
Unraveling the Quandary of
Access Layer versus Storage
Layer Security
InfoSecurity – February 2019

Dr. Jans Aasman was quoted in this article about how
AllegroGraph’s Triple Attributes provide Storage Layer
Security.

With horizontal standards such as the General Data Protection
Regulation (GDPR) and vertical mandates like the Fair Credit
Reporting Act increasing in scope and number, information
security is impacted by regulatory compliance more than ever.

Organizations frequently decide between concentrating
protection at the access layer via role-based security
filtering, or at the storage layer with methods like
encryption, masking, and tokenization.

The argument is that the former underpins data governance
policy and regulatory compliance by restricting data access
according to department or organizational role. However, the
latter’s perceived as providing more granular security
implemented at the data layer.

A hybrid of access based security and security at the data
layer—implemented by triple attributes—can counteract the
weakness of each approach with the other’s strength,
resulting in information security that Franz CEO Jans Aasman
characterized as “fine-grained and flexible enough” for any
regulatory requirements or security model.

https://allegrograph.com/unraveling-the-quandary-of-access-layer-versus-storage-layer-security/
https://allegrograph.com/unraveling-the-quandary-of-access-layer-versus-storage-layer-security/
https://allegrograph.com/unraveling-the-quandary-of-access-layer-versus-storage-layer-security/
https://franz.com/agraph/support/documentation/current/triple-attributes.html
https://franz.com/

The security provided by this semantic technology is
considerably enhanced by the addition of key-value pairs as
JSON objects, which can be arbitrarily assigned to triples
within databases. These key-value pairs provide a second
security mechanism “embedded in the storage, so you cannot
cheat,” Aasman remarked.

When implementing HIPPA standards with triple attributes,
“even if you’re a doctor, you can only see a patient record
if all your other attributes are okay,” Aasman mentioned.

“We’re talking about a very flexible mechanism where we can
add any combination of key-value pairs to any triples, and
have a very flexible language to specify how to use that to
create flexible security models,” Aasman said.

Read the full article at InfoSecurity.

ГРАФОВЫЕ БАЗЫ: ПРИНЦИП РАБОТЫ
И ПРИМЕНЕНИЕ – GRAPH BASES:
PRINCIPLE OF OPERATION AND
APPLICATION
Всеволод Дёмкин удаленно работает во Franz Inc. над графовой
базой AllegroGraph. Преподает в Projector курс «Natural

https://www.pcmag.com/encyclopedia/term/45782/key-value-pair
https://www.infosecurity-magazine.com/opinions/access-storage-layer-security/
https://allegrograph.com/event/%d0%b3%d1%80%d0%b0%d1%84%d0%be%d0%b2%d1%8b%d0%b5-%d0%b1%d0%b0%d0%b7%d1%8b-%d0%bf%d1%80%d0%b8%d0%bd%d1%86%d0%b8%d0%bf-%d1%80%d0%b0%d0%b1%d0%be%d1%82%d1%8b-%d0%b8-%d0%bf%d1%80%d0%b8%d0%bc%d0%b5%d0%bd/
https://allegrograph.com/event/%d0%b3%d1%80%d0%b0%d1%84%d0%be%d0%b2%d1%8b%d0%b5-%d0%b1%d0%b0%d0%b7%d1%8b-%d0%bf%d1%80%d0%b8%d0%bd%d1%86%d0%b8%d0%bf-%d1%80%d0%b0%d0%b1%d0%be%d1%82%d1%8b-%d0%b8-%d0%bf%d1%80%d0%b8%d0%bc%d0%b5%d0%bd/
https://allegrograph.com/event/%d0%b3%d1%80%d0%b0%d1%84%d0%be%d0%b2%d1%8b%d0%b5-%d0%b1%d0%b0%d0%b7%d1%8b-%d0%bf%d1%80%d0%b8%d0%bd%d1%86%d0%b8%d0%bf-%d1%80%d0%b0%d0%b1%d0%be%d1%82%d1%8b-%d0%b8-%d0%bf%d1%80%d0%b8%d0%bc%d0%b5%d0%bd/
https://allegrograph.com/event/%d0%b3%d1%80%d0%b0%d1%84%d0%be%d0%b2%d1%8b%d0%b5-%d0%b1%d0%b0%d0%b7%d1%8b-%d0%bf%d1%80%d0%b8%d0%bd%d1%86%d0%b8%d0%bf-%d1%80%d0%b0%d0%b1%d0%be%d1%82%d1%8b-%d0%b8-%d0%bf%d1%80%d0%b8%d0%bc%d0%b5%d0%bd/
https://www.facebook.com/vseloved
https://www.facebook.com/FranzAllegroGraph/
https://prjctr.com.ua/natural-language-processing.html

Language Processing». В свободное время делаетопен-сорс для
обработки природных текстов на Lisp’е.

Мы рассмотрим создание программы для агрегации текстов из
разных источников, таких как twitter, блоги, reddit и т.д., —
их автоматической, а затем ручной обработки для формирования
дайджеста новостей по определенной теме. На этом примере мы
проанализируем, какие преимущества дает использование графовых
баз данных, обсудим их возможности и ограничения.

В качестве конкретной БД будет использована система Franz
AllegroGraph и мы ознакомимся с ее экосистемой, включающей
возможности построение API и веб-приложений, а также со средой
Allegro Common Lisp, на которой она построена. Особое внимание
будет уделено использованию машинного обучения и NLP при
решении задач работы с текстом, в частности, внутри
AllegroGraph.

Обсудим:

— В чем особенности, как работают, преимущества/недостатки
графовых БД;

— Как решать базовые задачи обработки текстов с использованием
инструментария ML/NLP;

— Как построить полноценное приложение с ядром обработки
текста на основе графовой БД и ML/NLP технологий;

— Как устроена экосистема Common Lisp и как можно
задействовать ее для создания серверных приложений.

Лекция будет полезна: разработчикам, которые интересуются
темой графовых баз данных и/или ML/NLP.

https://prjctr.com.ua/natural-language-processing.html

Semantic Web and Semantic
Technology Trends in 2019
Dataversity – January 2019

What to expect of Semantic Web and other Semantic Technologies
in 2019? Quite a bit. DATAVERSITY engaged with leaders in the
space to get their thoughts on how Semantic Technologies will
have an impact on multiple areas.

Dr. Jans Aasman, CEO of Franz Inc. was quoted several times in
the article:

Among the semantic-driven AI ventures next year will be those
that relate to the healthcare space, says Dr. Jans Aasman, CEO
of Semantic Web technology company Franz, Inc:

“In the last two years some of the technologies were starting
to get used in production,” he says. “In 2019 we will see a
ramp-up of the number of AI applications that will help save
lives by providing early warning signs for impending diseases.
Some diseases will be predicted years in advance by using
genetic patient data to understand future biological issues,
like the likelihood of cancerous mutations — and start
preventive therapies before the disease takes hold.”

If that’s not enough, how about digital immortality via AI
Knowledge Graphs, where an interactive voice system will bring
public figures in contact with anyone in the real world?
“We’ll see the first examples of Digital Immortality in 2019
in the form of AI Digital Personas for public figures,” says
Aasman, whose company is a partner in the Noam Chomsky
Knowledge Graph:

“The combination of Artificial Intelligence and

https://allegrograph.com/semantic-web-and-semantic-technology-trends-in-2019/
https://allegrograph.com/semantic-web-and-semantic-technology-trends-in-2019/
https://franz.com/
http://www.dataversity.net/franz-semantic-web-company-partner-create-noam-chomsky-knowledge-graph/
http://www.dataversity.net/franz-semantic-web-company-partner-create-noam-chomsky-knowledge-graph/

Semantic Knowledge Graphs will be used to transform the works
of scientists, technologists, politicians, and scholars like
Noam Chomsky into an interactive response system that uses the
person’s actual voice to answer questions,” he comments.

“AI Digital Personas will dynamically link information from
various sources — such as books, research papers, notes and
media interviews — and turn the disparate information into a
knowledge system that people can interact with digitally.”
These AI Digital Personas could also be used while the person
is still alive to broaden the accessibility of their
expertise.

On the point of the future of graph visualization apps, Aasman
notes that:

“Most graph visualization applications show network diagrams
in only two dimensions, but it is unnatural to
manipulate graphs on a flat computer screen in 2D. Modern R
virtual reality will add at least two dimensions to graph
visualization, which will create a more natural way to
manipulate complex graphs by incorporating more depth
and temporal unfolding to understand information within a time
perspective.”

Read the full article at Dataversity.

2019 Trends In The Internet

http://www.dataversity.net/solving-knowledge-graph-data-prep-standards/
https://www.dataversity.net/semantic-web-semantic-technology-trends-2019/
https://allegrograph.com/2019-trends-in-the-internet-of-things-the-makings-of-an-intelligent-iot/

Of Things: The Makings Of An
Intelligent IoT
AI Business – December 2018

2019 will be a crucial year for the Internet of Things for two
reasons. Firstly, many of the initial predictions for this
application of big data prognosticated a future whereby at the
start of the next decade there would be billions of connected
devices all simultaneously producing sensor data. The IoT is
just a year away from making good on those claims.

Dr. Jans Aasman, Franz’s CEO was quoted by the author:

The IIoT is the evolution of the IoT that will give it meaning
and help it actualize the number of connected devices forecast
for the start of the next decade. The IIoT will encompass
smart cities, edge devices, wearables, deep learning and
classic machine learning alongside lesser acknowledged
elements of AI in a basic paradigm in which, according
to Franz CEO Jans Aasman, “you can look at the past and learn
from certain situations what’s likely going to happen. You
feed it in your [IoT] system and it does better… then you look
at what actually happened and it goes back in your machine
learning system. That will be your feedback loop.”

Although deep learning relies on many of the same concepts as
traditional machine learning, with “deep learning it’s just
that you do it with more computers and more intermediate
layers,” Aasman said, which results in higher accuracy levels.

The feedback mechanism described by Aasman has such a
tremendous capacity to reform data-driven businesses because
of the speed of the iterations provided by low latency IIoT
data.

One of the critical learning facets the latter produces

https://allegrograph.com/2019-trends-in-the-internet-of-things-the-makings-of-an-intelligent-iot/
https://allegrograph.com/2019-trends-in-the-internet-of-things-the-makings-of-an-intelligent-iot/
https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf
https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf
https://franz.com/

involves optimization, such as determining the best way to
optimize route deliveries encompassing a host of factors based
on dedicated rules about them. “There’s no way in [Hades] that
a machine learning system would be able to do the complex
scheduling of 6,000 people,” Aasman declared. “That’s a really
complicated thing where you have to think of every factor for
every person.”

However, constraint systems utilizing multi-step reasoning can
regularly complete such tasks and the optimization activities
for smart cities. Aasman commented that for smart cities,
semantic inferencing systems can incorporate data from traffic
patterns and stop lights, weather predictions, the time of
year, and data about specific businesses and their customers
to devise rules for optimal event scheduling. Once the events
actually take place, their results—as determined by KPIs—can
be analyzed with machine learning to issue future predictions
about how to better those results in what Aasman called “a
beautiful feedback loop between a machine learning system and
a rules-based system.”

In almost all of the examples discussed above, the IIoT
incorporates cognitive computing “so humans can take action
for better business results,” Aasman acknowledged. The means
by which these advantages are created are practically
limitless.

Read the Full Article at AI Business.

https://aibusiness.com/2019-internet-of-things-intelligent-iot/

AllegroGraph named to 2019
Trend-Setting Products
Database Trends and Applications – December 2018

You can call it the new oil, or even the new electricity, but
however it is described, it’s clear that data is now
recognized as an essential fuel flowing through organizations
and enabling never before seen opportunities. However, data
cannot simply be collected; it must be handled with care in
order to fulfill the promise of faster, smarter decision
making.

More than ever, it is critical to have the right tools for the
job. Leading IT vendors are coming forward to help customers
address the data-driven possibilities by improving self-
service access, real-time insights, governance and security,
collaboration, high availability, and more.

To help showcase these innovative products and services each
year, Database Trends and Applications magazine looks for
offerings that promise to help organizations derive greater
benefit from their data, make decisions faster, and work
smarter and more securely.

This year our list includes newer approaches leveraging
artificial intelligence, machine learning, and automation as
well as products in more established categories such as
relational and NoSQL database management, MultiValue,
performance management, analytics, and data governance.

Read the AllegroGraph Spotlight

https://allegrograph.com/allegrograph-named-to-2019-trend-setting-products/
https://allegrograph.com/allegrograph-named-to-2019-trend-setting-products/
http://www.dbta.com/Editorial/Actions/Product-Spotlight-Franz-128871.aspx

AllegroGraph News
Franz periodically distributes newsletters to its Semantic
Technologies, and Common Lisp based Enterprise Development
Tools mailing lists, providing information on related upcoming
events and new software product developments.

Optimizing Fraud Management
with AI Knowledge Graphs
From Global Banking and Finance Review – July 12, 2018

This article discusses Knowledge Graphs for Anti-Money
Laundering (AML), Suspicious Activity Reports (SAR),
counterfeiting and social engineering falsities, as well as
synthetic, first-party, and card-not-present fraud.

By compiling fraud-related data into an AI knowledge graph,
risk management personnel can also triage those alerts for
the right action at the right time. They also get the
additive benefit of reusing this graph to decrease other
risks for security, loans, or additional financial purposes.

Dr. Aasman goes on to note:

By incorporating AI, these threat maps yields a plethora of
information for actually preventing fraud. Supervised
learning methods can readily identify what events constitute
fraud and which don’t; many of these involve classic machine

https://allegrograph.com/allegrograph-news-september/
https://allegrograph.com/optimizing-fraud-management-with-ai-knowledge-graphs/
https://allegrograph.com/optimizing-fraud-management-with-ai-knowledge-graphs/

learning. Unsupervised learning capabilities are influential
in determining normal user behavior then pinpointing
anomalies contributing to fraud. Perhaps the most effective
way AI underpins risk management knowledge graphs is in
predicting the likelihood—and when—a specific fraud instance
will take place. Once organizations have data for customers,
events, and fraud types over a length of time (which could be
in as little as a month in the rapidly evolving financial
crimes space), they can compute the co-occurrence between
events and fraud types.

Read the full article over at Global Banking and Finance
Review.

https://www.globalbankingandfinance.com/optimizing-fraud-management-with-ai-knowledge-graphs/
https://www.globalbankingandfinance.com/optimizing-fraud-management-with-ai-knowledge-graphs/

The Most Secure Graph
Database Available
Triples offer a way of describing model elements and relationships
between them. In come cases, however, it is also convenient to be
able to store data that is associated with a triple as a whole
rather than with a particular element. For instance one might wish
to record the source from which a triple has been imported or
access level necessary to include it in query results. Traditional
solutions of this problem include using graphs, RDF reification or
triple IDs. All of these approaches suffer from various
flexibility and performance issues. For this reason AllegroGraph
offers an alternative: triple attributes.
Attributes are key-value pairs associated with a triple. Keys
refer to attribute definitions that must be added to the store
before they are used. Values are strings. The set of legal values
of an attribute can be constrained by the definition of that
attribute. It is possible to associate multiple values of a given
attribute with a single triple.
Possible uses for triple attributes include:

Access control: It is possible to instruct AllegroGraph to
prevent an user from accessing triples with certain
attributes.
Sharding: Attributes can be used to ensure that related
triples are always placed in the same shard when
AllegroGraph acts as a distributed triple store.

Like all other triple components, attribute values are immutable.
They must be provided when the triple is added to the store and
cannot be changed or removed later.
To illustrate the use of triple attributes we will construct an
artificial data set containing a log of information about contacts
detected by a submarine at a single moment in time.

Managing attribute definitions
Before we can add triples with attributes to the store we must
create appropriate attribute definitions.
First let’s open a connection

https://allegrograph.com/the-most-secure-graph-database-available/
https://allegrograph.com/the-most-secure-graph-database-available/

from franz.openrdf.connect import ag_connect

conn = ag_connect('python-tutorial', create=True, clear=True)

Attribute definitions are represented
by AttributeDefinition objects. Each definition has a name, which
must be unique, and a few optional properties (that can also be
passed as constructor arguments):

allowed_values: a list of strings. If this property is set
then only the values from this list can be used for the
defined attribute.
ordered: a boolean. If true then attribute value comparisons
will use the ordering defined by allowed_values. The default
is false.
minimum_number, maximum_number: integers that can be used to
constrain the cardinality of an attribute. By default there
are no limits.

Let’s define a few attributes that we will later use to
demonstrate various attribute-related capabilities of
AllegroGraph. To do this, we will use
the setAttributeDefinition() method of the connection object.

from franz.openrdf.repository.attributes import AttributeDefinition

A simple attribute with no constraints governing the set
of legal values or the number of values that can be
associated with a triple.
tag = AttributeDefinition(name='tag')

An attribute with a limited set of legal values.
Every bit of data can come from multiple sources.
We encode this information in triple attributes,
since it refers to the tripe as a whole. Another
way of achieving this would be to use triple ids
or RDF reification.
source = AttributeDefinition(
 name='source',
 allowed_values=['sonar', 'radar', 'esm', 'visual'])

Security level - notice that the values are ordered
and each triple *must* have exactly one value for
this attribute. We will use this to prevent some
users from accessing classified data.
level = AttributeDefinition(
 name='level',

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.setAttributeDefinition

 allowed_values=['low', 'medium', 'high'],
 ordered=True,
 minimum_number=1,
 maximum_number=1)

An attribute like this could be used for sharding.
That would ensure that data related to a particular
contact is never partitioned across multiple shards.
Note that this attribute is required, since without
it an attribute-sharded triple store would not know
what to do with a triple.
contact = AttributeDefinition(
 name='contact',
 minimum_number=1,
 maximum_number=1)

So far we have created definition objects, but we
have not yet sent those definitions to the server.
Let's do this now.
conn.setAttributeDefinition(tag)
conn.setAttributeDefinition(source)
conn.setAttributeDefinition(level)
conn.setAttributeDefinition(contact)

This line is not strictly necessary, because our
connection operates in autocommit mode.
However, it is important to note that attribute
definitions have to be committed before they can
be used by other sessions.
conn.commit()

It is possible to retrieve the list of attribute definitions from
a repository by using the getAttributeDefinitions() method:

for attr in conn.getAttributeDefinitions():
 print('Name: {0}'.format(attr.name))
 if attr.allowed_values:
 print('Allowed values: {0}'.format(
 ', '.join(attr.allowed_values)))
 print('Ordered: {0}'.format(
 'Y' if attr.ordered else 'N'))
 print('Min count: {0}'.format(attr.minimum_number))
 print('Max count: {0}'.format(attr.maximum_number))
 print()

Notice that in cases where the maximum cardinality has not been
explicitly defined, the server replaced it with a default value.
In practice this value is high enough to be interpreted as ‘no

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.getAttributeDefinitions

limit’.

 Name: tag
 Min count: 0
 Max count: 1152921504606846975

 Name: source
 Allowed values: sonar, radar, esm, visual
 Min count: 0
 Max count: 1152921504606846975
 Ordered: N

 Name: level
 Allowed values: low, medium, high
 Ordered: Y
 Min count: 1
 Max count: 1

 Name: contact
 Min count: 1
 Max count: 1

Attribute definitions can be removed (provided that the attribute
is not used by the static attribute filter, which will be
discussed later) by calling deleteAttributeDefinition():

conn.deleteAttributeDefinition('tag')
defs = conn.getAttributeDefinitions()
print(', '.join(sorted(a.name for a in defs)))

contact, level, source

Adding triples with attributes
Now that the attribute definitions have been established we can
demonstrate the process of adding triples with attributes. This
can be achieved using various methods. A common element of all
these methods is the way in which triple attributes are
represented. In all cases dictionaries with attribute names as
keys and strings or lists of strings as values are used.
When addTriple() is used it is possible to pass attributes in a
keyword parameter, as shown below:

ex = conn.namespace('ex://')

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.deleteAttributeDefinition
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.addTriple

conn.addTriple(ex.S1, ex.cls, ex.Udaloy, attributes={
 'source': 'sonar',
 'level': 'low',
 'contact': 'S1'
})

The addStatement() method works in similar way. Note that it is not
possible to include attributes in the Statement object itself.

from franz.openrdf.model import Statement

s = Statement(ex.M1, ex.cls, ex.Zumwalt)
conn.addStatement(s, attributes={
 'source': ['sonar', 'esm'],
 'level': 'medium',
 'contact': 'M1'
})

When adding multiple triples with addTriples() one can add a fifth
element to each tuple to represent attributes. Let us illustrate
this by adding an aircraft to our dataset.

conn.addTriples(
 [(ex.R1, ex.cls, ex['Ka-27'], None,
 {'source': 'radar',
 'level': 'low',
 'contact': 'R1'}),
 (ex.R1, ex.altitude, 200, None,
 {'source': 'radar',
 'level': 'medium',
 'contact': 'R1'})])

When all or most of the added triples share the same attribute set
it might be convenient to use the attributes keyword parameter.
This provides default values, but is completely ignored for all
tuples that already contain attributes (the dictionaries are not
merged). In the example below we add a triple representing an
aircraft carrier and a few more triples that specify its position.
Notice that the first triple has a lower security level and
multiple sources. The common ‘contact’ attribute could be used to
ensure that all this data will remain on a single shard.

conn.addTriples(
 [(ex.M2, ex.cls, ex.Kuznetsov, None, {
 'source': ['sonar', 'radar', 'visual'],
 'contact': 'M2',

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.addStatement
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.model.html#franz.openrdf.model.Statement
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.addTriples

 'level': 'low',
 }),
 (ex.M2, ex.position, ex.pos343),
 (ex.pos343, ex.x, 430.0),
 (ex.pos343, ex.y, 240.0)],
 attributes={
 'contact': 'M2',
 'source': 'radar',
 'level': 'medium'
 })

Another method of adding triples with attributes is to use the NQX
file format. This works both
with addFile() and addData() (illustrated below):

from franz.openrdf.rio.rdfformat import RDFFormat

conn.addData('''
 <ex://S2> <ex://cls> <ex://Alpha> \
 {"source": "sonar", "level": "medium", "contact": "S2"} .
 <ex://S2> <ex://depth> "300" \
 {"source": "sonar", "level": "medium", "contact": "S2"} .
 <ex://S2> <ex://speed_kn> "15.0" \
 {"source": "sonar", "level": "medium", "contact": "S2"} .
''', rdf_format=RDFFormat.NQX)

When importing from a format that does not support attributes, it
is possible to provide a common set of attribute values with a
keyword parameter:

from franz.openrdf.rio.rdfformat import RDFFormat

conn.addData('''
 <ex://V1> <ex://cls> <ex://Walrus> ;
 <ex://altitude> 100 ;
 <ex://speed_kn> 12.0e+8 .
 <ex://V2> <ex://cls> <ex://Walrus> ;
 <ex://altitude> 200 ;
 <ex://speed_kn> 12.0e+8 .
 <ex://V3> <ex://cls> <ex://Walrus> ;
 <ex://altitude> 300;
 <ex://speed_kn> 12.0e+8 .
 <ex://V4> <ex://cls> <ex://Walrus> ;
 <ex://altitude> 400 ;
 <ex://speed_kn> 12.0e+8 .
 <ex://V5> <ex://cls> <ex://Walrus> ;
 <ex://altitude> 500 ;
 <ex://speed_kn> 12.0e+8 .

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.addFile
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.addData

 <ex://V6> <ex://cls> <ex://Walrus> ;
 <ex://altitude> 600 ;
 <ex://speed_kn> 12.0e+8 .
''', attributes={
 'source': 'visual',
 'level': 'high',
 'contact': 'a therapist'})

The data above represents six visually observed Walrus-class
submarines, flying at different altitudes and well above the speed
of light. It has been highly classified to conceal the fact that
someone has clearly been drinking while on duty – after all there
are only four Walrus-class submarines currently in service, so the
observation is obviously incorrect.

Retrieving attribute values
We will now print all the data we have added to the store,
including attributes, to verify that everything worked as
expected. The only way to do that is through a SPARQL query using
the appropriate magic property to access the attributes. The query
below binds a literal containing a JSON representation of triple
attributes to the ?a variable:

import json

r = conn.executeTupleQuery('''
 PREFIX attr: <http://franz.com/ns/allegrograph/6.2.0/>
 SELECT ?s ?p ?o ?a {
 ?s ?p ?o .
 ?a attr:attributes (?s ?p ?o) .
 } ORDER BY ?s ?p ?o''')
with r:
 for row in r:
 print(row['s'], row['p'], row['o'])
 print(json.dumps(json.loads(row['a'].label),
 sort_keys=True,
 indent=4))

The result contains all the expected triples with pretty-printed
attributes.

<ex://M1> <ex://cls> <ex://Zumwalt>
{
 "contact": "M1",
 "level": "medium",

https://franz.com/ns/allegrograph/6.2.0/attributes

 "source": [
 "esm",
 "sonar"
]
}
<ex://M2> <ex://cls> <ex://Kuznetsov>
{
 "contact": "M2",
 "level": "low",
 "source": [
 "visual",
 "radar",
 "sonar"
]
}
<ex://M2> <ex://position> <ex://pos343>
{
 "contact": "M2",
 "level": "medium",
 "source": "radar"
}
<ex://R1> <ex://altitude> "200"^^...
{
 "contact": "R1",
 "level": "medium",
 "source": "radar"
}
<ex://R1> <ex://cls> <ex://Ka-27>
{
 "contact": "R1",
 "level": "low",
 "source": "radar"
}
<ex://S1> <ex://cls> <ex://Udaloy>
{
 "contact": "S1",
 "level": "low",
 "source": "sonar"
}
<ex://S2> <ex://cls> <ex://Alpha>
{
 "contact": "S2",
 "level": "medium",
 "source": "sonar"
}
<ex://S2> <ex://depth> "300"
{
 "contact": "S2",
 "level": "medium",
 "source": "sonar"

}
<ex://S2> <ex://speed_kn> "15.0"
{
 "contact": "S2",
 "level": "medium",
 "source": "sonar"
}
<ex://V1> <ex://altitude> "100"^^...
{
 "contact": "a therapist",
 "level": "high",
 "source": "visual"
}
<ex://V1> <ex://cls> <ex://Walrus>
{
 "contact": "a therapist",
 "level": "high",
 "source": "visual"
}
<ex://V1> <ex://speed_kn> "1.2E9"^^...
{
 "contact": "a therapist",
 "level": "high",
 "source": "visual"
}
...
<ex://pos343> <ex://x> "4.3E2"^^...
{
 "contact": "M2",
 "level": "medium",
 "source": "radar"
}
<ex://pos343> <ex://y> "2.4E2"^^...
{
 "contact": "M2",
 "level": "medium",
 "source": "radar"
}

Attribute filters
Triple attributes can be used to provide fine-grained access
control. This can be achieved by using static attribute filters.
Static attribute filters are simple expressions that control which
triples are visible to a query based on triple attributes. Each
repository has a single, global attribute filter that can be
modified using setAttributeFilter(). The values passed to this

https://franz.com/agraph/support/documentation/current/triple-attributes.html#static-filters
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.setAttributeFilter

method must be either strings (the syntax is described in the
documentation of static attribute filters) or filter objects.
Filter objects are created by applying set operators to ‘attribute
sets’. These can then be combined using filter operators.
An attribute set can be one of the following:

a string or a list of strings: represents a constant set of
values.
TripleAttribute.name: represents the value of
the name attribute associated with the currently inspected
triple.
UserAttribute.name: represents the value of
the name attribute associated with current query. User
attributes will be discussed in more detail later.

Available set operators are shown in the table below. All classes
and functions mentioned here can be imported from
the franz.openrdf.repository.attributes package:

Syntax Meaning

Empty(x)
True if the specified attribute set

is empty.

Overlap(x, y)
True if there is at least one
matching value between the two

attribute sets.

Subset(x, y), x << y
True if every element of x can be

found in y

Superset(x, y), x >> y
True if every element of y can be

found in x

Equal(x, y), x == y
True if x and y have exactly the same

contents.

Lt(x, y), x < y

True if both sets are singletons, at
least one of the sets refers to a
triple or user attribute, the

attribute is ordered and the value of
the single element of x occurs before

the single value of y in
the lowed_values list of the attribute.

https://franz.com/agraph/support/documentation/current/triple-attributes.html#static-filters

Syntax Meaning

Le(x, y), x <= y True if y < x is false.

Eq(x, y)
True if both x < y and y < x are

false. Note that using the == Python
operator translates toEqauls, not Eq.

Ge(x, y), x >= y True if x < y is false.

Gt(x, y), x > y True if y < x.
Note that the overloaded operators only work if at least one of
the attribute sets is a UserAttribute or TripleAttribute reference –
if both arguments are strings or lists of strings the default
Python semantics for each operator are used. The prefix syntax
always produces filters.
Filters can be combined using the following operators:

Syntax Meaning

Not(x), ~x Negates the meaning of the filter.

And(x, y, ...), x & y True if all subfilters are true.

Or(x, y, ...), x | y
True if at least one subfilter is

true.
Filter operators also work with raw strings, but overloaded
operators will only be recognized if at least one argument is a
filter object.

Using filters and user attributes
The example below displays all classes of vessels from the dataset
after establishing a static attribute filter which ensures that
only sonar contacts are visible:

from franz.openrdf.repository.attributes import *

conn.setAttributeFilter(TripleAttribute.source >> 'sonar')
conn.executeTupleQuery(
 'select ?class { ?s <ex://cls> ?class } order by ?class',
 output=True)

The output contains neither the visually observed Walruses nor the
radar detected ASW helicopter.

| class |
==================
| ex://Alpha |
| ex://Kuznetsov |
| ex://Udaloy |
ex://Zumwalt

To avoid having to set a static filter before each query (which
would be inefficient and cause concurrency issues) we can employ
user attributes. User attributes are specific to a particular
connection and are sent to the server with each query. The static
attribute filter can refer to these and compare them with triple
attributes. Thus we can use code presented below to create a
filter which ensures that a connection only accesses data at or
below the chosen clearance level.

conn.setUserAttributes({'level': 'low'})
conn.setAttributeFilter(
 TripleAttribute.level <= UserAttribute.level)
conn.executeTupleQuery(
 'select ?class { ?s <ex://cls> ?class } order by ?class',
 output=True)

We can see that the output here contains only contacts with the
access level of low. It omits the destroyer and Alpha submarine
(these require medium level) as well as the top-secret Walruses.

| class |
==================
| ex://Ka-27 |
| ex://Kuznetsov |
ex://Udaloy

The main advantage of the code presented above is that the filter
can be set globally during the application setup and access
control can then be achieved by varying user attributes on
connection objects.
Let us now remove the attribute filter to prevent it from
interfering with other examples. We will use
the clearAttributeFilter() method.

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.clearAttributeFilter

conn.clearAttributeFilter()

It might be useful to change connection’s attributes temporarily
for the duration of a single code block and restore prior
attributes after that. This can be achieved using
the temporaryUserAttributes() method, which returns a context
manager. The example below illustrates its use. It also shows how
to use getUserAttributes() to inspect user attributes.

with conn.temporaryUserAttributes({'level': 'high'}):
 print('User attributes inside the block:')
 for k, v in conn.getUserAttributes().items():
 print('{0}: {1}'.format(k, v))
 print()
print('User attributes outside the block:')
for k, v in conn.getUserAttributes().items():
 print('{0}: {1}'.format(k, v))

User attributes inside the block:
level: high

User attributes outside the block:
level: low »

https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.temporaryUserAttributes
https://franz.com/agraph/support/documentation/6.4.2/python/_gen/franz.openrdf.repository.html#franz.openrdf.repository.repositoryconnection.RepositoryConnection.getUserAttributes

