pending
technologies.

Daemonizing...

Server started with warning: When configured to serve a

https://franz.com/agraph/support/documentation/7.0.0/memory-usage.html

distributed
database we suggest the soft file descriptor limit be 65536.
The
current limit is 1024.

Cluster Definition File
To support operation over a cluster of servers, AllegroGraph
requires a Cluster Definition file named, in the
default, agcluster.cfg. This file can define distributed
repository specifications. We discuss the file in detail below
in the agcluster.cfg file section.

The distributed repository setup
A distributed repository has the following components:

A set of one of more AllegroGraph servers. Each server
is specified by a host, a scheme (i.e. http or https),
and a port. Those three elements uniquely define the
server. After installation and cluster setup are
complete, AllegroGraph will be installed on each server
and will have the cluster repository and one or more
cluster shards (a special type of repository) defined in
each server. We refer to the servers as cluster servers.
A distributed repository. This is a special type of
repository. Its name is specified in
the agcluster.cfg file with the db directive (described
below). It appears as a repository on each cluster
server but does not itself contain triples. Instead it
contains information about the cluster (the servers, the
shards, and so on) which is used by the server to manage
queries, insertions, and deletions. Queries applied to
the distributed repository are applied to each shard and
the results and collected and returned, perhaps after
some editing and further modification. Distributed

https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#agcluster-file

repositories are created using specifications in
the agcluster.cfg file. (To be clear about terminology:
the distributed repository definition is the whole
complex specified by the agcluster.cfg file: shards, kb
repositories, and the distributed repository.)
A set of cluster shards. A shard is a special type of
repository. Shards are named (implicitly or explicitly)
in the agcluster.cfg file. Shards are created when a
distributed repository is created using specifications
in the agcluster.cfg file. Each shard is created fresh
at that time: if there is already a repository on a
server which shares the name of a shard, that repository
must be superseded (deleted and recreated afresh) when
the distributed repository is created.
A partition key. The key identifies which triples belong
in the same shard. The key can be a part, that is a
subject, predicate, object, or graph of a triple, or an
attribute name (see the Triple Attributes document). If
it is a part, all triples with the same part value are
placed in the same shard (all triples have a graph even
if it is the default graph so if the key is part graph,
all triples with the default graph go into the same
shard, all with graph XXX into the same shard, and so
on). For key attribute attribute-name all triples with
the same value for the attribute with attribute-name go
into the same shard.
The common kb repository or repositories. These are one
or more ordinary repositories which will be federated
with each shard when processing a SPARQL query. They are
specified in the agcluster.cfg file and are associated
with the cluster but are otherwise normal repos. In
general triples can be added and deleted in the usual
manner and queries can be executed as usual unrelated to
the ditributed repository. (When a query is run on a
distributed repository, the common kb repositories are
treated as if read only and so calls to delete triples
or SPARQL-DELETE clauses will not delete triples in

https://franz.com/agraph/support/documentation/7.0.0/triple-attributes.html

these common kb repos.) You can have as many common
repos as you like and need not have any.

Keep these requirements in mind in the formal descriptions of
the directives below.

The agcluster.cfg file
The agcluster.cfg file can be used for installation (it can
install all the servers and create all the repositories and
set up all the necessary mechanics for distributed queries) or
it can simply be used for distributed queries after the user
has set up everything by hand, or somewhere in between.

agcluster.cfg files contain directives. Directive names are
case-insensitive, so Server is the same as server. There are
four types of directives:

Defaulting directives: these provide defaults for
defining directives and collective directives. See
the Defaulting directives section for a complete list.
Examples are the Port and Scheme directives, which
provide the default port and scheme values for server
directives.
Defining directives: there are two: server and repo.
These define servers and repositories that will make up
the distributed repository.
Collective directives: group and db are the two
collective directives. group directives define and label
collections of servers and repos. db directives define
actual distributed repositories.
Object specification directives: these directives
provide information about specific types of objects, for
the most part dbs and servers. They specify aspects
(such a username and password for servers, shards per
server for dbs). These are described with the object
directives they affect.

https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#defaulting-directives

The format of an agcluster.cfg file is:

Toplevel directives
Collective directives

Comment lines and blank lines may be inserted anywhere in the
file.

The toplevel directives can be defaulting directives and
defining directives. The defaulting directives provide
defaults for any defining directives in the whole file
(including those in group and db directives) unless overridden
by defaulting directives in the collective directives or
specific values in the defining directive. Here is a quick
example. (Note we indent directives within
the Group directive. That is for clarity and has no semantic
meaning.)

Port 10066
Scheme http
server aghost1.franz.com host1
Group my-group
 Scheme https
 server aghost2.franz.com:12012 host2
 server http://aghost3.franz.com host3

Three servers are defined:

host1 http://aghost1.franz.com:10066 (using toplevel
scheme and port defaults)
host2 https://aghost2.franz.com:12012 (using group
scheme default and explicit port value)
host3 http3://aghost3.franz.com:10066 (using toplevel
port default and explicit scheme value)

Toplevel directives are all read when the agcluster.cfg file
is read and apply to defining directives regardless of whether
they are before or after the defaulting directives. (All group
directives must be after all toplevel directives.)

If there are duplicate defaulting directives at the toplevel,

the last is used and the earlier ones are ignored. So if these
directives appear at the toplevel:

Port 10035
server http://aghost.franz.com aghost
Port 10066

the aghost server is http://aghost.franz.com:10066, using the
final port directive, not the first one even though the final
one appears after the server directive.

The Distributed Repositories Tutorial has a
minimal agcluster.cfg file which relies on the system
providing default names for all the shard repos. Here is
the agcluster.cfg file from the tutorial:

Port 10035
Scheme http

group my-servers
 server aghost1.franz.com host1
 server aghost2.franz.com host2
 server aghost3.franz.com host3

db bigDB
 key part graph
 user test
 password xyzzy
 shardsPerServer 3
 include my-servers

The file defines:

Three servers: servers are fully determined by a host
(e.g. aghost1.franz.com), a port (10035, specified in a
default directive line at the top), and a scheme (http
or https, in this case http, specified in a default
directive line at the top).
A group of servers, specified in the group line with the
label my-servers.
A distributed repository named bigDB. This is specified

https://franz.com/agraph/support/documentation/current/cluster-tutorial.html

on the db line. A cluster repository with the
name bigDB will be visible on each server after the
distributed repository is defined and the databases are
created.
The key that will be used to determine which shard a
triple is added to. key part graph says assign to a
shard based on the graph of the triple. All triples with
the same graph value end up in the same shard.
A username and password. These should be valid for all
servers in the my-servers group.
An include directive saying the servers in the my-
servers group should be used by the distributed
repository.
A shardsPerServer directive saying that each specified
server will have three shards.

Comment lines
Comment lines in the agcluster.cfg file are lines that start
with a #. These are ignored as are blank lines. A # following
other text does not indicate the remainder of the line is a
comment. So

This is a comment
Port 10035 # This is NOT a comment and this line is ill-formed

Labels
Many constructs (servers, groups, repos, and db’s) can be
assigned a label. These labels can be referenced later in the
file to refer to the constructs. Some database utilities can
also use labels.

A label must precede references to it.

This is OK:
server http://aghost1.franz.com host1

group my-servers
 server host1

This is NOT OK:
group my-servers
 server host1

server http://aghost1.franz.com host1

All labels exist in the same namespace. Duplicate names are
illegal, even when used for different objects:

 # This will error:
 repo http://aghost.franz.com/repositories/my-repo label1
 db label1
 [...]

Some more simple agcluster.cfg examples
If the agcluster.cfg file just below is used for installation,
then all three servers will be installed. When
the bigDB distributed repository is the created (with, for
example, agtool create-db), three shard repositories will be
created on each server with names determined by the system.
Finally, the distributed cluster repository named bigDB will
be accessible on each server.

Now we could have specified more things. For example, we could
have specified some of the shard repos:

Port 10035
Scheme http

group my-servers
 server aghost1.franz.com host1
 server aghost2.franz.com host2
 server aghost3.franz.com host3

db bigDB
 key part graph

 repo host1/repositories/my-shard1
 repo aghost1.franz.com/repositories/my-shard2
 user test
 password xyzzy
 shardsPerServer 3
 include my-servers

We have specified two shard repositories, both on host1, one
using the label host1 and one using the actual host name.

If we use this file to install and create the distributed
repository, we will still end up with three servers and three
repos, named by the system, on each, and additionally the two
named repo shards, for a total of eleven shards.

A note on constructed repository names
As we will describe, when a distributed repository is created,
shard repos are often created and named by the system. The
names are generated from the repository name and have the
following form:

<repository-name>.shard<index>

For example, the shards of a 3-shard distributed repository
named distdb will be
named distdb.shard0, distdb.shard1 and distdb.shard2 respectiv
ely.

But if these names conflict with other existing repository
names or with other shard names constructed while the
distributed repository is being created, the system will try
different names. If it cannot find a suitable name, the
distributed repository creation will fail with an error.

The names specified in the examples in this document thus may
not correspond to what you actually see, but will usually be
pretty close.

The directives in the agcluster.cfg
file

Defining directives
The two defining directives are server and repo.

The server directive
A server is completely specified by a scheme (http or https),
a port (a positive integer in the range of acceptable port
numbers), and a host. The general format is

server [<scheme>://]host[:<port>] [label]

The <scheme> and <port> can be specified, can come from
a defaulting directive, or can be the global default, http for
the scheme and 10035 for the port. The label is a name which
can be used later in the file to refer to this server.

Here are some examples (we assume no defaulting directives are
present except those shown in the examples):

server aghost.franz.com aghost

The server is http://aghost.franz.com:10035 and its label
is aghost. The scheme (http) and port (10035) come from the
global defaults.

scheme https
port 12001
server aghost1.franz.com aghost1

The server is https//aghost1.franz.com:12001 and its label
is aghost1. The scheme (https) and port (12001) come from the
defaulting directives just above the server directive.

server http://aghost2.franz.com:13012

The server is http//aghost.franz.com:13012 and it has no

https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#defaulting-directives

label. The scheme, port, and host are all fully specified and
use no defaults. (If this is a toplevel directive, it is not
very useful as the server cannot be referred to later.
Labelless servers can be useful as part of collective
directives as they are used when the collective defined is
used. In general, however, it is better to specify a label.

Server-specific directives

The following directives can be specified for a server. They
can appear after the server directive or as defaulting
directives in the current context:

user <username>
The AllegroGraph user that will be be used when making
requests to a server.

password <password>
The password for the user.

osuser <name> : The username to use when ssh’ing into servers
(used by agraph-control and install-agraph in their respective
clustered operation modes).

sudo <boolean>
[Optional] Allow passwordless sudo on each host. sudo is
necessary if, for example, you wish to install AllegroGraph
into a directory that requires root privileges to write to.

bindir <directory>
The directory where of the bin/ subdirectory of the
directory where AllegroGraph is installed on the server
(the installation will be in the parent directory).

The repo directive
A repo (or repository) is completely specified by a server
host, a catalog, and a repo name. The general format is

repo <server>[/catalog/<catalog-name>]/repository

<server> can be a SERVER-SPEC or a label of an already defined
server. Here are some examples:

server aghost.franz.com aghost

repo https://aghost2.franz.com:10077/repositories/my-repo my-
repo
repo aghost/catalogs/my-catalog/repositories/cat-repo cat-repo

A repo directive implicitly defines a server. Thus if either
of those repo directives appeared as part of a db directive
(defining a distributed repository) the servers
aghost.franz.com (with whatever default values the scheme and
port had when the server was defined) and
https://aghost2.franz.com:10077 will be included among the
distributed repository servers even if there is not a specific
server directives including them.

Collective directives: GROUP and DB
There are two types of collections that can be specified in
an agcluster.cfg file (these are collective directives):

GROUP: a collection of server and/or repo objects, along
with default directives that affect elements of the
group only.
DB: a collection of servers and repos where each repo is
a shard in a distributed repository. Each repo is
associated with a server so this collection must include
one or more servers, perhaps defined directly or added
with an include statement or specified implicitly in
a repo directive. Additional db-specific directives may
be included (like shardsPerServer, all are described
below) and defaulting directives that apply to
the db collection only.

These directives create contexts and statements following
these directives apply to that context only. All statements up

https://franz.com/agraph/support/documentation/7.0.0/agtool.html#server-specs

to the next collective directive refer to the context of the
current connective directive. Statements that precede any
collective directive are toplevel context statements.

The GROUP directive
A group is a collection of servers defined
with server directives and/or repos defined
with repo directives. Groups can be referred to by their
labels and included with distributed repositories with
the include directive (see DB directive below).

The format is

group <label>
 [default-directives]
 server-directive <label>
 repo-directive <label>
 include <label of another group>

Any number of server and repo directives can be supplied and
in any order. include directives includes other groups of
servers and repos in this group.

The label is needed as otherwise there is no way to refer to
the group in other directives.

default-directives are defined below. They usually provide
defaults for values in the server and repo directives.

repo-directives are formally defined above but in short are

server-spec-or-label[/catalog/catalog-name]/repositories/repo-
name <label>

A server-spec is described next. A server-label is the label
given to a server-directive.

server-directives are formally defined above but in short are

[scheme://][host][:port] <label>

https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#db-directive
https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#defaulting-directives
https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#repo-directives
https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#server-directives

where scheme is http (the default) or https, host is a
hostname (default localhost) and port is a port number
(default 10035). The label is optional. It can refer to the
server in other directives. An example is

group my-servers
 Port 10650
 Scheme http
 server aghost1.franz.com aghost1
 server https://aghost2.franz.com aghost2
 server aghost3.franz.com:10035 aghost3

Defaults are specified for Port and Scheme and are used when
necessary. The servers are (completely specified):

 http://aghost1.franz.com:10650 aghost1
 https://aghost2.franz.com:10650 aghost2
 http://aghost3.franz.com:10035 aghost3

aghost1 uses both supplied defaults, aghost2 uses the default
port but a different scheme. aghost3 uses the default scheme
but a different port.

Here we include some repo directives

group my-shards
 Post 10650
 Scheme http
 server aghost1.franz.com aghost1
 server https://aghost2.franz.com aghost2
 server aghost3.franz.com:10035 aghost3
 repo aghost1/repositories/my-rep1

 repo
http://ag-other-host.franz.com/catalog/shard-cat/repositories/
my-other-repo

One repo-directive uses a server label and the other specifies
a server (with host ag-other-host.franz.com) not otherwise
listed.

The DB directive
The db directive defines a collection of repositories and
servers which collectively form a distributed repository.
Triples in the distributed repository are stored in the
individual repositories, which are
called shards. kb directives define additional repos which
contains things like triples defining the database ontology.
These repos are federated with shards during SPARQL queries.
Queries are run by each server on each shard and the results
are combined and returned as the query result. See
the Distributed Repositories Tutorial for information on how
distributed repositories work. That document contains a fully
worked out example. It also contains a agcluster.cfg file,
which though quite short and straightforward, allows for rich
and complex examples. (While the specification allows for many
options and complex configurations, most actual use cases do
not require long or complex cluster config files.)

The specification for a db directive is as follows:

db <label>
 [defaulting directives]
 key <part-or-attribute> <part-type-or-attribute-
name>
 prefix <string>
 shardsPerServer <positive integer>
 kb <repo spec or label>
 include <group label>
 server <server spec or label>
 repo <repo spec or label>

key, prefix, shardsPerServer, and kb are DB-specific
directives. Here are the directives used above:

The db label: this must be specified. It will name the
distributed repository and might be used in naming
shards not specifically named.
defaulting directives: see the Defaulting
directives section below. These directives can provide

https://franz.com/agraph/support/documentation/current/cluster-tutorial.html
https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#defaulting-directives
https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#defaulting-directives

default values for other directives. Any number of
defaulting directives can be specified.
key: this required directive specifies how triples
should be assigned to shards. There are two arguments,
the type and the value. The type is
either part or attribute. The possible values for part
are subject, predicate, object, and graph.
The value for attribute is an attribute name. See
the Triple Attributes document. For key attribute
name all triples loaded into the distributed repository
must have the the name attribute with a value. (All
triples have a subject, predicate, object, and graph,
the graph being the default graph is no graph is
specified when the triple is added.) Only one key can be
specified and once the distributed repository is
created, it cannot be changed.
prefix: string to be used when generating unique names
for shards. It defaults to the db label. Only one prefix
can be specified.
shardsPerServer: a positive integer specifying the
number of shards per server. The default is 1. Servers
need not have the same number of shards and may have
more shards than this value, but cannot have fewer. Thus
all servers must have at least one shard. This directive
can be specified once only.

kb: a repo spec or label. This repository will be
federated with each shard when processing a query. This
repo typically contains ontology data and data which
provides information elements of triples.
Multiple kb directives can be specified.
include: a group label. The servers in the group will be
used in the distributed repository. Additional servers
can be designated with the next directive.
Multiple include directives can be specified.
server: a server spec or label. This server will be

https://franz.com/agraph/support/documentation/7.0.0/triple-attributes.html

included in the distributed repository.
Multiple server directives can be specified.
Each server declaration will result
in shardsPerServer shards being added, with names
constructed from the prefix or the db label, without
regard to repo declarations even if the repository spec
supplied specifies the same server as
a server directive. See the example below.
repo: a repository spec or label. The repository will be
included in the distributed repository.
Multiple repo directives can be
specified. repo directives add shards but they are not
counted as the in shardsPerServer value, See the example
below.

Here are some examples. Suppose we have this group directive:

group my-servers
 port 10035
 scheme http
 server aghost1.franz.com host1
 server aghost2.franz.com host2
 server aghost3.franz.com host3

Here is a db directive with the servers specified with
and include directive`:

db my-cluster
 include my-servers

Here is an equivalent db directive specifying servers
directly:

db my-cluster
 port 10035
 scheme http
 server aghost1.franz.com host1
 server aghost2.franz.com host2
 server aghost3.franz.com host3

Here the servers do not all use the same port or scheme. First

we create a group:

group my-servers
 server http://aghost1.franz.com:10044 host1
 server https://aghost2.franz.com:10035 host2
 server http://aghost3.franz.com:10035 host3

db my-cluster
 include my-servers

Here is the same db with the servers specified directly:

db my-cluster
 server http://aghost1.franz.com:10044 host1
 server https://aghost2.franz.com:10035 host2
 server http://aghost3.franz.com:10035 host3

All of those db above define a distributed repository with
three shards (since shardsPerServer defaults to 1) with shard
name on each server my-cluster.shard0. If we specified a
prefix:

db my-cluster
 server http://aghost1.franz.com:10044 host1
 server https://aghost2.franz.com:10035 host2
 server http://aghost3.franz.com:10035 host3
 prefix mc-shard

The shard name on each server would be mc-shard.shard0.

Here we indicate that each server will have 3 shards with
names created using the db label (my-cluster):

db my-cluster
 server http://aghost1.franz.com:10044 host1
 server https://aghost2.franz.com:10035 host2
 server http://aghost3.franz.com:10035 host3
 shardsPerServer 3

This directive will result in 9 shards (3 for each server)
named, on each server my-cluster.shard0, my-
cluster.shard1, my-cluster.shard2. Here is a db directive

where some shards are named directly:

db my-cluster
 server http://aghost1.franz.com:10044 host1
 server https://aghost2.franz.com:10035 host2
 shardsPerServer 3
 repo http://aghost3.franz.com:10044/repositories/my-h1-repo1
 repo http://aghost3.franz.com:10044/repositories/my-h1-repo2

This directive will also result in eight shards, 6 (3 in host1
and 3 in host2) named by the system (with names my-
cluster.shard0, my-cluster.shard1, my-cluster.shard2) and the
two repos on aghost3.franz.com. Because aghost3.franz.com does
not appear in a server declaration, it only gets the 2 shards
specified by the repo declarations and no additional shards
are created in that server.

Here we specify shardsPerServer to be 3 but also specify a
fourth repo in host1. We end up with 10 shards:

db my-cluster
 server http://aghost1.franz.com:10044 host1
 server https://aghost2.franz.com:10035 host2
 server http://aghost3.franz.com:10035 host3
 shardsPerServer 3
 repo host1/repositories/my-h1-repo4

This can be a little confusing but the rule is: for
each server declaration in
the db context, shardsPerServer shards will be created, named
with names constructed from the prefix or the db label if
no prefix is specified. Then any repo directives will result
in additional shards. So

db my-cluster
 server http://agraph1.franz.com/
 server http://agraph2.franz.com/
 repo http://agraph1.franz.com/repositories/my-repo1
 repo http://agraph2.franz.com/repositories/my-repo1
 server http://agraph3.franz.com/

will results in the following 5 shards
(since shardsPerServer is unspecified, its value is 1 (the
default):

http://agraph1.franz.com/repositories/my-cluster.shard0
http://agraph2.franz.com/repositories/my-cluster.shard0
http://agraph1.franz.com/repositories/my-repo1
http://agraph2.franz.com/repositories/my-repo1
http://agraph3.franz.com/repositories/my-cluster.shard0

When a server declarations is at the toplevel and not part of
the db context, it does not get additional shards even though
repos in it are made into shards:

server http://agraph1.franz.com/ host1
server http://agraph2.franz.com/ host2
db my-cluster
 repo host1/repositories/my-repo1
 repo host2/repositories/my-repo1
 server http://agraph3.franz.com/

results in these shards:

will results in the following 3 shards:

http://agraph1.franz.com/repositories/my-repo1
http://agraph2.franz.com/repositories/my-repo1
http://agraph3.franz.com/repositories/my-cluster.shard0

The kb directive: Here we specify a repo as the value of
the kb directive. This repo will be federated with each shard
when processing a query.

db my-cluster
 server http://aghost1.franz.com:10044 host1
 server https://aghost2.franz.com:10035 host2
 server http://aghost3.franz.com:10035 host3
 shardsPerServer 3

 kb
https://my-server.franz.com:10022/catalog/kb-cat/repositories/
my-kb

Equivalently, we can specify the server at the toplevel with a
label and use the label in the kb directive:

server https://my-server.franz.com:10022 my-kb-server
db my-cluster
 server http://aghost1.franz.com:10044 host1
 server https://aghost2.franz.com:10035 host2
 server http://aghost3.franz.com:10035 host3
 shardsPerServer 3
 kb my-kb-server/catalog/kb-cat/repositories/my-kb

We cannot define the my-kb-server under the db my-cluster line
because then it would be included among the servers with
shards. (It is, of courrse, ok to have the kb repo on a server
with shards, but if we want it on a server without shards, it
must be specified on the kb line or at the toplevel.)

Equivalently again we can specify the repo at the toplevel
with a label and use the label on the kb line:

server https://my-server.franz.com:10022 my-kb-server
repo my-kb-server/catalog/kb-cat/repositories/my-kb my-kb-repo
db my-cluster
 server http://aghost1.franz.com:10044 host1
 server https://aghost2.franz.com:10035 host2
 server http://aghost3.franz.com:10035 host3
 shardsPerServer 3
 kb my-kb-repo

of equivalently again:

repo
https://my-server.franz.com:10022/catalog/kb-cat/repositories/
my-kb my-kb-repo
db my-cluster
 server http://aghost1.franz.com:10044 host1
 server https://aghost2.franz.com:10035 host2
 server http://aghost3.franz.com:10035 host3
 shardsPerServer 3
 kb my-kb-repo

Defaulting directives
These directives provide defaults for
resolving server and repo directives. Values specified in
those directives can override the default.

port: the port use by a server. Default when
no port value is specified is 10035.
scheme: the protocol to use when connecting to a server.
The value must be http or https. Default when
no scheme is specified in http.
catalog: the catalog to use when resolving repos.
Default when no catalog is specified is the root
catalog.

All directives applicable to servers can also be defaulting
directives and can appear at the toplevel (and so affect any
group which does not specify a different default and any
server or repo which does not specify a different value and
which is not in a group with a different default, see examples
in the Server directives section).

Here is part of an agcluster.cfg file (server and repo
specifications are described above):

Port 10035
Catalog my-catalog
Scheme https

Server aghost1.franz.com host1
Repo host1/repositories/my-repo repo1

The full server specification is

https://aghost1.franz.com:10035

The full repo specification is

https://aghost1.franz.com:10035/catalog/my-catalog/repositorie
s/my-repo

https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#server-directives

Default values from the scheme, port, and catalog were filled
in because of the toplevel defaulting directives.

The following server directives can also appear at the
toplevel (these are documented above:

user <username>
password <password>
osuser <name>
sudo <boolean>
bindir <directory>

Installing AllegroGraph on multiple
servers
The clustering support in AllegroGraph is designed to allow
you to work with all servers with few or even single commands.
It is strongly recommended that you arrange things so you use
the same directories on each server and use the same scheme,
port and username and password. All those must be specified in
the agraph.cfg file, so then the same agraph.cfg file will
work on all the servers. The user must have sufficient
permissions to perform operations on the servers and
distributed repositories (superusers/administrators typically
have all necessary permissions). These things can be different
on each server but that requires having
separate agraph.cfg files and a more
complex agcluster.cfg file and makes simultaneous installation
on multiple servers difficult or impossible.

If you have the same agraph.cfg file for all servers, the
following command will install on all servers defined in
the agcluster.cfg file and copy
the agcluster.cfg and agraph.cfg files to each AllegroGraph
installation:

install-agraph --cluster-config agcluster.cfg --agraph-config

https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#server-directives
https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#server-specific

agraph.cfg [install-dir]

install-agraph is located in the untarred AlllegroGraph
distribution directory. It and the two .cfg files must have
paths supplied so the system knows where they are.

If you have a bindir directive in the agcluster.cfg,
the install-dir argument can be left out as it can be inferred
from the bindir value. If install-dir is specified, it must be
an absolute pathname.

The distributed AllegroGraph installation process generates a
number of temporary files. These are placed in /tmp unless a -
-staging-dir argument is supplied to the install-agraph call.
The value can either be an absolute pathname which names a
directory which must be accessible on every host in the
cluster. All temporary files are removed when the installation
completes. If temporary file space runs out, the installation
will fail and all new installations will be deleted.

If you cannot use the same directories, schemes, ports, or
superuser/passwords on all servers, then install AllegroGraph
on each server and run

install-agraph --cluster-config agcluster.cfg [install-dir]

That will cause the agcluster.cfg file to be copied around.
That file should have the varying specifications for each
server.

Changing the agcluster.cfg file
If you want to add information to the agcluster.cfg file (to,
for example, add distributed repository — db –specifications),
simply update a copy of agcluster.cfg (in one
the lib/ subdirectories of one of the distributed repo
servers) and run

install-agraph –cluster-config [path of modified

copy/]agcluster.cfg

That will copy the revised file to the various installations
on the servers.

Be careful not to modify the specifications for distributed
repos already created. The install-dir argument is not needed
since a bindir directive was added to the agcluster.cfg file
when it was copied to the lib/ subdirectory of the
installation directories on the various servers.

Starting and stopping the servers
Servers can be started and stopped in the usual way, with
commands like

agraph-control --agraph-config <agraph.cfg file> start/stop

All servers in a cluster can be started and stopped with

agraph-control --cluster start/stop

when the invoked agraph-control program is in
the bin/ directory of one of the server installations (because
it then knows how to find the agcluster.cfg file). If agraph-
control is from somewhere else or does not find the file as
expected, specify the location of the file with

agraph-control --cluster-config <agcluster.cfg file>
start/stop

Using agtool utilities on a
distributed repository
The agtool General Command Utility has numerous command
options that work on repositories. Most of these work on
distributed repositories just as they work on regular
repositories. But here are some notes on specific tools.

https://franz.com/agraph/support/documentation/7.0.0/agtool.html

Using agtool export on a distributed
repository
agtool export (see Repository Export) works on distributed
repositories just like it does with regular repositories. All
data in the various shards of the distributed repo is written
to a regular data file which can be read into a regular
repository or another distributed repo with the same number of
shards or a different number of shards. (Nothing in the
exported file indicates that the data came from a distributed
repository).

The kb (knowledge base) repos associated with a distributed
repo (see above in this document) are repos which are
federated with shards when SPARQL queries are being
processed. kb repos are not exported along with a distributed
repo. You must export them separately if desired.

Using agtool archive on a distributed
repository
The agtool archive command is used for backing up and
restoring databases. For backing up, it works similarly to
backing up a regular repo (that is, the command line and
arguments are essentially the same).

But a backup of a distributed repo can only be restored into a
distributed repo with the same number of shards. It cannot be
restored into a regular repo or into a distributed repo with a
different number of shards. So for example, suppose we have a
distributed repo bigDB defined as follows in
a agcluster.cfg file:

Port 19700
Scheme http

group my-servers

https://franz.com/agraph/support/documentation/7.0.0/agexport.html
https://franz.com/agraph/support/documentation/7.0.0/cluster-setup.html#kb-repos

 server aghost1.franz.com host1
 server aghost2.franz.com host2

db bigDB
 key part graph
 user test
 password xyzzy
 shardsPerServer 3
 include my-servers

Here is the agtool archive backup command:

% bin/agtool archive backup
http://test:xyzzy@aghost1.franz.com:19700/repositories/bigDB
/aghost1/disk1/user1/drkenn1/
agtool built with AllegroGraph Server
Opening triple store bigDB for backup to
/aghost1/disk1/user1/drkenn1/archives/root/bigDB/bigDB.agbacku
p
Backup throughput: 20.9 MB/s
Backup completed in 0h0m3s
Wrote 62.8 MiB to
/aghost1disk1/user1/drkenn1/archives/root/bigDB/bigDB.agbackup

The backup went fine. But if we try to restore to a regular
repo or to a distributed repo with a different number of
shards (there are six shards in our example, 3 on each of 2
servers), it will fail.

But we can restore to a different distributed repo with 6
shards, say one specified like this:

db restoreDB1
 key part graph
 user test
 password xyzzy
 server aghost1.franz.com
 shardsPerServer 6

as follows:

% bin/agtool archive restore --newuuid

http://test:xyzzy@aghost1.franz.com:19700/repositories/restore
DB1 /aghost1/disk1/user1/drkenn1/ bigDB
agtool built with AllegroGraph Server
Restoring archive from /aghost1/disk1/user1/drkenn1/ to new
triple-store restorebigDB1
Restore throughput: 0.7 MB/s
Restore completed in 0h1m24s
Read 62.8 MiB from
/aghost1/disk1/user1/drkenn1/archives/root/bigDB/bigDB.agbacku
p

And of course we can restore to a distributed repo with the
same server/shard configuration, like bugDB3 with a spec
similar to bigDB‘s:

group my-servers
 server aghost1.franz.com host1
 server aghost2.franz.com host2

db bigDB
 key part graph
 user test
 password xyzzy
 shardsPerServer 3
 include my-servers

db bigDB3
 key part graph
 user test
 password xyzzy
 shardsPerServer 3
 include my-servers

% bin/agtool archive restore --newuuid
http://test:xyzzy@aghost1.franz.com:19700/repositories/bigDB3
/aghost1disk1/user1/drkenn1/ bigDB
agtool built with AllegroGraph
Restoring archive from /aghost1/disk1/user1/drkenn1/ to new
triple-store bigDB3
Restore throughput: 0.8 MB/s
Restore completed in 0h1m20s
Read 62.8 MiB from

/aghost1/disk1/user1/drkenn1/archives/root/bigDB/bigDB.agbacku
p
%

Upgrading to a new version
Upgrading to a new version is described in the Repository
Upgrading document. It works with distributed repos as with
regular repos with the exception that the later version must
have a sufficiently similar agcluster.cfg file, with the same
servers and specifications for existing distributed repos as
the older version.

Distributed repos in AGWebView
AGWebView is the browser interface to an AllegroGraph server.
For the most part, a distributed repo looks in AGWebView like
a regular repo. The number of triples (called by the alternate
name Statements and appearing at the top of
the Repository page) is the total for all shards and commands
work the same as on regular repos.

You do see the difference in Reports. In many reports
individual shards are listed by name. (The names are assigned
by the system and not under user control). Generally you do
not act on individual shards but sometimes information on them
is needed for problem solving.

More information on running the
cluster
See the Distributed Repositories Tutorial for information on
using a cluster once it is set up. See particularly the
sections:

https://franz.com/agraph/support/documentation/7.0.0/upgrade-guide.html
https://franz.com/agraph/support/documentation/7.0.0/upgrade-guide.html
https://franz.com/agraph/support/documentation/7.0.0/agwebview.html
https://franz.com/agraph/support/documentation/7.0.0/cluster-tutorial.html

Creating the Shards of a Distributed Repository
Adding data to a distributed repository
Querying a distributed repository using SPARQL

Advanced Knowledge Graph
Visualization with New Gruff
v8
High Performance Data Visualizations Accelerate Graph Search
and Query Building — Driving Data Discoveries for Banks,
Healthcare Providers and Enterprises Globally

OAKLAND, Calif., May 12, 2020 — Franz Inc., an early innovator
in Artificial Intelligence (AI) and leading supplier of
Semantic Graph Database technology for Knowledge Graph
Solutions, today announced Gruff 8, a browser-based graph
visualization software tool for exploring and discovering
connections within enterprise Knowledge Graphs. Gruff 8, which
has been integrated into AllegroGraph 7, enables users to
visually build queries and visualize connections between data
without writing code, which speeds discoveries and enhances
the ability to uncover hidden connections within data.

“By augmenting Knowledge Graphs with visualizations, users can
determine insights that would otherwise elude them,” said Jans
Aasman, CEO of Franz Inc. “Gruff’s dynamic data visualizations
increase users’ understanding of data by instantly
illustrating relevant relationships, hidden patterns and
data’s significance to outcomes. Gruff also helps make data
actionable by displaying it in a way that decision-makers can
see the significance of data relative to a business problem or
solution.”

https://franz.com/agraph/support/documentation/7.0.0/cluster-tutorial.html#Creating-the-Shards-of-a-Distributed-Repository
https://franz.com/agraph/support/documentation/7.0.0/cluster-tutorial.html#Adding-data-to-a-distributed-repository
https://franz.com/agraph/support/documentation/7.0.0/cluster-tutorial.html#Querying-a-distributed-repository-using-SPARQL
https://allegrograph.com/advanced-knowledge-graph-visualization-with-new-gruff-v8/
https://allegrograph.com/advanced-knowledge-graph-visualization-with-new-gruff-v8/
https://allegrograph.com/advanced-knowledge-graph-visualization-with-new-gruff-v8/
https://franz.com

“Few tools exist that can quickly turn arbitrary RDF graph
pattern matches into clear visualizable results,” said Michael
Pool, Global Head of Semantic Modeling and Engineering, Senior
Director at BNY Mellon Bank. “Gruff is invaluable in turning
our knowledge graph data into useful and actionable analytic
insights.”

Gruff enables users to create visual Knowledge Graphs that
display data relationships in views that are driven by the
user. Ad hoc and exploratory analysis can be performed by
simply clicking on different graph nodes to answer questions.
Gruff’s unique ‘Time Machine’ feature provides the capability
to explore temporal context and connections within data. The
visual query builder within Gruff empowers both novice and
expert users to create simple to highly complex queries
without writing any code.

Browser-based Graph Visualization – Gruff 8 is a browser-based
application that does not require an additional download or
application installation once AllegroGraph is installed. All
AllegroGraph users need is a web browser and internet
connection to login. This approach gives users the convenience
to access Gruff from anywhere on any type of system, while
also simplifying deployment and streamlining updates within
enterprise environments.

Louis Rumanes at UnitedHealth Group Research and Development
recognizes the value of using Gruff as a browser-based app and
commented, “Nice job on Gruff in a browser and I think this
will be a gamechanger.”

Accelerated Visual Graph Rendering – Visual renderings within
Gruff are now up to 3X faster. Users can dynamically lay out
cyclical graphs, display tables of properties and build SPARQL
or Prolog queries as visual diagrams.

Dynamic Graph Visualizations within AllegroGraph – Gruff is
fully integrated with AllegroGraph 7, Franz’s leading semantic

knowledge graph solution, which seamlessly leverages Gruff’s
advanced graph visualizations and graphical query builder to
reveal hidden connections in knowledge graph data.
AllegroGraph 7, with FedShard™, is a breakthrough Knowledge
Graph solution that allows infinite data integration through a
patented approach that unifies all data and knowledge base
silos into an Entity-Event Knowledge Graph solution that can
support massive big data analytics. AllegroGraph 7 utilizes
unique federated sharding capabilities that drive 360-degree
insights and enable complex reasoning across distributed
Knowledge Graphs.

To support ubiquitous AI, a Knowledge Graph system needs to
fuse and integrate data, not just in representation, but in
context (ontologies, metadata, domain knowledge, terminology
systems), and time (temporal relationships between components
of data). The rich functional and contextual integration of
multi-modal, predictive modeling, artificial intelligence
suitable for large scale analytics is what distinguishes
AllegroGraph 7 as a modern, scalable enterprise analytic
platform.

AllegroGraph 7 is the first big temporal Knowledge Graph
technology that encapsulates a novel entity-event model
natively integrated with domain ontologies and metadata with
dynamic ways of setting the analytics lens on all entities in
the system (patient, person, devices, transactions, events,
and operations) as prime objects that can be the focus of an
analytic (AI, ML, DL) process.

“AllegroGraph 7’s support of Entity-Event Data Modeling is the
most welcome innovation and addition to our arsenal in
reimagining healthcare and implementing Precision Medicine,”
said Dr. Parsa Mirhaji, Director of Center for Health Data
Innovations at the Albert Einstein College of Medicine and
Montefiore Health System, NY. “Precision Medicine is about
moving away from statistical averages and broad-based
patterns. It is about connecting many dots, from different

contexts and throughout time, to support precision diagnosis
and to recommend the precision care that can take into account
all the subtle differences and nuisances of individuals and
their personal experiences throughout their life. This
technology is about saving lives, by leveraging data, context
and analytics and is what Franz’s Entity-Event Data Modeling
brings to the table.”

Gruff 8 Availability and Pricing

Guff 8 is immediately available as a free download from
AllegroGraph.com and is integrated as part of AllegroGraph’s
cloud offering on the Amazon Marketplace.

Gruff Webinar
Join Franz’s webcast discussing Gruff 8 entitled “Visualizing
and Exploring Knowledge Graphs with the New Browser based

Gruff” – by registering for the May 14th Webinar.

About Franz Inc.

Franz Inc. is an early innovator in Artificial Intelligence
(AI) and leading supplier of Semantic Graph Database
technology with expert knowledge in developing and deploying
Knowledge Graph solutions. The foundation for Knowledge Graphs
and AI lies in the facets of semantic technology provided by
AllegroGraph and Allegro CL. AllegroGraph is a database
technology that enables businesses to extract sophisticated
decision insights and predictive analytics from highly
complex, distributed data that cannot be uncovered with
conventional databases. Unlike traditional relational
databases or other NoSQL databases, AllegroGraph employs
semantic graph technologies that process data with contextual
and conceptual intelligence. AllegroGraph is able run queries
of unprecedented complexity to support predictive analytics
that help organizations make more informed, real-time
decisions. AllegroGraph is utilized by dozens of the top F500
companies worldwide. To learn more about Franz and

https://allegrograph.com/
https://aws.amazon.com/marketplace/seller-profile?id=0f392d00-70ea-430b-ac7a-b7dec2b83285&ref=dtl_B085S7JBWF
https://allegrograph.com/webcasts/visualizing-and-exploring-knowledge-graphs-with-the-new-browser-based-gruff/
https://allegrograph.com/webcasts/visualizing-and-exploring-knowledge-graphs-with-the-new-browser-based-gruff/
https://allegrograph.com/webcasts/visualizing-and-exploring-knowledge-graphs-with-the-new-browser-based-gruff/
https://allegrograph.com/

AllegroGraph, go to www.franz.com.

Ubiquitous AI Demands A New
Type Of Database Sharding
Forbes published the following article by Dr. Jans Aasman,
Franz Inc.’s CEO.

The notion of sharding has become
increasingly crucial for selecting and
optimizing database architectures. In
many cases, sharding is a means of
horizontally distributing data; if
properly implemented, it results in
near-infinite scalability. This option
enables database availability for

business continuity, allowing organizations to replicate
databases among geographic locations. It’s equally useful for
load balancing, in which computational necessities (like
processing) shift between machines to improve IT resource
allocation.

However, these use cases fail to actualize sharding’s full
potential to maximize database performance in today’s post-big
data landscape. There’s an even more powerful form of
sharding, called “hybrid sharding,” that drastically improves
the speed of query results and duly expands the complexity of
the questions that can be asked and answered. Hybrid sharding
is the ability to combine data that can be partitioned into
shards with data that represents knowledge that is usually un-
shardable.

This hybrid sharding works particularly well with the

https://franz.com
https://allegrograph.com/ubiquitous-ai-demands-a-new-type-of-database-sharding/
https://allegrograph.com/ubiquitous-ai-demands-a-new-type-of-database-sharding/

knowledge graph phenomenon leveraged by the world’s top data-
driven companies. Hybrid sharding also creates the enterprise
scalability to query scores of internal and external sources
for nuanced, detailed results, with responsiveness
commensurate to that of the contemporary AI age.

Read the full article at Forbes.

NEW! – Franz’s AllegroGraph 7
Powers First Distributed
Semantic Knowledge Graph
Solution with Federated-
Sharding
FedShard™, Entity-Event Data Modeling and Browser-based Gruff
Drives Infinite Data Integration, Holistic Insights and
Complex Reasoning

Franz Inc., an early innovator in Artificial Intelligence (AI)
and leading supplier of Semantic Graph Database technology for
Knowledge Graph Solutions, today announced AllegroGraph 7, a
breakthrough solution that allows infinite data integration
through a patented approach unifying all data and siloed
knowledge into an Entity-Event Knowledge Graph solution that
can support massive big data analytics. AllegroGraph 7

https://queue.acm.org/detail.cfm?id=3332266
https://queue.acm.org/detail.cfm?id=3332266
https://www.forbes.com/sites/forbestechcouncil/2020/05/01/ubiquitous-ai-demands-a-new-type-of-database-sharding/#6e7b505c24d9
https://allegrograph.com/new-franzs-allegrograph-7-powers-first-distributed-semantic-knowledge-graph-solution-with-federated-sharding/
https://allegrograph.com/new-franzs-allegrograph-7-powers-first-distributed-semantic-knowledge-graph-solution-with-federated-sharding/
https://allegrograph.com/new-franzs-allegrograph-7-powers-first-distributed-semantic-knowledge-graph-solution-with-federated-sharding/
https://allegrograph.com/new-franzs-allegrograph-7-powers-first-distributed-semantic-knowledge-graph-solution-with-federated-sharding/
https://allegrograph.com/new-franzs-allegrograph-7-powers-first-distributed-semantic-knowledge-graph-solution-with-federated-sharding/
https://franz.com

utilizes unique federated sharding capabilities that drive
360-degree insights and enable complex reasoning across a
distributed Knowledge Graph. Hidden connections in data are
revealed to AllegroGraph 7 users through a new browser-based
version of Gruff, an advanced visualization and graphical
query builder.

“Large enterprises have Knowledge Graphs that are so big that
no amount of vertical scaling will work,” said Jans Aasman,
CEO of Franz Inc. “When these organizations want to conduct
new big data analytics, it requires a new effort by the IT
department to gather semi-usable data for the data scientists,
which can cost millions of dollars, waste valuable time and
still not provide a holistic data architecture for querying
across all data. ETL, Data Lakes and Property Graphs only
exacerbate the problem by creating new data silos.
AllegroGraph 7 takes a holistic approach to mixed data,
unifying all enterprise data with domain knowledge, including
taxonomies, ontologies and industry knowledge – making queries
across all data possible, while simplifying and accelerating
feature extraction for machine learning.”

To support ubiquitous AI, a Knowledge Graph system will have
to fuse and integrate data, not just in representation, but in
context (ontologies, metadata, domain knowledge, terminology
systems), and time (temporal relationships between components
of data). The rich functional and contextual integration of
multi-modal, predictive modeling and artificial intelligence
is what distinguishes AllegroGraph 7 as a modern, scalable,
enterprise analytic platform. AllegroGraph 7 is the first big
temporal knowledge graph technology that encapsulates a novel
entity-event model natively integrated with domain ontologies
and metadata, and dynamic ways of setting the analytics lens
on all entities in the system (patient, person, devices,
transactions, events, and operations) as prime objects that
can be the focus of an analytic (AI, ML, DL) process.

AI applications and complex reasoning analytics require

information from both databases and knowledge bases that
contain domain information, taxonomies and ontologies in order
to conduct queries. Some large-scale knowledge bases cannot be
sharded because they contain highly interconnected data.
AllegroGraph 7 federates any shard with any large-scale
knowledge base – providing a novel way to shard knowledge
bases without duplicating knowledge bases in every shard. This
approach creates a modern analytic system that integrates data
in context (ontologies, metadata, domain knowledge,
terminology systems) and time (temporal relationships between
components of data). The result is a rich functional and
contextual integration of data suitable for large scale
analytics, predictive modeling, and artificial intelligence.

Financial institutions, healthcare providers, contact centers,
manufacturing firms, government agencies and other large
enterprises that use AllegroGraph 7 gain a holistic, future-
proofed Knowledge Graph architecture for big data predictive
analytics and machine learning across complex knowledge bases.

“AllegroGraph 7’s support of Entity-Event Data Modeling is the
most welcome innovation and addition to our arsenal in
reimagining healthcare and implementing Precision Medicine,”
said Dr. Parsa Mirhaji, Director of Center for Health Data
Innovations at the Albert Einstein College of Medicine and
Montefiore Health System, NY “Precision Medicine is about
moving away from statistical averages and broad-based
patterns. It is about connecting many dots, from different
contexts and throughout time, to support precision diagnosis
and to recommend the precision care that can take into account
all the subtle differences and nuisances of individuals and
their personal experiences throughout their life. This
technology is about saving lives, by leveraging data, context
and analytics and is what Franz’s Entity-Event Data Modeling
brings to the table.”

Dr. Mirhaji and his team at Montefiore Health System have
developed the Patient-centered Analytic Learning Machine

(PALM) using these capabilities to provide an enterprise
platform for Artificial Intelligence and machine learning in
healthcare that can support conversational AI, interpret data
from EMR, natural language, and radiological images, all
centered around life-time experiences of an individual
patient. A single system that unifies all analytics and data
from heterogeneous sources to manage appointments and
prescriptions, triage patients with potential spinal cancer,
respiratory failure, or sepsis, and provide just-in-time
recommendations and personalized decision support for
clinicians to improve patients’ outcomes.

Key capabilities in AllegroGraph 7 include:

Semantic Entity-Event Data Modeling

Big Data predictive analytics requires a new data model
approach that unifies typical enterprise data with knowledge
bases such as taxonomies, ontologies, industry terms and other
domain knowledge. The Entity-Event Data Model utilized by
AllegroGraph 7 puts core ‘entities’ such as customers,
patients, students or people of interest at the center and
then collects several layers of knowledge related to the
entity as ‘events.’ The events represent activities that
transpire in a temporal context. Using this novel data model
approach, organizations gain a holistic view of customers,
patients, students or important entities and the ability to
discover deep connections, uncover new patterns and attain
explainable results.

FedShard™ Speeds Complex Queries

Through a patented in-memory federation function, the results
from each machine are combined so that the query process
appears as if only one database is being accessed, although
many different databases and data stores and knowledge bases
are actually being accessed and returning results. This unique
data federation capability accelerates results for highly

complex queries across highly distributed data sets and
knowledge bases.

Large-scale Mixed Data Processing

The AllegroGraph 7 big data processing system is able to scale
massive amounts of domain knowledge data by efficiently
associating domain knowledge with partitioned data through
shardable graphs on clusters of machines. AllegroGraph 7
efficiently combines partitioned data with domain knowledge
through an innovative process that keeps as much of the data
in RAM as possible to speed data access and fully utilize the
processors of the query servers.

Browser-based Gruff
Gruff’s powerful query and visualization capabilities are now
available via a web browser and directly integrated in
AllegroGraph 7. Gruff is the industry’s leading Knowledge
Graph visualization tool that dynamically displays visual
graphs and related links. Gruff’s ‘Time Machine’ provides
users with an important capability to explore temporal
connections and see how relationships are created over time.
Users can build visual graphs that display the relationships
in graph databases, display tables of properties, manage
queries, connect to SPARQL Endpoints, and build SPARQL or
Prolog queries as visual diagrams. Gruff can be downloaded
separately or is included with the AllegroGraph v7
distribution.

High Performance Big Data Analytics

AllegroGraph 7 delivers high performance analytics by
overcoming data processing issues related to disk versus
memory access, uses processor core efficiency and updates
domain knowledge databases across partitioned data systems in
a highly efficient manner.

Gartner predicts “the application of graph processing and
graph DBMSs will grow at 100 percent annually through 2022 to

https://www.gartner.com/smarterwithgartner/gartner-top-10-data-analytics-trends/

continuously accelerate data preparation and enable more
complex and adaptive data science.” In addition, Gartner named
graph analytics as a “Top 10 Data and Analytics Trend” to
solve critical business priorities.” (Source: Gartner, Top 10
Data and Analytics Trends, November 5, 2019)

AllegroGraph 7 Availability

AllegroGraph 7 is immediately available directly from Franz
Inc. Visit the AllegroGraph YouTube channel to see
AllegroGraph in action.

Join AllegroGraph 7 Webinar
Franz Inc. will host a webcast entitled “Scalable Knowledge
Graphs Using the New Distributed AllegroGraph 7.” Register
for the Webinar.

Knowledge Graph Conference – May 4 – 7, 2020

Dr. Jans Aasman, CEO, Franz Inc., will be presenting a talk at
the Knowledge Graph Conference entitled, “The Knowledge Graph

that Listens” on May 7th at 1PM Eastern. Register for the
Conference.

The Knowledge Graph Cookbook

Released April 22, 2020, this new book directs readers on why
and how to build Knowledge Graphs that help enterprises use
data to innovate, create value and increase revenue. The book
is full of recipes and knowledge on the subject and features
an interview with Dr. Jans Aasman, CEO, Franz Inc. in the
Expert Opinion section. Get a copy of the book.

https://youtu.be/SPOpHTIdyCI
https://allegrograph.com/webcasts/webinar-scalable-knowledge-graphs-using-the-new-distributed-allegrograph-7-0/
https://allegrograph.com/webcasts/webinar-scalable-knowledge-graphs-using-the-new-distributed-allegrograph-7-0/
https://www.knowledgegraph.tech/speakers/jans-aasman/
https://www.knowledgegraph.tech/speakers/jans-aasman/
https://www.knowledgegraph.tech/the-knowledge-graph-conference-kgc/register/
https://allegrograph.com/the-knowledge-graph-cookbook/

Natural Language Processing
and Machine Learning in
AllegroGraph
The majority of our customers build Knowledge Graphs with
Natural Language and Machine learning components. Because of
this trend AllegroGraph now offers strong support for the use
of Natural Language Processing and Machine learning.

Franz Inc has a team of NLP engineers and Taxonomy experts
that can help with building turn-key solutions. In general
however, our customers already have some expertise in house.
In those cases we train customers in how to take the output of
NLP and ML processing and turn that into an efficient
Knowledge Graph based on best practices in the industry.

This document primarily describes the NLP and ML plug-in
AllegroGraph.

Note that many enterprises already have a data science team
with NLP experts that use modern open source NLP tools like
Spacy, Gensim or Polyglot, or Machine Learning based NLP tools
like BERT and Scikit-Learn. In another blog about Document
Handling we describe a pipeline of how to deal with NLP in
Document Knowledge Graphs by using our NLP and ML plugin and
mix that with open source tools.

PlugIn features for Natural Language Processing and Machine
Learning in AllegroGraph.

Here is the outline of the plugin features that we are going
to describe in more detail.

https://allegrograph.com/natural-language-processing-and-machine-learning-in-allegrograph/
https://allegrograph.com/natural-language-processing-and-machine-learning-in-allegrograph/
https://allegrograph.com/natural-language-processing-and-machine-learning-in-allegrograph/
https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/
https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/
https://allegrograph.com/document-knowledge-graphs-with-nlp-and-ml/

Machine learning

data acquisition
classifier training
feature extraction support
performance analysis
model persistence

NLP

handling languages
handling dictionaries
tokenization
entity extraction
Sentiment analysis
basic pattern matching

SPARQL Access

Future development

Machine Learning

ML: Data Acquisition
Given that the NLP and ML functions operate within
AllegroGraph, after loading the plugins, data acquisition can
be performed directly from the triple-store, which drastically
simplifies the data scientist workflow. However, if the data
is not in AllegroGraph yet we can also import it directly from
ten formats of triples or we can use our additional
capabilities to import from CSV/JSON/JSON-LD.

Part of the Data Acquisition is also that we need to pre-
process the data for training so we provide these three
functions:

prepare-training-data
split-dev-test

equalize (for resampling)

Machine Learning: Classifiers

Currently we provide simple linear classifiers. In case
there’s a need for neural net or other advanced
classifiers, those can be integrated on-demand.
We also provide support for online learning (online
machine learning is an ML method in which data becomes
available in a sequential order and is used to update
the best predictor for future data at each step, as
opposed to batch learning techniques which generate the
best predictor by learning on the entire training data
set at once). This feature is useful for many real-world
data sets that are constantly updated.
The default classifiers available are Averaged
Perceptron and AROW

Machine Learning: Feature Extraction

Each classifier is expecting a vector of features: either
feature indices (indicative features) or pairs of numbers
(index – value). These are obtained in a two-step process:

1. A classifier-specific extract-features method should be
defined that will return raw feature vector with features
identified by strings of the following form:
prefix|feature.

The prefix should be provided as a keyword argument to the
collect-features method call, and it is used to distinguish
similar features from different sources (for instance, for
distinct predicates).

2. Those features will be automatically transformed to
unique integer ids. The resulting feature vector of
indicator features may look like the following: #(1 123
2999 …)

Note that these features may be persisted to AllegroGraph for
repeated re-use (e.g. for experimenting with classifier
hyperparameter tuning or different classification models).

Many possible features may be extracted from data, but there
is a set of common ones, such as:

1. individual tokens of the text field
2. ngrams (of a specified order) of the text field
3. presence of a token in a specific dictionary (like, the
dictionary of slang words)
4. presence/value of a certain predicate for the subject of
the current triple
5. length of the text

And in case the user has a need for special types of tokens we
can write specific token methods, here is an example (in Lisp)
that produces an indicator feature of a presence of emojis in
the text:

(defmethod collect-features ((method (eql :emoji)) toks &key
pred)
(dolist (tok toks)
(when (some #'(lambda (code)
 (or (<= #x1F600 code #x1F64F)
 (<= #x1F650 code #x1F67F)
 (<= #x1F680 code #x1F6FF)))
 (map 'vector #'char-code tok))
(return (list "emoji")))))

Machine Learning: Integration with Spacy

The NLP and ML community invents new features and capabilities
at an incredible speed. Way faster than any database company
can keep up with. So why not embrace that? Whenever we need
something that we don’t have in AllegroGraph yet we can call
out to Spacy or any other external NLP tool. Here is an
example of using feature extraction from Spacy to collect

indicator features of the text dependency parse relations:

(defmethod collect-features ((method (eql :dep)) deps &key
pred dep-type dep-labels)
 (loop :for ds :in deps :nconc
 (loop :for dep :in ds
 :when (and (member (dep-tag dep) dep-labels)
 (dep-head dep)
 (dep-tok dep))
 :collect (format nil "dep|~a|~a_~a"
 dep-type
 (tok-word (dep-head dep)
 (tok-word (dep-tok dep))))))

The demonstrated integration uses Spacy Docker instance and
its HTTP API.

Machine Learning: Classifier Analysis

We provide all the basic tools and metrics for classifier
quality analysis:

accuracy
f1, precision, recall
confusion matrix
and an aggregated classification report

Machine Learning: Model Persistence

The idea behind model persistence is that all the data can be
stored in AllegroGraph, including features and classifier
models. AllegroGraph stores classifiers directly as triples.
This is a far more robust and language-independent approach
than currently popular among data scientists reliance on
Python pickle files. For the storage we provide a basic
triple-based format, so it is also possible to interchange the
models using standard RDF data formats.

The biggest advantage of this approach is that when adding

text to AllegroGraph we don’t have to move the data externally
to perform the classification but can keep the whole pipeline
entirely internal.

Natural Language Procession (NLP)

NLP: Language Packs

Most of the NLP tools are language-dependent: i.e. there’s a
general function that uses language-specific model/rules/etc.
In AllegroGraph, support for particular languages is provided
on-demand and all the language-specific is grouped in the so
called “language pack” or langpack, for short – a directory
with a number of text and binary files with predefined names.

Currently, the langpack for English is provided at
nlp/langs/en.zip, with the following files:

contractions.txt – a dictionary of contractions
abbrs.txt – a dictionary of abbreviations
stopwords.txt – a dictionary of stopwords
pos-dict.txt – positive sentiment words
neg-dict.txt – negative sentiment words
word-tok.txt – a list of word tokenization rules

Additionally, we use a general dictionary, a word-form
dictionary (obtained from Wiktionary), and custom lexicons.

Loading a langpack for a particular language is performed
using load-langpack.

Creating a langpack is just a matter of adding the properly
named files to the directory and can be done manually. The
names of the files should correspond to the names of the
dictionary variables that will be filled by the pack. The
dictionaries that don’t have a corresponding file will be just
skipped.We have just finished creating a langpack for Spanish
and it will be published soon. In case you need other

dictionaries we use our AG/Spacy infrastructure. Spacy
recently added a comprehensive list of new languages:

NLP: Dictionaries

Dictionaries are read from the language packs or other sources
and are kept in memory as language-specific hash-tables.
Alongside support for storing the dictionaries as text files,
there are also utilities for working with them as triples and
putting them into the triple store.

Note that we at Franz Inc specialize in Taxonomy Building
using various commercial taxonomy building tools. All these
tools can now export these taxonomies as a mix of SKOS
taxonomies and OWL. We have several functions to read directly
from these SKOS taxonomies and turn them into dictionaries
that support efficient phrase-level lookup.

NLP: Tokenization

Tokenization is performed using a time-proven rule-based
approach. There are 3 levels of tokenization that have both a
corresponding specific utility function and an :output format
of the tokenize function:

:parags – splits the text into a list of lists of tokens
for paragraphs and sentences in each paragraph
:sents – splits the text into a list of tokens for each
sentence
:words – splits the text into a plain list of tokens

Paragraph-level tokenization considers newlines as paragraph
delimiters. Sentence-level tokenization is geared towards
western-style writing that uses dot and other punctuation
marks to delimit sentences. It is, currently, hard-coded, but
if the need arises, additional handling may be added for other
writing systems. Word-level tokenization is performed using a
language-specific set of rules.

NLP: Entity Extraction

Entity extraction is performed by efficient matching (exactly
or fuzzy) of the token sequences to the existing dictionary
structure.

It is expected that the entities come from the triple store
and there’s a special utility function that builds lookup
dictionaries from all the triples of the repository identified
by certain graphs that have a skos:prefLabel or skos:altLabel
property. The lookup may be case-insensitive with the
exception of abbreviations (default) or case-sensitive.

Similar to entity extraction, there’s also support for
spotting sentiment words. It is performed using the
positive/negative words dictionaries from the langpack.

One feature that we needed to develop for our customers is
‘heuristic entity extraction’ . In case you want to extract
complicated product names from text or call-center
conversations between customers and agents you run into the
problem that it becomes very expensive to develop altLabels in
a taxonomy tool. We created special software to facilitate the
automatic creation of altlabels.

NLP: Basic Pattern Matching for relationship and event
detection

Getting entities out of text is now well understood and
supported by the software community. However, to find complex
concepts or relationships between entities or even events is

way harder and requires a flexible rule-based pattern matcher.
Given our long time background in Lisp and Prolog one can
imagine we created a very powerful pattern matcher.

SPARQL Access

Currently all the features above can be controlled as stored
procedures or using Lisp as the command language. We have a
new (beta) version that uses SPARQL for most of the control.
Here are some examples. Note that fai is a magic-property
namespace for “AI”-related stuff and inc is a custom namespace
of an imaginary client:

1. Entity extraction

select ?ent {
 ?subj fai:entityTaxonomy inc:products .
 ?subj fai:entityTaxonomy inc:salesTerms .
 ?subj fai:textPredicate inc:text .
 ?subj fai:entity(fai:language "en", fai:taxonomy
inc:products) ?ent .
}

The expressions ?subj fai:entityTaxonomy inc:poducts and ?subj
fai:entityTaxonomy inc:salesTerms specify which taxonomies to
use (the appropriate matchers are cached).
The expression ?subj fai:entity ?ent will either return the
already extracted entities with the specified predicate
(fai:entity) or extract the new entities according to the
taxonomies in the texts accessible by fai:textPredicate.

2. fai:sentiment will return a single triple with sentiment
score:

select ?sentiment {
 ?subj fai:textPredicate inc:text .
 ?subj fai:sentiment ?sentiment .
 ?subj fai:language "en" .
 ?subj fai:sentimentTaxonomy franz:sentiwords .
}

3. Text classification:
Provided inc:customClassifier was already trained previously,
this query will return labels for all texts as a result of
classification.

select ?label {
?subj fai:textPredicate inc:text .
?subj fai:classifier inc:customClassifier .
?subj fai:classify ?label .
?label fai:storeResultPredicate inc:label .
}

Further Development
Our team is currently working on these new features:

A more accessible UI (python client & web) to facilitate
NLP and ML pipelines
Addition of various classifier models
Sequence classification support (already implemented for
a customer project)
Pre-trained models shipped with AllegroGraph (e.g.
English NER)
Graph ML algorithms (deepwalk, Google Expander)
Clustering algorithms (k-means, OPTICS)

The Knowledge Graph Cookbook
Recipes for Knowledge Graphs that Work:

Learn why and how to build knowledge graphs that help
enterprises use data to innovate, create value and
increase revenue. This practical manual is full of
recipes and knowledge on the subject.
Learn more about the variety of applications based on
knowledge graphs.
Learn how to build working knowledge graphs and which
technologies to use.
See how knowledge graphs can benefit different parts of
your organization.
Get ready for the next generation of enterprise data
management tools.

Dr. Jans Aasman, CEO, Franz Inc. is interviewed in the Expert
Opinion Section.

“KNOWLEDGE GRAPHS AREN’T WORTH THEIR NAME IF THEY DON’T
ALSO LEARN AND BECOME SMARTER DAY BY DAY” – Dr. Aasman

https://allegrograph.com/the-knowledge-graph-cookbook/

Click here to get the book as free PDF or Kindle version.

Answering the Question Why:
Explainable AI

The statistical branch of Artificial
Intelligence has enamored organizations across
industries, spurred an immense amount of capital
dedicated to its technologies, and entranced
numerous media outlets for the past couple of

years. All of this attention, however, will ultimately prove
unwarranted unless organizations, data scientists, and various
vendors can answer one simple question: can they

https://www.poolparty.biz/resources/the-knowledge-graph-cookbook-resource/
https://allegrograph.com/answering-the-question-why-explainable-ai/
https://allegrograph.com/answering-the-question-why-explainable-ai/
https://www.aithority.com//?s=Artificial%20Intelligence
https://www.aithority.com//?s=Artificial%20Intelligence
https://www.forbes.com/sites/jeanbaptiste/2019/02/12/venture-capital-funding-for-artificial-intelligence-startups-hit-record-high-in-2018/#4d30128041f7
https://www.forbes.com/sites/jeanbaptiste/2019/02/12/venture-capital-funding-for-artificial-intelligence-startups-hit-record-high-in-2018/#4d30128041f7

provide Explainable AI?

Although the ability to explain the results of Machine
Learning models—and produce consistent results from them—has
never been easy, a number of emergent techniques have recently
appeared to open the proverbial ‘black box’ rendering these
models so difficult to explain.

One of the most useful involves modeling real-world events
with the adaptive schema of knowledge graphs and, via Machine
Learning, gleaning whether they’re related and how frequently
they take place together.

When the knowledge graph environment becomes endowed with an
additional temporal dimension that organizations can traverse
forwards and backwards with dynamic visualizations, they can
understand what actually triggered these events, how one
affected others, and the critical aspect of causation
necessary for Explainable AI.

Read the full article at AIthority.

100 Companies That Matter in
Knowledge Management
Franz Inc., is proud to announce that it has been named to The
100 Companies That Matter in Knowledge Management by KMWorld.
 The annual list reflects the urgency felt among many
organizations to provide a timely flow of targeted
information. Among the more prominent initiatives is the use
of AI and cognitive computing, as well as related capabilities
such as machine learning, natural language processing, and
text analytics.

https://www.gartner.com/smarterwithgartner/gartner-top-10-data-analytics-trends/
https://www.aithority.com//?s=Machine%20Learning
https://www.aithority.com//?s=Machine%20Learning
https://www.aithority.com//?s=Explainable%20AI
https://www.aithority.com/guest-authors/answering-the-question-why-explainable-ai/
https://allegrograph.com/100-companies-that-matter-in-knowledge-management/
https://allegrograph.com/100-companies-that-matter-in-knowledge-management/
https://franz.com
https://www.kmworld.com/Articles/Editorial/Features/KMWorld-100-Companies-That-Matter-in-Knowledge-Management-2020-135998.aspx
https://www.kmworld.com/Articles/Editorial/Features/KMWorld-100-Companies-That-Matter-in-Knowledge-Management-2020-135998.aspx

“Knowledge management software and services providers are
embracing a fresh wave of technological innovation to address
heightened expectations—among both customers and employees—for
the right information to be delivered to the right people at
the right time, said Tom Hogan, Group Publisher at KMWorld.
“To showcase organizations that are advancing their products
and capabilities to meet changing requirements, KMWorld
created the annual list of 100 Companies That Matter in
Knowledge Management.”

“We are honored to receive this acknowledgement for our
efforts in delivering Enterprise Knowledge Graph Solutions,”
said Dr. Jans Aasman, CEO, Franz Inc. “In the past year, we
have seen demand for Enterprise Knowledge Graphs take off
across industries along with recognition from top technology
analyst firms that Knowledge Graphs provide the critical
foundation for artificial intelligence applications and
predictive analytics. Our AllegroGraph Knowledge Graph
Platform Solution offers a unique comprehensive approach for
helping companies accelerate the creation of Enterprise
Knowledge Graphs that deliver new value to their
organization.”

How To Avoid Another AI
Winter
Forbes published the following article by Dr. Jans Aasman,
Franz Inc.’s CEO.

https://allegrograph.com/how-to-avoid-another-ai-winter/
https://allegrograph.com/how-to-avoid-another-ai-winter/

Although there has been great progress in
artificial intelligence (AI) over the past
few years, many of us remember the AI winter
in the 1990s, which resulted from
overinflated promises by developers and
unnaturally high expectations from end

users. Now, industry insiders, such as Facebook head of
AI Jerome Pesenti, are predicting that AI will soon hit
another wall—this time due to the lack of semantic
understanding.

“Deep learning and current AI, if you are really honest, has a
lot of limitations,” said Pesenti. “We are very, very far from
human intelligence, and there are some criticisms that are
valid: It can propagate human biases, it’s not easy to
explain, it doesn’t have common sense, it’s more on the level
of pattern matching than robust semantic understanding.”

Read the full article at Forbes.

https://towardsdatascience.com/history-of-the-first-ai-winter-6f8c2186f80b
https://towardsdatascience.com/history-of-the-first-ai-winter-6f8c2186f80b
https://www.wired.com/story/facebooks-ai-says-field-hit-wall/
https://www.forbes.com/sites/forbestechcouncil/2020/02/14/how-to-avoid-another-ai-winter/#3f846abf18a8

